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Abstract: Understanding the patterns and relationships between vegetation productivity and climatic
conditions is essential for predicting the future impacts of climate change. Climate change is altering
precipitation patterns and increasing temperatures in the Southwest United States. The large-
scale and long-term effects of these changes on vegetation productivity are not well understood.
This study investigates the patterns and relationships between seasonal vegetation productivity,
represented by Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference
Vegetation Index (NDVI), and the Standardized Precipitation Evapotranspiration Index (SPEI) across
the Mojave, Sonoran, and Chihuahuan Deserts and the Apache Highlands of the Southwest United
States over 16 years from 2000 to 2015. To examine the spatiotemporal gradient and response
of vegetation productivity to dry and wet conditions, we evaluated the linear trend of different
SPEI timescales and correlations between NDVI and SPEI. We found that all four ecoregions are
experiencing more frequent and severe drought conditions in recent years as measured by negative
SPEI trends and severe negative SPEI values. We found that changes in NDVI were more strongly
correlated with winter rather than summer water availability. Investigating correlations by vegetation
type across all four ecoregions, we found that grassland and shrubland productivity were more
dependent on summer water availability whereas sparse vegetation and forest productivity were
more dependent on winter water availability. Our results can inform resource management and
enhance our understanding of vegetation vulnerability to climate change.

Keywords: Normalized Difference Vegetation Index (NDVI); Standardized Precipitation Evapotran-
spiration Index (SPEI); Southwest United States; semi-arid regions; drought; vegetation productivity

1. Introduction

The productivity of vegetation communities is directly impacted by changes in tem-
perature and precipitation, especially in arid and semi-arid regions [1]. In the Southwest
United States, for example, the effects of climate change are expected to be pronounced [2].
The frequency, severity, and duration of droughts have increased while water availability
has decreased in this region [3]. Trends point to a decline in vegetation productivity due
to projected warming and increasingly dry conditions [4,5]. However, the response of
desert vegetation productivity to water availability, variations in the timing, and amount of
precipitation varies spatially and temporally [2,6]. The need to understand the relationships
between vegetation productivity, precipitation, and drought for these desert ecoregions is
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made more urgent by current and projected global climate change models predicting a gen-
eral reduction in precipitation and increase in temperatures for these ecoregions [1,3]. With
increasingly arid conditions, understanding the vegetation productivity and vegetation
types response to different water stress timescales is important to enhance our ability to
predict the impact of global change in vegetation [7].

In recent years, a number of studies have focused on the impact of precipitation,
temperature, and drought on vegetation at global and regional scales. Global scale studies
have shown that decreased photosynthetic activities are correlated with a decrease in the
annual precipitation in arid and semi-arid regions [8,9]. Wang et al. [10] found vegetation
productivity during the growing season was most highly correlated with precipitation over
the preceding 15-months in the Great Plains United States. Similarly, a global study found
that vegetation productivity in semi-arid regions around the globe responded to long term
drought (8–10 months) [11].

Past research has also studied the response of vegetation productivity to different
timescales of seasonal and annual water availability. Normalization of precipitation indices
allows identification of variation in drought and resulting water stress from long term
means [12]. These variations can be examined at different timescales such as monthly,
seasonally, and inter-annually to represent water availability in different reservoirs such as
shallow versus deeper soils. Shorter timescales typically show frequent shifts in precipita-
tion relative to the mean and longer periods show fewer but longer duration shifts [12]. For
example, vegetation productivity represented by Normalized Difference Vegetation Index
(NDVI) was most correlated with short term 3-month drought in the Great Plains [13]
and to 1-month drought in semi-arid regions of the Southwest [6] in the United States.
Particularly within the Southwest region, studies have found that vegetation productivity
in different ecoregions and biomes types are associated with varying time lags of water
availability [6,7].

Previous studies have established that the vegetation productivity response to dif-
ferent water stress timescales depends on their physiological structure [11] and biome
type [7]. However, previous work has not compared responses of vegetation productivity
and drought among deserts with different long-term patterns in the timing and amounts
of water availability. In this study, we address this gap by assessing the spatiotemporal re-
sponse of seasonal vegetation productivity to different water stress (SPEI) timescales. Here,
timescale refers to the cumulative water balance over a previous number of months [11]
from a measurement of vegetation productivity.

Water stress and vegetation productivity vary both within and between years. These
variations can be estimated through remote sensing drought indices such as the Standard-
ized Precipitation Index (SPI) [12] and the recently introduced Standardized Precipitation
Evapotranspiration Index (SPEI) [14]. We chose SPEI as a proxy for drought because SPEI
uses both precipitation and temperature and has been shown to better reflect the impact
of climatic conditions on plants [14]. McClaran and Wei [15] have also shown that SPEI
better represents reductions in soil moisture that impact vegetation productivity in the
Southwest United States than SPI. Similarly, variations in vegetation productivity can
be estimated by remote sensing indices such as the Normalized Difference Vegetation
Index (NDVI) [8,16,17]. MODIS NDVI time series data is open-access, globally available,
and is not only robust for studying the changes in vegetation across large areas [18] but
also very useful for studying insect infestation [19,20], fire detection [21], and the impacts
of drought [22,23]. MODIS NDVI data is available at high temporal and 250 m spatial
resolution. We chose 16-day MODIS NDVI data for this research.

We analyzed the correlations between NDVI and SPEI across four ecoregions in the
Southwest United States to shed new light on the spatiotemporal relationships between
vegetation productivity and drought timescales. We analyzed whether general patterns in
relationships between vegetation productivity (NDVI) and water availability (SPEI) hold
across different desert ecoregions or if the relationships are unique to each. In particular,
we examined the impact of different SPEI timescales on NDVI across the Mojave, Sonoran,
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and Chihuahuan Deserts, and Apache Highlands ecoregions of Southwest United States
for 16 years from 2000 to 2015. We also studied the long-term trend and variability of SPEI
at different timescales to understand the differences between short- and long-term drought
and how this is impacting vegetation productivity. The results of this study are expected
to improve our understanding of the spatiotemporal response of vegetation to drought in
deserts of the Southwest US and the vulnerability of vegetation to climate change that can
be useful in resource management and reducing drought impacts.

Specifically, we ask the following research questions:

1. How do the trends in water availability (SPEI) at different timescales vary by ecoregion?
2. How does vegetation productivity (NDVI) respond to changes in water availability

(SPEI)?

a. For each ecoregion, what was the dominant timescale for the relationship?
b. How uniform was the response of NDVI to SPEI across these ecoregions?
c. Does this relationship change by dominant vegetation type?

3. What do these results suggest about plant physiology responses to drought stress in
these ecoregions?

2. Materials and Methods
2.1. Study Area

This study was conducted in the Mojave, Sonoran, and Chihuahuan Deserts, and
Apache Highlands ecoregions [24] (Figure 1) of the Southwest United States. These ecore-
gions have some commonalities in terms of aridity and extreme climatic conditions, and
differences in terms of elevation, geography, vegetation types, and precipitation patterns.
The average summer and winter temperatures of the Sonoran Desert are higher than the
other ecoregions (Figure 2) [1]. While on average the Mojave Desert receives the majority of
its annual precipitation during the winter-spring season [1,25], the Chihuahuan Desert and
Apache Highlands receive precipitation primarily during the summer-monsoon season
(Figure 3) [26]. The Sonoran Desert has bimodal precipitation occurring both in the winter
and in the summer during the monsoon season. These ecoregions have higher summer
precipitation in the east and higher winter precipitation in the west. This difference in
precipitation patterns creates an east to west gradient of average seasonal precipitation that
creates a distinct climatic regime (Figure 3) [27].

Desert scrub, shrub-steppe, desert grassland, saguaro cacti, and organ pipe cacti are
found in these regions [1]. The Mojave Desert consists of perennial vegetation composed
mostly of low shrubs; the Sonoran Desert has distinctive vegetation types such as legume
trees such as Acacia and mesquite and large cacti at lower elevations and diverse plant
communities at higher elevations [27]. The Chihuahuan Desert consists of low shrubs,
succulent species, and sparse woodlands at higher elevations and in riparian zones [27].
The Apache Highlands is dominated by woody savannas and closed grasslands [27].

In this study, we focused on April as the representative month of the winter-spring
seasons (referred to as ‘winter’) and September as the representative month of the summer
monsoon season (referred to as ‘summer’). These representative months were selected
based on seasonal peak values in vegetation productivity (NDVI) for each season (Figure 2)
to understand the response of seasonal peak NDVI to different SPEI timescales. Similarly,
other studies have also used a single month of peak productivity during a growing season
to understand the effect of water stress on vegetation during different seasons [7,23].
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Figure 1. The study area showing the four ecoregions data from the nature conservancy [24]: the 
Mojave, Sonoran, and Chihuahuan Deserts and the Apache Highlands. The major percentage of 
vegetation cover based on MODIS land cover classification [28] is shown in the bar graph. The 
color of vegetation types in the bar graph is the same as used in the map and legend. 

 

 
Figure 2. The spatiotemporal monthly mean graph of vegetation productivity (Normalized Difference Vegetation Index: 
NDVI) and climatic variables such as precipitation and temperature for four ecoregions from 2000 to 2015 where months 
are shown in numeric order starting with January [24,28,29]. 

  

Figure 1. The study area showing the four ecoregions data from the nature conservancy [24]: the
Mojave, Sonoran, and Chihuahuan Deserts and the Apache Highlands. The major percentage of
vegetation cover based on MODIS land cover classification [28] is shown in the bar graph. The color
of vegetation types in the bar graph is the same as used in the map and legend.
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Figure 2. The spatiotemporal monthly mean graph of vegetation productivity (Normalized Difference
Vegetation Index: NDVI) and climatic variables such as precipitation and temperature for four ecore-
gions from 2000 to 2015 where months are shown in numeric order starting with January [24,28,29].
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Figure 3. The average seasonal precipitation percent showing the east–west gradient of winter (January to June: left) and 
summer (July to December: right) in the four ecoregions is computed by dividing the sum of total seasonal precipitation 
by the total annual precipitation for 2000-2015. The distributions of average season precipitation percent for each region 
are shown in the density plots where MD = Mojave Desert, SD = Sonoran Desert, AH = Apache Highlands, and CD = 
Chihuahuan Desert [24,29]. 
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Figure 3. The average seasonal precipitation percent showing the east–west gradient of winter
(January to June: left) and summer (July to December: right) in the four ecoregions is computed by
dividing the sum of total seasonal precipitation by the total annual precipitation for 2000–2015. The
distributions of average season precipitation percent for each region are shown in the density plots
where MD = Mojave Desert, SD = Sonoran Desert, AH = Apache Highlands, and CD = Chihuahuan
Desert [24,29].
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2.2. Data
2.2.1. Vegetation Productivity (MODIS NDVI)

In this study we derived time series (2000–2015) of biweekly (16-days) composite
NDVI data at 250 m resolution from MODIS (MOD13Q1) on the Terra platform [29]
from the NASA’s Land Process Distributed Active Archive Center (LP DAAC) at
https://lpdaac.usgs.gov/ (accessed on 14 March 2021). We used a 16-day NDVI period
to calculate the monthly NDVI values. We took the weighted mean of the 16-day NDVI
periods that fell in each month and summed them to get the monthly NDVI. The equation
for the weighted mean NDVI for each pixel for each month is given below:

NDVImonthly = ∑
i

NDVIi ∗ No. o f days in period i in Month
No. o f days in Month

(1)

where NDVIi is the 16-day composite NDVI value for the period i. The monthly NDVI
data was calculated for April and September as the representative months of the winter
and summer season, respectively. These months were selected based on seasonal peaks in
productivity during each growing season and precipitation patterns in the four ecoregions.

2.2.2. Climate Data (Temperature and Precipitation)

We used monthly precipitation and temperature data modeled at a spatial resolution
of 4 km from Oregon State University’s Parameter Regression on Independent Slopes
Models (PRISM) for the Conterminous United States (https://prism.oregonstate.edu/
recent/ (accessed on 14 March 2021)) from 2000 to 2015 [29]. Monthly precipitation and
mean temperature datasets were clipped to the study area and re-projected to the Lambert
Azimuth Equal Area projection to match the MODIS NDVI dataset. We used these data to
calculate the drought index.

2.2.3. Drought Index (SPEI)

Both precipitation and temperature data were used in calculating the Standardized
Precipitation Evapotranspiration Index (SPEI) [14]. The negative SPEI values represent dry
conditions and positive SPEI values represent wet conditions. The three main steps for
calculating SPEI are as follows: First, Potential Evapotranspiration (PET) is calculated using
the Thornthwaite method [30] using temperature as an input. Second, accumulated water
balance is calculated by subtracting precipitation from PET at different timescales. Third,
the water balance is normalized using the log-logistic probability distribution to convert
original values to standardized units that can be compared over time and space [31].

To understand the response of vegetation productivity to different SPEI timescales, we
computed the pixel-by-pixel SPEI values for the study area using PRISM precipitation and
temperature data at 4 × 4 km resolution from 2000 to 2015. We used the R (version 3.3.2)
“SPEI” [32] software package. We used the SPEI package’s “Thornthwaite” [30] function to
calculate PET and the “spei” function to calculate SPEI from PET and monthly precipitation.
To understand the relationship between vegetation productivity and different short- to
long-term water stress we chose to use 1-, 2-, 3-, 6-, 9-, 12-month SPEI timescales. These
SPEI timescales were calculated for both April and September and each SPEI timescale
represent the cumulative water balance over the previous number of months [10]. Where
3-month SPEI for April was computed from data over the 3 months going back from April
to February (Figure A1a). Similarly, 3-month SPEI of September was computed over the
3 months data going back from September to July (Figure A1b) [14]. These SPEI data were
resampled to 250 m resolution and re-projected to the Lambert Azimuthal Equal Area
projection to match the MODIS NDVI dataset.

To allow us to assess our study period (2000–2015) against longer term trends, the
ecoregions scale SPEI time series data were obtained from the SPEI Global Drought Moni-
tor [31] (https://spei.csic.es/map/maps.htm (accessed on 14 March 2021)) at 0.5 degree
resolution from January 1950 to December 2015. We used the SPEI time series over each

https://lpdaac.usgs.gov/
https://prism.oregonstate.edu/recent/
https://prism.oregonstate.edu/recent/
https://spei.csic.es/map/maps.htm
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region to extract the average SPEI values for the region. We selected 1-, 3-, 6- and 12-month
SPEI for the trend analysis. The 12-month SPEI was also used for understanding the
changes in the intensity and frequency of early 21st century drought (2000–2015) in the
context of the historic drought (1950–1999).

2.2.4. Landcover Data

MODIS land cover data [28] was used to analyze the relationship between NDVI
and SPEI by vegetation type. The MODIS 500 m International Geosphere-Biosphere Pro-
gramme (IGBP Type 1) landcover data product (MCD12Q1) was downloaded
(https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 14 March 2021)). These
data were resampled to 250 m resolution and re-projected to the Lambert Azimuth Equal
Area projection (Figure 1). Based on the MODIS land cover classification product, the four
ecoregions are predominantly vegetated with open shrublands, grasslands, and barren or
sparsely vegetated areas (Figure 1: bar graph).

2.3. Methods and Analysis
2.3.1. Long Term Trends and Variation of Different SPEI Timescales by Ecoregions

We used a linear regression method to analyze the trend and interannual variation
of different SPEI timescales for 66 years from 1950 to 2015. To understand the changes in
dryness and wetness values for the short-term (1-, 2-, 3-month), medium (6-, 9-month), and
long-term (12-month) SPEI, we selected four different monthly SPEI timescales, 1-month,
3-month, 6-month, and 12-month. The ecoregion scale SPEI data from the Global Drought
monitor [32] was used to analyze the time series of all four ecoregions. To evaluate if
there is a significant difference between the historic (1950–1999) and early 21st century
(2000–2015) drought period we also calculated the mean SPEI for both periods using the
student t-test. To justify using linear regression on long term SPEI values, we tested for
trend-stationarity in selected SPEI timescales by running the augmented Dickey-Fuller Test
implemented in the “tseries” package in R.

2.3.2. Correlation Analysis for the Relationship of NDVI to SPEI

We used the Pearson Correlation coefficient to study how seasonal vegetation produc-
tivity (NDVI) was related to different water stress (SPEI) timescales for each 250 m pixel
of NDVI and different SPEI timescales rasters across our study area. For this correlation
analysis, we model monthly NDVI as a function of the SPEI value at that month over a
precedent timescale (as shown in Equation (2)).

NDVImonthly = f (SPEI)timescales, (2)

where, timescale is equal to 1, 3, 6, 9, or 12 months.
The April and September month NDVI were used as the representative months of

winter and summer seasons based on seasonal peak NDVI and SPEI of different timescales
going back from April and September, respectively (Figure A1). The correlation between
monthly NDVI values and monthly SPEI for different timescales including 1-, 2-, 3-, 6-, 9-,
12-month were computed for each pixel of the study area for 16 years (2000 to 2015) [11,28].
For each month of April and September, six correlation coefficient matrices at a significance
level of p ≤ 0.05 were produced (for 1-, 2-, 3-, 6-, 9-, and 12-month SPEI timescales). A
total of twelve correlation matrices were computed. We used these matrices to examine the
relationship between monthly NDVI and different SPEI timescales.

To understand the strength of the relationship between NDVI and SPEI across the
spatial extent of each ecoregion, we determined the proportion of the number of pixels
with significant correlation (p ≤ 0.05) between NDVI and different SPEI timescales for the
16-year period. This measure was used to understand the change in response of NDVI
to different SPEI timescales across the ecoregions between April and September. We also
computed the spatial mean of the coefficient of determination (r2) for each ecoregion to

https://lpdaac.usgs.gov/products/mcd12q1v006/
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study the dominant SPEI timescale. We define the dominant SPEI timescale as the SPEI
timescale that has strongest correlation between NDVI and SPEI.

To understand the response of vegetation types to different SPEI timescales, we
chose four major vegetation types based on the MODIS landcover classification open
shrublands (referred to as ‘shrublands’ hereafter), grasslands, barren or sparsely vegetated
(referred to as ‘sparse vegetation’ hereafter), and evergreen needle leaf forest (referred to as
‘forest’ hereafter). To analyze the relationship between different vegetation types and SPEI
timescales, we computed the spatial mean of the coefficient of determination (r2) from the
correlation matrices based on different vegetation types. We also computed the mean r2 for
each vegetation type by each ecoregion and overall study area (i.e., no separate ecoregions).

3. Results
3.1. Long Term Trend and Variation of Different SPEI Timescales by Ecoregions

We found that the the SPEI data was trend-stationary from 1950 to 2015 using
SPEI data from the Global Drought monitor [32] for 1-, 3-, 6- and 12-month timescale
(Figure 4). This indicates that the pattern of variance for our focal time period for this study
(2000 to 2015) was similar to that for the longer periods. Relative water stress as measured
by SPEI showed frequent alternation from lower to higher stress across all timescales.
The frequency of these swings is determined by the timescale considered. For example,
the 1-month SPEI shows frequent alternation between positive and negative SPEI values
reflecting monthly variations in water availability conditions. Changes in SPEI values at
the 3- and 6-month timescales reflect changes in water stress between seasons, while the
12-month timescale reflects changes between years (Figure 4).
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Evapotranspiration Index (SPEI) timescales for a period of 1950 January to 2015 December significant
at p ≤ 0.05 of the Mojave Desert (Global Drought Monitor SPEI data [31]). Trends in other ecoregions
were similar (data are shown in Appendix A Figures A2–A4).

We found slight negative linear trends in 1-, 3-, 6-, and 12-month SPEI timescales
(significant at p ≤ 0.05) from 1950 to 2015 across the study area shown by timeseries graph
of SPEI (Figures 1 and A1–A4; Table 1). The negative trend indicates that negative SPEI
values will increase meaning that drought stress will increase in these ecoregions. This
trend increases with longer timescales. For example, the increase in drought stress was
greater for the 12-month timescale than the 6-month timescale (Table 1) for all ecoregions.
The frequency of more intense water stress (SPEI values below −1.3) become more common
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in the early 21st century (2000 to 2015) than in the historic period (1950–1999) (Figure 5).
There was a significant difference in 12-month SPEI between the historic period and early
21st century (Table 2). Shown by the shift towards the negative SPEI mean values during
the study period compared to the historic period. The 12-month SPEI also showed that
there are more frequent and severe droughts during the 2000 to 2015 study period than
the longer historic period (Figure 6). This means plant communities in these ecoregions
were experiencing more intense dry long periods during the study period than in previous
decades (Table 2, Figure 6). The Mojave and Sonoran Deserts showed relatively greater
decreases in SPEI than the Apache Highlands and Chihuahuan Desert (Figure 5).

Table 1. The linear trend output of SPEI significant at p ≤ 0.05 from 1950 January to 2015 December
for all ecoregions using the ecoregion scale SPEI data obtained from Global Drought Monitor [31].

SPEI Timescale Ecoregions Slope r2

1 month—SPEI Mojave −1.77 × 10−5 0.021
3 month—SPEI Mojave −2.6 × 10−5 0.044
6 month—SPEI Mojave −3.26 × 10−5 0.071

12 month—SPEI Mojave −3.97 × 10−5 0.102
1 month—SPEI Sonoran −3.18 × 10−5 0.063
3 month—SPEI Sonoran −4.69 × 10−5 0.140
6 month—SPEI Sonoran −5.98 × 10−5 0.200

12 month—SPEI Sonoran −7.29 × 10−5 0.300
1 month—SPEI Apache −1.46 × 10−5 0.013
3 month—SPEI Apache −1.74 × 10−5 0.018
6 month—SPEI Apache −2.1 × 10−5 0.025

12 month—SPEI Apache −2.67 × 10−5 0.041
1 month—SPEI Chihuahuan −7.62 × 10−6 0.005
3 month—SPEI Chihuahuan −9.5 × 10−6 0.007
6 month—SPEI Chihuahuan −1.02 × 10−5 0.008

12 month—SPEI Chihuahuan −1.02 × 10−5 0.007
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Figure 5. Time series of the spatial mean of monthly 12-month SPEI timescales for a period of 1950
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Apache Highlands. The data is obtained from Global Drought Monitor [31] and breaks in lines
represent missing data.



Remote Sens. 2021, 13, 1103 9 of 19

Table 2. Differences between historic mean SPEI (1950–1999) and mean SPEI of the early 21st century (2000–2015) significant at p < 0.05
using 12-month SPEI data obtained from Global Drought Monitor for all four ecoregions [31].

Ecoregion Historic Mean SPEI (1950–1999) 21st Century Mean SPEI (2000–2015)

Mojave 0.190 −0.658
Sonoran 0.303 −1.038

Apache Highlands 0.218 −0.592
Chihuahuan 0.184 −0.493
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3.2. Seasonal NDVI Response to Different SPEI Timescales

Correlation (p ≤ 0.05) between the vegetation productivity and SPEI were mostly
positive but varied spatially in magnitude among ecoregions during both winter (April) and
summer (September) seasons. (Figure 7). The Mojave Desert has the highest percentage of
significantly correlated pixels among all ecoregions during the winter (Figure 8b). However,
the percentage of significantly correlated pixels is higher in the Chihuahuan Desert during
the summer. Overall, the mean r2 of the dominant SPEI timescale is higher during the
winter than in the summer for all ecoregions (Figure 8a). In the following subsections, we
analyzed these results of winter and summer season in more detail.

3.2.1. April NDVI Response to Different SPEI Timescales

In April (winter) we found that the correlation between NDVI and SPEI for the
Mojave and Sonoran Deserts was strongest for the 6-month SPEI timescale (Figure 8a).
However, the correlation between vegetation productivity and water availability for the
Apache Highland and the Chihuahuan Desert was strongest for the 9-month SPEI timescale
(Figure 8a). The number of pixels in which NDVI and SPEI were strongly correlated was
highest at 6-month and 9-month SPEI timescales for Mojave (~92%) and Sonoran (~61%)
deserts (Figure 8b). Similarly, it was highest at the 9-month SPEI timescale for Apache
Highlands (74%) and Chihuahuan Desert (83%) (Figure 8b). For the winter NDVI response
to SPEI, there was no clear west–east gradient for any correlation between NDVI and SPEI
timescales among four ecoregions (Figure 8b).

https://droughtmonitor.unl.edu/About/AbouttheData/DroughtClassification.aspx
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3.2.2. September NDVI Response to SPEI Timescales

In September (summer) we found that the correlation between the vegetation produc-
tivity and water availability for the Apache Highlands, Chihuahuan, and Sonoran deserts
was strongest with the 3-month SPEI timescale (Figure 8a). However, the correlation be-
tween vegetation productivity and water availability for the Mojave Desert was strongest
with the 12-month SPEI timescale (Figure 8a). The number of correlated pixels between
NDVI and SPEI were low for 1-month SPEI except for the Chihuahuan Desert (Figure 7b).
The number of pixels in which NDVI and SPEI were strongly correlated well were highest
at the 3-month SPEI timescale for the Chihuahuan Desert (~81%) and Apache Highlands
(65%) (Figure 8b). Similarly, number of correlated pixels were highest at 2-month SPEI
timescale for the Sonoran Desert (~30%) and it was highest at 12-month SPEI timescale for
the Mojave Desert (57%) (Figure 8b). The percentage of significant pixels decreases with
the increase in SPEI timescales after a 3-month SPEI timescale for Apache Highlands and
the Chihuahuan Desert (Figure 8b). Whereas the percentage of significant pixels increases
with the increase in SPEI timescales after 3-month SPEI for the Mojave Desert (Figure 8b).
However, there was no clear increase or decreasing pattern in the Sonoran Desert.

For the summer NDVI response to SPEI, there was a high to low east–west (Chihuahuan-
Mojave) gradient of correlation values between NDVI and SPEI for 1-, 2-, and 3-month SPEI
among the four ecoregions but not for the 6-, 9- and 12-month SPEI timescale (Figure 8b).

3.3. Vegetation Types Response by Ecoregions

For the Mojave, Sonoran, and Apache Highlands, the strongest correlation between
vegetation productivity and SPEI was found for winter (April) at 6- and 9-month SPEI
timescale for all vegetation types (Figure 9a). For these ecoregions, the correlation for
summer (September) average half to a third of that during the winter correlation. The
exception was the Chihuahuan Desert where there was a strong correlation during both
winter and summer water stress. In this desert, the strongest correlation was at 6- and
9-month SPEI timescales during the winter (Figure 9a) and 3-month SPEI timescale during
the summer (Figure 9b).
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Across all four desert ecoregions, shrubland and grassland vegetation types have
the strongest correlation between vegetation productivity and SPEI during the winter
season (Figure 9a). The relative strength of the correlation for forest and sparse vegetation
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varied among the ecoregions. During summer, all vegetation types generally had a similar
correlation to SPEI timescales across all four ecoregions (Figure 9b).

We also found that the correlation by vegetation types to SPEI timescales was dif-
ferent between winter and summer season across the study area without separating four
ecoregions (Figure 10). During winter, the different vegetation types have the strongest
correlation at 6- and 9- month SPEI timescales. However, during summer, we found a
clear distinction between the SPEI timescale responses based on the vegetation types. For
summer, grassland and shrubland had the strongest correlation at 3-month SPEI timescales
while sparse vegetation and forest cover showed the strongest correlation at the 12-month
SPEI timescale.
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4. Discussion

In this study, we analyzed the variations in drought stress and its impact on vegetation
productivity in four ecoregions of the Southwest United States. We found a trend of
increasing water stress for all four ecoregions with more frequent and severe drought
conditions in recent years as measured by decreasing 12-month SPEI values. These results
are in line with the findings of Cayan et al. [33], Garfin et al. [3]. We also found that the
relationship of vegetation productivity (NDVI) to water stress (SPEI) varies for different
timescales and the effects of drought on vegetation are dependent on multiple climatic
and ecological factors including drought timescale, season, vegetation type, and ecoregion.
These results agree with the findings of Vicente-Serrano et al. [11], Gouveia et al. [23],
and Li and Zhou [34]. In the following sections, we first discuss the trend in different
SPEI timescales in four ecoregions and the ecoregion, and vegetation types response to
dominant SPEI timescales. One of our key objectives was to understand the effects that
plant physiology, as represented by ecoregion and vegetation cover types, have on large
scale responses of NDVI to SPEI, which we discuss below within Sections 4.2 and 4.3.

4.1. Trend and Interannual Variations of Different SPEI Timescales

We found a weak decreasing trend of 12-month SPEI for all ecoregions from 1950
to 2015 (Figure 5) indicating that drought stress is increasing. In line with other studies,
the interannual 12-month SPEI showed more frequent and severe dry conditions in the
21st century [33,35,36]. These dry conditions are occurring due to the combination of
consistent higher temperatures and lower precipitation [1,3,14,31] and causing higher
water stress in the plant communities. The changes in climatic drivers are more likely to
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push the ecosystems in these regions beyond the tolerance climate threshold that could
potentially result in increased drought-induced tree mortality, forest fires [37,38], species
loss [2], and potential changes in vegetation communities with the possible replacement of
native vegetation by nonnative species that have higher drought tolerance [1] or shifts in
species ranges.

4.2. Ecoregion Response to Different SPEI Timescales

The seasonal precipitation forms strong east–west gradients across these ecoregions
that show reversed patterns between winter and summer precipitation (Figure 3). We
wondered if this would lead to a corresponding gradient of correlation strength be-
tween water stress and vegetation productivity. During winter, we did not see a cor-
relation gradient when we looked at spatial patterns (Figures 7 and 8). However, during
summer we found an east–west correlation gradient for 1-, 2-, 3-month SPEI timescale
(Figures 7 and 8) similar to summer precipitation pattern (Figure 3) in these ecoregions.
The lack of a correlation gradient during winter despite a strong precipitation gradient
suggests that the plant communities across our four study ecoregions have adapted to
make use of the precipitation available to them during this season whether the amounts
are relatively high or low.

We have also identified the seasons and regions in which vegetation was most affected
by increasing water stress as shown by the correlation between NDVI and SPEI with six
different timescales (Figure 7). In all four ecoregions, large areas show significant positive
correlations between NDVI and SPEI during both winter and summer seasons. However,
the correlations were not homogenous in space (Figure 7). Regardless of the difference in
seasonal precipitation gradient across four ecoregions (Figure 3), the winter season has a
greater proportion of area than the summer season that showed a significant correlation
between NDVI and SPEI across all SPEI timescales (Figure 8) in all deserts except the
Chihuahuan desert. This suggests that winter season water availability plays an important
role in vegetation productivity in these ecoregions. Similarly, other studies have shown that
the winter precipitation events tend to be gentler and long lasting, allowing more of the
precipitation to soak into the soil, and more water is available to vegetation than summer
rainfall [6,26]. We also found that vegetation in the Mojave Desert is affected the most by
variations in SPEI during winter and the Chihuahuan desert vegetation was affected the
most during the summer, which are the seasons in which each desert receives the most
precipitation, respectively.

We also identified the dominant SPEI timescale for vegetation productivity of each
ecoregion from the highest average coefficient of determination (r2) between NDVI and
SPEI. We now discuss each ecoregion’s response to dominant SPEI timescales during
both winter and summer seasons. In the Sonoran Desert, the vegetation productiv-
ity responded most strongly to the 3-month SPEI timescale during the summer season
(Figure 8). The summer monsoonal precipitation results in shallow soil moisture that can
be used by the shallow-rooted plant species such as grass [39,40]. On the other hand,
higher summer temperatures limit plant growth, create unfavorable conditions by increas-
ing the evaporative demand [40,41] and summer precipitation tends to run off without
soaking into the soil [41]. In contrast winter precipitation is available to more deeply rooted
plants [26,39]. This enables a physiological response where the plant communities delay
their response to variations in water stress and responded most strongly to the 6-month
SPEI timescale (Figure 8).

In contrast, the vegetation productivity in the Mojave Desert was more strongly
related to the 12-month SPEI timescale during summer and the 6-month SPEI timescale
during winter (Figure 8). This showed there was a slower response to precipitation and
suggests longer growing periods during both seasons than other ecoregions. The vegetation
productivity in this region is limited by winter rainfall and dry summer condition [42].
The plants in this region can withstand the dry conditions by decreasing their activity
during dry periods [42]. Other studies have shown that since 2000 there is decreasing
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precipitation during the winter with increases in annual temperature [33]. These changes
in climatic variables reduce water availability, exacerbating the impacts of drought on
vegetation growth.

Similarly, in the Apache Highlands and Chihuahuan Desert vegetation productiv-
ity is higher during the summer season (Figure 2). In these ecoregions, the vegetation
productivity responded most to the 3-month SPEI timescale during the summer season
(Figure 8). The summer rainfall is less available to plants because of evaporation due to high
temperatures [26], therefore there is a shorter growing period and limited plant growth.
During the winter, the vegetation productivity responded to the 9-month SPEI timescale
(Figure 8) as there is less rainfall during winter leading to slow and long growing periods.
Kemp [43] has shown the vegetation productivity of different species occurs during early
spring and late summer in these regions; we found vegetation productivity response to
3-month SPEI timescale during summer and 9-month timescale during winter (Figure 8).

4.3. Vegetation Type Responses to SPEI Timescales

The differences in vegetation productivity among these desert ecoregions likely is
related to the relative proportions of the area covered by different vegetation types. In
line with other research, we found that the impact of SPEI on vegetation productivity
varied depending on vegetation type [28,34]. Mostly, in grasslands and shrublands, water
stress effects (SPEI) were prominent at short timescales (3-month) for the drier and warmer
season and peak at 6- and 9-month during wet and cold seasons (Figure 9). Over forested
and sparse vegetation landscapes, the correlations between NDVI and SPEI were strongest
at longer timescales (12-month) for the summer season and 6 and 9-month timescale at the
winter season (Figure 9).

Vegetation types such as grassland, shrubland, forest, and sparse vegetation regions
responded differently to seasonal water availability. Across the entire study area, the grass-
land and shrubland productivity was more dependent on the summer water availability
whereas forest and sparse vegetation productivity is more dependent on the winter water
availability. During the summer, we found that the short-rooted plant species such as
grasslands and shrublands show a more immediate response to water availability (3-month
SPEI, Figure 10), similar to the findings of Barnes et al. [7]. However, forest and sparse
vegetation responded most to the 12-month SPEI timescale. Forests have deep-rooted
systems and plants in sparse vegetation ecosystems tend to have the physiological ability
to withstand short term water stress [11]. On the other hand, the winter rainfall creates
deeper soil moisture [44] providing water availability to both forest and desert vegetation.
The forest responded most to 6-month SPEI during the winter. This showed that the
productivity of the forest was dependent on winter water availability and was limited
by summer temperature as found by Barnes et al. [7] as well. However, the sparse vege-
tation responded most to the 9-month SPEI timescale during winter which shows their
productivity is also limited by low winter temperature [45].

5. Conclusions

In this study, we explored the temporal dynamics of SPEI, as a proxy for drought, and
NDVI, as a proxy for vegetation productivity, over four ecoregions across the Southwest
United States. We investigated the impact of drought on NDVI during winter (April) and
summer (September) growing seasons.

Our specific key findings were:

1. There was a weak downward interannual trend of SPEI from 1950 to 2015, and the
frequency and severity of dry periods are increasing in the 21st century.

2. Vegetation productivity depends on seasonal water availability and drought condi-
tions. The impact of water stress (SPEI) was greater on vegetation productivity during
the winter than during the summer.

3. The vegetation productivity response to SPEI timescales also depends on the vegeta-
tion types and was different between winter and summer. Grassland and shrubland
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productivity were more dependent on summer water availability whereas forest and
sparse vegetation productivity was more dependent on winter water availability.

4. We identified the dominant drought timescale that has the strongest influence on
vegetation productivity on each ecoregion and vegetation types. This information can
be useful for land managers to understand and mitigate drought impacts and help in
enhancing our understanding of vegetation vulnerability to climate change.

This is the first large-scale study of the temporal trends and variability in the drought
index and the spatiotemporal relationship between vegetation productivity and different
SPEI timescales across four ecoregions of the southwestern United States. This research
highlights the varied effects of drought on vegetation productivity and response of vegeta-
tion to cumulative water availability of previous months. during the winter and summer
seasons. We found that the ecoregions in this study had frequent periods of drought stress
in line with the findings of other studies [34]. As with other studies [11,28,35], we found
that vegetation productivity depends on multiple factors including drought timescale,
season, vegetation type, and ecoregion. In particular, we found that the effects of drought
on vegetation productivity are dependent on the season in which the drought occurs, the
seasonal precipitation patterns of the region, and the dominant vegetation types. This work
could be extended by using longer time series data, and finer resolution climate and vege-
tation cover data. Future research could also explore the impact of soils, elevation, latitude,
and growing degree days on vegetation productivity since not all variability in vegetation
productivity metrics were explained by the SPEI timescales. Our research suggests that
the development of a multivariate bioclimatic model that relates productivity metrics to
different SPEI timescales and climate variables is a promising avenue for exploration.
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