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Abstract: In this study, multi-patch collaborative learning is introduced into variational low-rank
matrix factorization to suppress mixed noise in hyperspectral images (HSIs). Firstly, based on the
spatial consistency and nonlocal self-similarities, the HSI is partitioned into overlapping patches with
a full band. The similarity metric with fusing features is exploited to select the most similar patches
and construct the corresponding collaborative patches. Secondly, considering that the latent clean HSI
holds the low-rank property across the spectra, whereas the noise component does not, variational
low-rank matrix factorization is proposed in the Bayesian framework for each collaborative patch.
Using Gaussian distribution adaptively adjusted by a gamma distribution, the noise-free data can be
learned by exploring low-rank properties of collaborative patches in the spatial/spectral domain.
Additionally, the Dirichlet process Gaussian mixture model is utilized to approximate the statistical
characteristics of mixed noises, which is constructed by exploiting the Gaussian distribution, the
inverse Wishart distribution, and the Dirichlet process. Finally, variational inference is utilized to
estimate all variables and solve the proposed model using closed-form equations. Widely used
datasets with different settings are adopted to conduct experiments. The quantitative and qualitative
results indicate the effectiveness and superiority of the proposed method in reducing mixed noises
in HSIs.

Keywords: denoising; low-rank matrix factorization; patch learning; variational inference; hyper-
spectral image

1. Introduction

Hyperspectral images (HSIs) are acquired by hyperspectral sensors, represented
as a 3D data-cube containing both rich spectral and spatial information. Due to the
limitations of the acquisition and transmission process, HSIs unavoidably suffer from
various degradations, such as noise contamination, stripe corruption, missing data relating
to the voxels in the data-cube or entire spectral bands [1–5]. These degradations severely
limit the quality of the images and influence the precision of the subsequent processing,
including unmixing, target detection, and classification [6–9]. Therefore, image restoration
is of critical importance and challenging in the preprocessing stage of HSI analysis.

Previously, the traditional 2D or 1D denoising models have been applied for reducing
noises in HSIs pixel-by-pixel [10] or band-by-band [11]; however, these methods ignore
the correlations between different spectral bands or adjacent pixels and often result in
relatively low-quality results. To further enhance the denoising performance, more efficient
methods have been proposed, of which the key point is to elaborately encode the prior
knowledge on the structure underlying a natural HSI, especially the characteristic across
the spatial and spectral dimensionality of the image.
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Othman and Qian [12] made an initial attempt to resolve this issue by designing
a hybrid spatial–spectral derivative-domain wavelet shrinkage model, which was con-
structed by exploring the dissimilarity of the signal regularity existing along the space
and spectrum of a natural HSI. Fu et al. [13] proposed an effective restoration model by
considering the underlying sparsity across the spatial–spectral domain, high correlation
across spectra, and non-local self-similarity over space. Meanwhile, a series of methods
expanding the wavelet-based method from 2D to 3D has been proposed, for example, the
so-called “non-local means” filtering approach has become popular in image processing
and extensions have been developed in order to denoise structural 3D images [14]. Letexier
et al. [15] proposed a generalized multi-dimensional Wiener filter for denoising hyperspec-
tral images. Similarly, Chen et al. [16] extended Sendur and Selesnick’s bivariate wavelet
thresholding from 2D image denoising to 3D data cube denoising. To get better denoising
results, as an extension of the BM3D [11] method, Maggioni et al. presented a BM4D
model [17]. Utilizing highly correlated spectral information and highly similar spatial
information, the spectral-spatial adaptive sparse representation model was proposed for
reducing the noise in HSIs [18]. By explicitly treating HSI data as a 3D cube, denoising
models based on tensor decomposition have appeared. In Reference [19], a novel coupled
spectral–spatial tensor representation framework was proposed for noise reduction of hy-
perspectral images. Chen et al. proposed a low-rank tensor decomposition model for HSI
restoration [20]; however, most of the above-mentioned approaches are limited due to their
insufficient usage of the correlations in the spectral domain, which results in suboptimal
performance while suppressing mixed noises.

By efficiently exploring the latent knowledge across spectral bands for HSIs, low-rank
models have been proposed and widely utilized to restore the pure datasets from the
degraded images, with competitive performances [21–26]. The classical low-rank matrix
factorization (LRMF) model was presented by K. Mitra et al. and T. Okatani et al. [24].
Subsequently, using the low-rank matrix recovery (LRMR) framework, an HSI restoration
technique was explored to simultaneously remove various noises in an HSI [25]. The global
and non-local low-rank factorization (GLF) was proposed to suppress the noises in HSIs by
utilizing the low dimensional sub-spaces and the self-similarity of the real HSI [26]. These
approaches obtained satisfactory results by effectively exploiting the spectral information.

To sufficiently enhance the denoising performance, it is necessary to well integrate the
spatial characteristics of HSIs into the low-rank-based models [27–32]. Wang et al. [29] pro-
posed a novel low-rank constraint and spatial–spectral total variation regularization model
by jointly utilizing global low-rank and local spatial–spectral smooth properties of HSIs.
Wang et al. [30] developed a total variation regularized low-rank tensor decomposition
(LRTDTV) method, in which HSI was regarded as a third-order tensor rather than being
divided into the patches or being unfolded into the matrix. In [31], a novel robust principal
component analysis approach was introduced into the spatial–spectral low-rank model for
mixed noise removal by fully identifying the intrinsic structures of the mixed noise and
clean HSIs. Based on the global correlation along the spectra and nonlocal self-similarity
across space, a low-rank tensor dictionary learning (LTDL) approach was explored with
satisfactory performance in [32]. In the spatial domain, HSI has latent consistency. Using
this, patch learning has been widely applied to depict spatial information and has achieved
good performance [33–37]. When the HSIs are heavily polluted by noise, the patches
with little effective information are usually not directly used to recover the noise-free data.
Therefore, these methods could not efficiently learn and represent the intrinsic spatial
consistency and nonlocal similarities of HSIs and thus limit their denoising performance.

Deep learning has also been widely used for HSIs [38–43]. Their success suggests
its effectiveness for learning and depicting latent features when denoising the HSI. Addi-
tionally, hyperspectral images are usually polluted by various noises, which often have
different statistical features [44,45], such as the noises depending on the signal, the noises
depending on the space domain, or spectral domain noise and mixed noise. Therefore, it is
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necessary to construct a model for suppressing complex mixed noises in order to deal with
real HSI scenarios.

To alleviate the above limitations, a variational low-rank matrix factorization model,
combined with multi-patch collaborative learning (VLRMFmcl), is proposed in the Bayesian
framework to suppress various noises in HSIs. The main contributions of this work are
summarized as follows.

(1) Multi-patch collaborative learning is exploited to effectively depict and learn the
spatial consistency and the nonlocal self-similarity in the HSI. The pixels within the same
collaborative patches share similar spatial–spectral characteristics, which are utilized to
effectively improve the performance of denoising the patches polluted by heavy noises.

(2) Variational low-rank matrix factorization is proposed to learn and characterize
the collaborative patch data by exploring latent characteristics across the spatial–spectral
domain, in which the latent clean image in degraded HSI has the property of low rank and
the mixed noises do not. The Gaussian distribution with zero mean and the variance ad-
justed by gamma distribution is explored to represent the latent clean image. The Dirichlet
process Gaussian mixture is exploited to depict the inherent statistical features of different
noises in the HSI, which are adapted and learned by exploring the Gaussian distribution,
the inverse Wishart distribution, and the Dirichlet process. Through this process, the un-
derlying mixed noise of the HSI can be fit adaptively without needing to know specific
noise types or intensity.

(3) Considering the uncertainty of information about latent variables, the posteriors of
the latent clean image and the mixed noises are both explicitly parameterized and update
in a closed form by utilizing the variational inference. The feasibility and validity of the
VLRMFmcl method are evaluated under different experimental conditions. Compared with
several popular denoising methods, VLRMFmcl can reduce the noises of the hyperspectral
images while preserving the structural information.

The paper is organized as follows. Section 2 gives a detailed description of the
proposed restoration model, which is performed using variational inference. In Section 3,
several experimental results are presented by utilizing the real-world HSI datasets. The con-
clusions are given in Section 4.

2. Proposed Model

To effectively suppress the various noises in HSIs, multi-patch collaborative learning
is explored to represent the intrinsic spatial consistency and non-local self-similarity of
HSIs. Then, the learned patches are input into the variational low-rank matrix factorization
model, which is developed to suppress the mixed noises of each patch in the Bayesian
framework. Figure 1 presents the framework of the proposed VLRMFmcl.

2.1. Multi-Patch Collaborative Learning

In HSIs, the adjacent pixels have high consistency in the space domain [26–29]. Based
on this fact, they are often divided into overlapping three-dimensional patches for the HSI
analysis. The effective information of one patch is very scarce when most of the pixels
within this patch are polluted by a large amount of noise. Therefore, it is very difficult to
recover the noiseless data by directly exploiting this image patch. To solve these problems,
it becomes important to effectively utilize the patches in HSIs.

Figure 2 presents some patches from the Pavia Centre data (presented in Section 3.2),
in which the area marked by the red box represents a test patch, and the ones marked by
three green boxes represent its neighboring patches. The similarities between the patches
marked by the red box and the green boxes are very different. Inspired by this basic
characteristic in the HSI, the heavily polluted patches could be restored by the patches
with high similarities with them. Additionally, it has been argued that the “collaborative”
nature of the approximation can improve classification accuracy [46]. Considering that
the HSI denoising aims to facilitate subsequent applications (e.g., classification), a similar
“collaborative” [46] nature is introduced. Based on these, a multi-patch collaborative
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learning strategy is proposed by exploring the similarities between different image patches
to effectively learn about the HSI.
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collaborative learning (VLRMFmcl) method. HSI, hyperspectral image.
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Figure 2. Some patch structures of the Pavia Centre data. Four areas are enlarged to better show the
similarities of different patches. The area marked by the red box represents a test patch, and the ones
marked by three green boxes are the neighboring patches of the test patch.

Supposing the hyperspectral image X, it is segmented into overlapped three-dimensional
patches with the size of d× d× λ, where d represent the spatial size of patches and λ is the
total number of bands in the HSI. For a pixel xi from X, the collection N(xi), 1 ≤ i ≤ d2

consists of all pixels of a patch centered at the sample xi. The pixels in N(xi) can be
considered to contain similar characteristics. The yi is formed by stacking all pixels of N(xi)
into a vector, which can be regarded as the fusing feature of xi. The similarities between
the different patch data can be formulated as

SimilarIndex
(

yi, yj

)
= exp(−

(
1

d2λ

∣∣∣I1×d2λyi − I1×d2λyj

∣∣∣)), (1)

where I1×d2λ is the row vector with the dimension of d2λ, of which the elements are

equal to one. Obviously, the larger the value of the SimilarIndex
(

yi, yj

)
is, the higher the

similarities that are observed between N(xi) and N(xj). According to Equation (1), we can
select the most similar (P–1) patches to the patch centered at xi, and construct the non-local
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patch data Y i. When d is large enough, it can be considered as all the most similar data to
be searched in the whole hyperspectral image.

2.2. Variational Low-Rank Matrix Decomposition

In the existing literature, many computer vision, machine learning, and statistical
problems can be approached by solving and learning a low-dimensional linear model.
In this case, the low-rank matrix decomposition has been widely concerned and applied
in many fields [3–6], which can effectively explore the low-dimensional properties of the
observed data. Assuming X = [y1,...,yH]∈ RM×H represents the observed data, M and
H represent the spatial size of X, the general low-rank matrix decomposition model is
formulated as

X=UVT+n, (2)

where U = [u1,...,uL]∈ RM×L and V = [v1,...,vH]T ∈ RH×L represent the decomposition
matrix, L� min(M, H); n is the noise, which is depicted by Gaussian distribution, Laplace
distribution, or polynomial distribution.

Obviously, the pixels of the same collaborative patch have similar characteristics in
the spatial and spectral domains. In other words, these pixels have the low-rank property
and can be effectively learned and expressed by the low-rank matrix decomposition. Ad-
ditionally, the hyperspectral images are usually polluted by various noises with different
statistical properties. The Gaussians mixture model can effectively learn and depict the
different noises, including Gaussian noise, sparse noise, and so on. Above all, the noise
model is explored to depict the complex noises in real HSIs, in which the Dirichlet process is
utilized to adaptively achieve the selection of Gaussian distribution and the determination
of the number of Gaussian distributions. The symbol Y = {yi}

P
i=1 represents the collab-

orative patch data, and M = d2λ represents the dimensions of the sample yi. According
to (2), the proposed Bayesian low-rank matrix decomposition model for denoising the
collaborative patch data can be written as follows:

Y=UVT+n. (3)

The first term is the low-rank decomposition term, in which ui ∈ RM and vj ∈ RL

are defined as ui ∼ N(0, τ−1
ui I) and vj ∼ N(0, τ−1

vj I) separately. That is, ui and vj are
drawn from the Gaussian distribution with zero mean and variances of τui and τvj, indi-
vidually. In order to improve the model robustness and reduce the sensitivity of parame-
ters, the gamma distribution is introduced to adaptively adjust the parameter τui and τvj.
The first term can be formulated as:

ui ∼ N(0, τ−1
ui I), vj ∼ N(0, τ−1

vj I)
τui ∼ Γ(a0, b0), τvj ∼ Γ(c0, d0)

(4)

where I is the column vector, of which the entries are all equal to one; a0, b0, c0 and d0
represent the hyper-parameters of the gamma distribution.

The second term in Equation (3) represents the mixed noises in the real HSI. Consider-
ing the complex statistical properties of the noises in the HSI, the Gaussians mixture model
is utilized to depict the different noises, which are displayed as

ni ∼ ∏∞
k=1 N(µk, Σk)

zijk

µk ∼ N(µ0, Σ0) Σk ∼ iWishart(e0, f0)

zij ∼ Mult(π) πt ∼ vt
t−1
∏
j=1

(
1− vj

)
vt ∼ beta(1, β)

(5)

In Equation (5), µk and Σk are the mean and variance of the k-th Gaussian distribution,
which are learned and represented by the Gaussian distribution and the inverse Wishart
distribution. The Gaussian distribution and the inverse Wishart distribution are conjugate.
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µ0 and Σ0 represent the mean and variance of the parameter µk; and e0 and f0 are the
freedom degree and scale matrix of the inverse Wishart distribution. To effectively depict
the various noises in a data-driven way, the indicator variable zij ∈ {0, 1}K, K → ∞ is
introduced to determine and learn the number and mode of the Gaussian distribution, and
∑k zijk = 1. zij is drawn from the polynomial distribution with the parameter π, which is
learned through the Dirichlet process. Figure 3 shows the graphical representation of the
Bayesian low-rank matrix decomposition model.

Remote Sens. 2021,13, x FOR PEER REVIEW 6 of 20 
 

 

The second term in Equation (3) represents the mixed noises in the real HSI. Consid-
ering the complex statistical properties of the noises in the HSI, the Gaussians mixture 
model is utilized to depict the different noises, which are displayed as 

( )

1

0 0 0 0
1

1

~ ( , )

~ ( , ) ~ ( , )

~ ( ) ~ 1 ~ (1, )

ijkz
i k kk

k k
t

ij t t j t
j

n N

N iWishart e f

Mult beta

μ

β

∞

=

−

=

Σ

−

∏

∏

μ Σ

μ Σ

z π π v v v

. (5) 

In Equation (5), 𝝁 and 𝜮 are the mean and variance of the k-th Gaussian distribu-
tion, which are learned and represented by the Gaussian distribution and the inverse 
Wishart distribution. The Gaussian distribution and the inverse Wishart distribution are 
conjugate. 𝜇 and 𝛴 represent the mean and variance of the parameter 𝝁; and 𝑒 and 𝑓 are the freedom degree and scale matrix of the inverse Wishart distribution. To effec-
tively depict the various noises in a data-driven way, the indicator variable 𝒛 ∈{0,1},  𝐾 → ∞ is introduced to determine and learn the number and mode of the Gauss-
ian distribution, and ∑ 𝑧 = 1. 𝒛 is drawn from the polynomial distribution with the 
parameter 𝝅, which is learned through the Dirichlet process. Figure 3 shows the graphical 
representation of the Bayesian low-rank matrix decomposition model. 

Additionally, =Y Δ Y  is introduced into Equation (3) when recovering the miss-
ing pixels. 𝜟 = {0,1}ெ× is the sampling matrix whose elements are equal to 0 or 1. There-
fore, 0f i =Σ  (𝑓 = 1,⋯ ,𝑀) represents the loss of the f-th element in 𝒚 when acquiring; 

1f i =Σ ( 1, ,f M=  ) means that the f-th element in 𝒚 is effectively collected. 

i

j

k

 
Figure 3. Graphical representation of the variational low-rank matrix decomposition model. 

2.3. Variational Bayesian Inference 
According to Equations (3) and (4) and Figure 3, it can be observed that all the vari-

ances in the proposed Bayesian low-rank matrix decomposition model satisfy the conju-
gation. Therefore, variational Bayesian inference can be used to solve the model. Assum-
ing the symbol { , , , , , , , }i i k k i ui vj tτ τΨ = u v μ Σ z v  represents the variables of the proposed 
model; the symbol 𝛩 = {𝑎, 𝑏, 𝑐, 𝑑, 𝜇, 𝛴, 𝑒, 𝑓, 𝛽} is the corresponding hyperparameter 
in the model. The variational Bayesian inference can be achieved by estimating the poste-
rior distribution of the latent variable Ψ  with the observation data Y and the hyperpa-
rameter Θ  given. To solve the proposed model, the real posterior distribution 
p( , )Ψ ΘY  of the latent variables Ψ  is approximated based on the distribution ( )q Ψ . 
Then, we can obtain 

Figure 3. Graphical representation of the variational low-rank matrix decomposition model.

Additionally, Y = ∆ ◦ Y is introduced into Equation (3) when recovering the missing
pixels. ∆ = {0, 1}M×P is the sampling matrix whose elements are equal to 0 or 1. Therefore,
Σ f i = 0 ( f = 1, · · · , M) represents the loss of the f -th element in yi when acquiring;
Σ f i = 1( f = 1, · · · , M) means that the f -th element in yi is effectively collected.

2.3. Variational Bayesian Inference

According to Equations (3) and (4) and Figure 3, it can be observed that all the
variances in the proposed Bayesian low-rank matrix decomposition model satisfy the
conjugation. Therefore, variational Bayesian inference can be used to solve the model.
Assuming the symbol Ψ =

{
ui, vi, µk, Σk, zi, τui, τvj, vt

}
represents the variables of the

proposed model; the symbol Θ = {a0, b0, c0, d0, µ0, Σ0, e0, f0, β} is the corresponding hyper-
parameter in the model. The variational Bayesian inference can be achieved by estimating
the posterior distribution of the latent variable Ψ with the observation data Y and the
hyperparameter Θ given. To solve the proposed model, the real posterior distribution
p(Ψ|Y, Θ ) of the latent variables Ψ is approximated based on the distribution q(Ψ). Then,
we can obtain

ln p(Y|Θ ) = ln
∫

p(Y, Ψ|Θ )dΨ
= ln

∫ p(Y,Ψ|Θ )q(Ψ)
q(Ψ)

dΨ

≥
∫

ln p(Y,Ψ|Θ )q(Ψ)
q(Ψ)

dΨ
= ln p(Y|Θ )−KL(q(Ψ)|p(Ψ|Y, Θ ) )

(6)

where KL(q(Ψ)|p(Ψ|Y, Θ ) ) is utilized to represent the KL divergence distance between
the variational approximation q(Ψ) and the true joint probability distribution p(Ψ|Y, Θ ).
It can be easily seen that the expression ln p(Y|Θ ) has a strict lower bound because
KL(q(Ψ)|p(Ψ|Y, Θ ) )≥0. Therefore, the optimal solution of the proposed model can be
calculated by minimizing KL(q(Ψ)|p(Ψ|Y, Θ ) ). Algorithm 1 presents the pseudocode of
the VLRMFmcl method.
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Algorithm 1. The VLRMFmcl Method

Input: the noisy HSI image X; the spatial size d of patches; the total number λ of bands;
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spatial consistency and nonlocal self-similarities, the HSI is partitioned into overlapping patches 
with a full band. The similarity metric with fusing features is exploited to select the most similar 
patches and construct the corresponding collaborative patches. Secondly, considering that the latent 
clean HSI holds the low-rank property across the spectra, whereas the noise component does not, 
variational low-rank matrix factorization is proposed in the Bayesian framework for each collabo-
rative patch. Using Gaussian distribution adaptively adjusted by a gamma distribution, the noise-
free data can be learned by exploring low-rank properties of collaborative patches in the spa-
tial/spectral domain. Additionally, the Dirichlet process Gaussian mixture model is utilized to ap-
proximate the statistical characteristics of mixed noises, which is constructed by exploiting the 
Gaussian distribution, the inverse Wishart distribution, and the Dirichlet process. Finally, varia-
tional inference is utilized to estimate all variables and solve the proposed model using closed-form 
equations. Widely used datasets with different settings are adopted to conduct experiments. The 
quantitative and qualitative results indicate the effectiveness and superiority of the proposed 
method in reducing mixed noises in HSIs. 
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1. Introduction 
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collaborative patch data Yi;
Process Source-Code of variational low-rank matrix factorization:

Obtain the variables Ψ =
{

ui, vi, µk, Σk, zi, τui, τvj, vt

}
;

Calculate p(Ψ | Y, Θ) by q(Ψ); update Ψ by minimizing KL(q(Ψ) | p(Ψ | H, Θ));
return denoised image Y;

The updating equations of the model variances are listed as follows.
(1) updating zij and vt:
The posterior probability of vt is still drawn from the beta process. Supposing

vt ∼ beta(gt, ht), gt and ht can be calculated by

gtk = 1 + ΣiΣjqijk(t), htk = β + ΣT
j−t+1Σiqijk(t). (7)

For the variance zij,
q(zij) = ∏

k
qijk

zijk , (8)

where
qijk(t) =

ρijk(t)

∑T
l=1 ρijk(l)

ρijk(l) = exp(γik
l,1 + γik

l,2)
(9)

Supposing Φ is the digamma function, γik
l,1 and γik

l,2 are expressed as:

γik
l,1 = Φ(glk) + Φ(hlk)

γik
l,2 = −0.5tr

{〈
Σ−1

l

〉
[
〈
µlµ

T
l
〉
+ yijyT

ij +
〈
viv

T
i
〉〈

UTU
〉

−2〈U〉
〈
vi
〉
(yij − µl)

T − 2yij
〈
µT

l
〉
] + ln|Σt|

} (10)

(2) updating µk:
The posterior probability of µk is still drawn from the Gaussian distribution, which

satisfies the following conditions:

〈µi〉 = [Σ−1
0 + ∑i,k qijk(t)

〈
Σ−1

t

〉
]
−1

[Σ−1
0 µ0

+∑i,k qijk(t)
〈

Σ−1
t

〉
(yij − 〈U〉〈vi〉)]〈

µiµ
T
i
〉
= [Σ−1

0 + ∑i,k qijk(t)
〈

Σ−1
i

〉
]
−1

+ 〈µi〉〈µi〉T
(11)

(3) updating Σk:
The posterior probability of Σk is still drawn from the inverse-Wishart distribution,

which satisfies the following conditions:

et = e0 + ςt

ft = f0 + 0.5∑i ∑j qijk(t)(
〈
µtµ

T
t
〉
+ yijyT

ij +
〈
uiuT

i
〉〈

vT
j vj

〉
−2(yij − µt)〈U〉

〈
vj

〉
− 2
〈
µT

t
〉
yij)

(12)
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From Equation (12), we can obtain the following expression:〈
Σ−1

t

〉
= et( ft)

−1

〈ln|Σt|〉 = 1
Φ(0.5et)+d2λ ln 2+ln| f−1

t |
(13)

(4) updating ui:
The posterior probability of ui is still drawn from the Gaussian distribution, which is

formulated as
ui ∼ N(µui , Ω−1

ui
), (14)

where the mean µui and the variance Ωui are shown as

Ωui = 〈τui〉I+∑k Σ−1
k ∑j

〈
zijk

〉〈
vT

j vj

〉
µui = Ω−1

ui ∑k Σ−1
k ∑j

〈
zijk

〉
(yij −

〈
µ−1

k

〉
)
〈
vj
〉 (15)

(5) updating τui:
The posterior probability of τui is still drawn from the gamma distribution, which

satisfies the following conditions:

τui ∼ Γ(a, bi), (16)

where the parameters a and bi are shown as

a = a0 + 0.5LM, bi = b0 + 0.5
〈

uiuT
i

〉
. (17)

(6) updating vi:
The posterior probability of vi is still drawn from the Gaussian distribution, which

can be written as follows:
vj ∼ N(µvj , Ω−1

vj
), (18)

where the mean µvj and the variance Ωvj are:

Ωvj =
〈
τvj
〉

I + ∑k Σ−1
k ∑i

〈
zijk

〉〈
uiuT

i
〉

µvj = Ω−1
vj ∑k Σ−1

k ∑j

〈
zijk

〉
(yij −

〈
µ−1

k

〉
)〈ui〉

(19)

(7) updating τvj:
The posterior probability of τui is still drawn from the gamma distribution, which

satisfies the following conditions:

τvj ∼ Γ(c, dj), (20)

where the parameters c and dj are shown as

c = c0 + 0.5LP, dj = d0 + 0.5
〈

vT
j vj

〉
. (21)

3. Experiments

To validate the effectiveness of the proposed VLRMFmcl model, three popular hyper-
spectral images were chosen as the experimental datasets, the Beads, Pavia Centre, and
Urban datasets. In addition, BM3D [11], ANLM3D [14], BM4D [17], LRMR [25], GLF [26],
LRTDTV [30], LTDL [32], DnCNN [42], and HSID-CNN [43] were chosen as the compared
methods. The necessary parameters in the BM3D, ANLM3D, and LRTDTV methods, were
automatically/manually adjusted to generate the optimal denoising results, as the refer-
ences suggested. In BM4D, the noise variance was selected from the set {0.01, 0.03, 0.04,
0.05, 0.07, 0.09, 1.1}. In LRMR, the rank of the noiseless matrix was chosen from {3, 5, 6, 7, 9,
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11}, and the cardinality of the sparse term was chosen from the set {0, 500, 1000, 1500, 2000,
3000, 4000, 5000}. In GLF, the number of subspaces was chosen from the set {5, 8, 9, 11,
13}. In LTDL, the noise variance was selected from the set {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4}.
In the DnCNN and HSID-CNN methods, the pre-trained weights and the related settings
were utilized to conduct the experiments as the references suggested.

In addition, five metrics were chosen to numerically evaluate the denoising perfor-
mance of the different algorithms—the peak signal-to-noise ratio (PSNR), feature similarity
(FSIM) [47], the mean spectral angle (MSA), noise reduction (NR) [48,49], and the mean
relative deviation (MRD) [48,49]. At the same time, the visual effect was utilized as an
intuitive way to determine the denoising performance. Suppose Iden and Ire f represent
the denoised and reference images, respectively; I1 and I2 represent the spatial size of
the image.

(a) The greater the value of PSNR is, the better the denoising image quality is. PSNR
(in dB) is formulated as:

PSNR = 10 log10(
2552 ∗ I1I2

‖Ire f − Iden‖2 ) (22)

(b) The greater the value of FSIM is, the better the denoising image quality is. FSIM is
formulated as:

FSIM =
∑x=Ω Sl(x) ∗ PCm(x)

∑x=Ω PCm(x)
, (23)

where Sl(x) is derived from the phase congruency and the image gradient magnitude of
Iden and Ire f ; PCm(x) is the maximum phase congruency of PCden (for Iden) and PCre f (for
Ire f ); and Ω represents the entire airspace of the image.

(c) MSA was used to estimate spectral fidelity between the denoising images and
reference images in the spectral domain. The smaller the value of MSA is, the better the
spectral fidelity of the restored algorithms. The MSA is calculated by:

MSA =
1

I1I2

I1

∑
i=1

I2

∑
j=1

cos−1

 Iden
ij · I

re f
ij

‖Iden
ij ‖ · ‖Ire f

ij ‖

 (24)

(d) NR was used to evaluate the noise reduction of different restored methods in
the frequency domain. The greater the value of NR is, the better the performance of the
denoising algorithms. NR is formulated as

NR = N0/N1, (25)

where N1 is the power of the frequency components generated by stripes in the restored
image and N0 is for the reference image. N1 and N0 can be obtained by

Nc = ∑
℘

Pc(D), (26)

where Pc(D) is the averaged power spectrum down the columns of an image with D being
the distance from its reference image in Fourier space, and ℘ is the stripe noise region of
the spectrum.

(e) MRD was utilized to compare the degree of distortion between the selected noise-
less region of the restored images and reference images. The smaller the value of MRD
is, the smaller the image distortion. In the experiment, a 10 × 10 window was selected to
calculate the MRD value. MRD is formulated as:

MRD =
1

I1I2

I1

∑
i=1

I2

∑
j=1

∣∣∣Iden
ij − Ire f

ij

∣∣∣
Ire f
ij

× 100%. (27)
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3.1. Experiment on the Beads Data Set

The Beads data set, acquired from Columbia University, has a spectral resolution of
10 nm and a spectral range from 400 nm to 700 nm. The data set has a total number of
31 consecutive spectral bands. The spatial resolution in each band is 512 × 512.

Three kinds of noises were considered in the simulation experiment. The detailed
descriptions are listed as follows.

(1) Gaussian white noise with the mean 0 and fixed variance.
(2) Poisson noise is added by adjusting the ratio between the maximum brightness

and the initial image brightness, which can be written as Xpoission = X · peak. Xpoission
represents the image polluted by Poisson noise; X is the initial image data; peak refers to
the intensity of the Poisson noise. To reduce the passion noise, we utilized settings similar
to those in [50]. The variance-stabilizing transformation (VST) was utilized to convert
Poisson noise into Gaussian noise before implementing a denoising approach. The final
denoising images were obtained by the inverse variance stability transformation.

(3) Sparse noise is added to the randomly selected pixels by utilizing uniform distri-
bution with the interval [−10, 10].

Mixed noise, consisting of zero-mean Gaussian noise with variance σ = 0.1 and
Poisson noise with peak = {5, 10, 20, 30, 50, 70, 100, 130, 160}, was added to the Beads data.
Then the nine compared methods and the proposed one were utilized to restore the noisy
Beads data. The performance curves of the simulation experiments are shown in Figure 4,
where the vertical coordinates represent the values of PSNR, FSIM, and MSA, respectively.
The horizontal coordinates represent the value of parameter peak. Comparing the curves of
PSNR, FSIM, and MSA, it can be clearly observed that both the PSNR and FSIM values of
the VLRMFmcl method were higher than those of BM3D, ANLM3D, BM4D, LRMR, GLF,
LRTDTV, DnCNN, and HSID-CNN methods. At the same time, the MSA of VLRMFmcl
was lower than these eight compared algorithms. Compared with LTDL, the proposed
model is superior in PSNR. For FSIM and MSA, it showed better values than LTDL in
most cases. These facts indicate that VLRMFmcl can effectively improve the quality of the
noisy HSI by better maintaining the image feature information and restoring the spectral
information in the HSI. In addition, the performance curve of the VLRMFmcl method is
smoother than the nine comparison algorithms, which means VLRMFmcl is more stable
when denoising the HSI.

Figure 5 shows the restored images of band 27 obtained by different models, which
are polluted by Gaussian noise, sparse noise, and missing pixels. Compared with the
noisy image in Figure 5b, the quality of Figure 5c–l is significantly improved. According to
Figure 5, it can be seen that VLRMFmcl can effectively reduce the various forms of noise
in the HSI with a large difference in brightness. The denoising results can preserve the
structural information and the edges of the homogeneity region. Using patch-matching
three-dimensional filtering, BM3D smoothed out some feature structures and blurred
the visual effect while suppressing the different noises and restoring the missing pixels.
ANLM3D showed better visual performance than BM3D and DnCNN; however, ANLM3D
had a weaker ability to recover the detailed information in the HSI. The restored images
obtained by BM4D were too smooth and lost some information. As shown in Figure 5f,
the results of the LRMR method were significantly better than BM3D, ANLM3D, and
DnCNN, but the results of LRMR still showed obvious sparse noise. Utilizing low-rank
factorization of tensors constructed by nonlocal similar 3D patches, GLF was able to recover
the basic shapes of the Beads dataset, but its result lacked sharpness. As shown in Figure 5,
the results of LRTDTV, LTDL, and VLRMFmcl were much better than those of BM3D,
ANLM3D, BM4D, LRMR, GLF, DnCNN, and HSID-CNN. In general, the VLRMFmcl
method can remove the mixed noises and restore the missing pixels of the Beads data.
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To make a more intuitive comparison of different algorithms, Figure 6 shows the
pseudo-color images of the restored images (R: 3, G: 12, B: 25). As can be seen in Figure 6,
the denoising results of VLRMFmcl were better than those of BM3D, ANL3D, BM4D,
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LRMR, GLF, LRTDTV, LTDL, DnCNN, and HSID-CNN. Additionally, the restored results
of VLRMFmcl were very similar to those of the reference images, which can be easily
observed by comparing Figure 5a,l.
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3.2. Experiment on the Pavia Centre Dataset

The Pavia Centre dataset was acquired from the Reflective Optics System Imaging
Spectrometer. It contains 115 bands, and each band consists of 1096 × 715 pixels. The spec-
tral range of the Pavia Centre dataset is from 0.43 micrometers to 0.86 micrometers. After
removing 13 noisy bands, the remaining 102 bands were used in the following analysis.
In the experiment, a subset of the Pavia Centre with the size of 400 × 400 × 102 was used.

Three kinds of noises were considered for the Pavia Centre dataset: (1) Gaussian white
noise with the mean 0 and the noise variance σ = 0.1. (2) Sparse noise was added to the
randomly selected pixels by utilizing the uniform distribution with the interval [−5, 5].
(3) Deadlines were added to the same position as the selected bands in the HSI. Their width
varied from one line to three lines.

Table 1 shows the evaluation results for PSNR, FSIM, and MSA calculated by different
approaches. All the bold numbers in Table 1 indicate the best results. By utilizing the
nonlocal self-similarity and adaptively learning the noises in the HSI, the VLRMFmcl
method shown the best PSNR/MSA values and the suboptimal FSIM value than the
compared methods. Compared with the noisy image, the PSNR and FSIM values obtained
by VLRMFmcl were increased by 21.66 and 0.1443, respectively, and MSA was reduced by
0.264. HSID-CNN simultaneously assigned the spatial information and adjacent correlated
bands to the network, where multiscale feature extraction was employed to capture both
the multiscale spatial feature and spectral feature. Its FSIM value was optimal. Instead of
learning the noise variance, BM3D and DnCNN denoised the HSI with the predefined fixed
noise variance band by band, which could not efficiently utilize the spectral correlations of
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the HSI. As shown in Table 1, the PSNR, FSIM, and MSA values of BM3D and DnCNN
were significantly lower than those of the other methods while reducing the mixed noises.
Noticing that, ANLM3D denoised the HSI by using the high nonlocal self-similarity and
making a balance between the smoothing and details preservation; BM4D adopted the 3D
nonlocal self-similarity data cube to exploit the local correlations between some neighboring
bands; and GLF reduced the mixed noise by utilizing low-rank factorization of tensors
constructed by nonlocal similar 3D patches. In Table 1, the ANLM3D, BM4D, and GLF
methods presented relatively good results by exploring the spatial–spectral information of
the HSI. LRMR, LRTDTV, and LTDL took advantage of the low-rank property in HSI, and
their PSNR and FSIM values were better than those of BM3D, ANLM3D, GLF, and DnCNN.

Table 1. Quantitative evaluation results for the Pavia Centre data set.

Band 109 BM3D ANLM3D BM4D LRMR GLF LRTDTV LTDL DnCNN HSID-CNN VLRMFmcl

PSNR(dB) 13.97 17.92 30.25 33.65 34.57 34.12 34.91 35.06 22.79 35.57 35.63
FSIM 0.8458 0.7903 0.9117 0.9739 0.9835 0.9702 0.9832 0.9551 0.8125 0.9907 0.9901
MSA 0.3616 0.3019 0.1101 0.1014 0.1181 0.1067 0.1025 0.0991 0.2216 0.0983 0.0976

Figure 7 shows the results of band 90 obtained by different denoising approaches.
To make a better visual evaluation, Figure 8 shows the comparison of the pseudo-color
images (R: 60, G: 30, B 2). It can be seen that the image qualities of the BM3D, ANLM3D,
BM4D, LRMR, GLF, LRTDTV, TDTL, DnCNN, HSID-CNN, and VLRMFmcl methods were
significantly improved compared to the noise images as shown in Figures 7b and 8b. As can
be seen in Figures 7c and 8c, the denoising results obtained by the BM3D method were
relatively fuzzy, and the method could not effectively inhibit the strip noise. ANLM3D,
BM4D, LRMR, GLF, LRTDTV, LTDL, DnCNN, and HSID-CNN could only suppress some
of the noise. It can be easily seen in Figures 7l and 8l that the proposed VLRMFmcl model
was able to effectively suppress Gaussian noise, sparse noise, and deadlines, and its results
were better than those of the compared methods.
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Figure 8. Restored results of the Pavia Centre data corrupted with mixed noises: (a) clean HSI; (b)
noisy HSI; (c) BM3D; (d) ANLM3D; (e) BM4D; (f) LRMR; (g) GLF; (h) LRTDTV; (i) LTDL; (j) DnCNN;
(k) HSID-CNN; (l) VLRMFmcl.

3.3. Experiment on the Urban Dataset

Urban data, with a size of 307×307×210, was acquired from the HYDICE sensor.
Due to the detector-to-detector difference, it has different strips and mixed noises versus
bands. The image contains 210 bands, and each band consists of 307 × 307 pixels. Its
spectral range is from 0.4 to 2.5 micrometers. Table 2 gives the NR and MRD values of
band 109 for the Urban dataset, in which all the bold numbers indicate the best results.
In Table 2, it can be seen that the proposed approach was able to effectively reduce the
noise of the Urban data, and could retain the detailed information well, which means that
VLRMFmcl can effectively reduce noises with low resolution rates.

Table 2. Quantitative evaluation of noise reduction (NR) and mean relative deviation (MRD) for band 109.

Band 109 BM3D ANLM3D BM4D LRMR GLF LRTDTV LTDL DnCNN HSID-CNN VLRMFmcl

NR 1 1.8614 2.1051 2.4648 2.5173 2.7051 2.5936 2.6759 2.4973 2.6993 2.8386
MRD 0 3.2201 3.9113 3.5576 4.2165 3.3927 3.5261 3.6017 3.5162 3.3965 3.1976

Figures 9 and 10 show the denoising results of band 109 and band 151 for the Urban
dataset, respectively. As shown in Figures 9a and 10a, these two images were heavily
polluted with stripes and mixed noise. As shown in the blue rectangles in Figure 9,
obvious stripes can be observed in the results obtained by BM3D, ANLM3D, BM4D,
LRMR, LRTDTV, and LTDL. Their structure and edge information were also fuzzy. This
fact indicates that BM3D, ANLM3D, BM4D, LRMR, LRTDTV, and LTDL showed weaker
performance in denoising the severely polluted bands for the Urban dataset. The LRMR
method performed better in the target and detail recovery, but its denoising results still
showed obvious stripes and mixed noises. As shown in Figure 9i, the result of DnCNN
smoothed out some structures and blurred the visual effect. As shown in Figures 9 and 10,
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GLF, HSID-CNN, and VLRMFmcl could effectively restore the edges and textures of the
image, while suppressing the mixed noise.
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marking the differences from the results obtained by different algorithms.
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To facilitate the visual comparison, Figure 11 presents the pseudo-color images of
the restored results calculated by different approaches (R: 55, G: 103, B: 207). Comparing
the white oval regions, it can be easily seen that the proposed VLRMFmcl method was
able to effectively suppress the noises in the smooth area. Meanwhile, it could effectively
restore the edge and structure information. Therefore, VLRMFmcl was superior to BM3D,
ANLM3D, BM4D, LRMR, GLF, LRTDTV, LTDL, DnCNN, and HSID-CNN when denoising
the Urban data.
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4. Conclusions

Introducing multi-patch collaborative learning into low-rank matrix decomposition,
a variational model was proposed under the Bayesian framework to achieve the reduction
of three kinds of noise in HSIs. The non-local self-similarity of HSIs was explored by
developing multi-patch collaborative learning. Through this process, the pixels from edges
and heterogeneous regions could be effectively depicted. Then, the variational low-rank
matrix decomposition model was constructed to separate the latent noise-free data and
mixed noises for collaborative patches. Gaussian distribution with the zero mean and
variance adaptively regulated by a gamma distribution was exploited to learn and represent
the low-rank property of collaborative patches in the spatial–spectral domain and obtain the
related clean data. To sufficiently suppress the mixed noise, their statistical characteristics
were effectively depicted by the Dirichlet process Gaussian mixture model, which was
constructed using the Gaussian distribution, the inverse Wishart distribution, and the
Dirichlet process. Variational Bayesian inference was used to solve the model, having the
advantages of simple calculation and high stability. Simulation experiments with different
combinations of Gaussian noise, Poisson noise, deadlines, and stripe noise demonstrated
the effectiveness of the proposed method. Compared with the BM3D, ANLM3D, BM4D,
LRMR, GLF, LRTDTV, LTDL, DnCNN, and HSID-CNN methods, the proposed VLRMFmcl
method showed superior performance in both the quantitative and qualitative evaluations.
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