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Abstract: Landslide susceptibility mapping is an effective approach for landslide risk prevention
and assessments. The occurrence of slope instability is highly correlated with intrinsic variables that
contribute to the occurrence of landslides, such as geology, geomorphology, climate, hydrology, etc.
However, feature selection of those conditioning factors to constitute datasets with optimal predictive
capability effectively and accurately is still an open question. The present study aims to examine
further the integration of the selected landslide conditioning factors with Q-statistic in Geo-detector
for determining stratification and selection of landslide conditioning factors in landslide risk analysis
as to ultimately optimize landslide susceptibility model prediction. The location chosen for the study
was Atsuma Town, which suffered from landslides following the Eastern Iburi Earthquake in 2018 in
Hokkaido, Japan. A total of 13 conditioning factors were obtained from different sources belonging to
six categories: geology, geomorphology, seismology, hydrology, land cover/use and human activity;
these were selected to generate the datasets for landslide susceptibility mapping. The original
datasets of landslide conditioning factors were analyzed with Q-statistic in Geo-detector to examine
their explanatory powers regarding the occurrence of landslides. A Random Forest (RF) model was
adopted for landslide susceptibility mapping. Subsequently, four subsets, including the Manually
delineated landslide Points with 9 features Dataset (MPD9), the Randomly delineated landslide
Points with 9 features Dataset (RPD9), the Manually delineated landslide Points with 13 features
Dataset (MPD13), and the Randomly delineated landslide Points with 13 features Dataset (RPD13),
were selected by an analysis of Q-statistic for training and validating the Geo-detector-RF- integrated
model. Overall, using dataset MPD9, the Geo-detector-RF-integrated model yielded the highest
prediction accuracy (89.90%), followed by using dataset MPD13 (89.53%), dataset RPD13 (88.63%) and
dataset RPD9 (87.07%), which implied that optimized conditioning factors can effectively improve
the prediction accuracy of landslide susceptibility mapping.

Keywords: Geo-detector; Random Forest; feature selection; landslide susceptibility mapping

1. Introduction

Landslides are the most common geological disasters that damage property and
infrastructure and result in loss of life. Landslide susceptibility mapping is an important
tool to optimize land use planning and policy to reduce damage from landslides to public
property, infrastructure and people’s lives [1,2]. Landslide susceptibility mapping refers to
a division of the land into zones of hazard classes ranked according to different landslide
occurrence probabilities based on an estimated significance of conditioning factors to
the causes of landslides [3–5]. Landslide susceptibility is determined by qualitative and
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quantitative analyses of the conditioning factors obtained in the former disaster area [3,5–7].
Maps of landslide susceptibility are usually prepared at regional scales at middle-to- high
spatial resolutions, which favor regional studies allowing rapid assessment, and hence,
larger areas can be covered in short duration [2].

A broad range of methods and techniques have been proposed for landslide suscepti-
bility assessment over the last decades, and they can be grouped into heuristically based,
physically based and statistically based methods [1,8]. The heuristically based approaches
utilize contributing factors and their weights determined by export knowledge, which is
partially subjective [5,8,9]. The physically based approaches generally provide accurate
results by detailed data of geotechnical engineering at site-specific locations at a localized
scale, but suffer from expensive cost and lack of data for large-scale areas [1,8–10].The statis-
tically based approaches assume that conditions leading to slope failure in the past are likely
to cause landslides in the future [1]. These methods train models using datasets generated
from various conditioning factors and landslide inventory maps and produce a quantitative
map of landslide occurrence probabilities [1,8]. In the literature, some common statisti-
cal models used in landslide susceptibility mapping include logistic regression [11–13],
frequency ratio [14,15], support vector machines [1,13], decision trees [13,16,17], artificial
neural networks [1,11], etc.

Landslide occurrence is highly correlated with intrinsic variables that contribute
the most to initiating landslides, which can be described as geology, geomorphology,
climate, hydrology, hydrogeology, land cover/use as well as human activities [4,18–20].
Significant conditioning factors are essential for high-accuracy landslide susceptibility
mapping; however, redundant information may cause noise that restricts accuracy [1,6,12].
Many methods have been proposed in the literature to select factors with higher predictive
capability. For examples, cross-tabulations [21], binary logistic regression [5], information
gain ratio [6,22], Geo-detector [8,12] and convolutional neural networks [23] were used for
the identification and selection of the causal parameters.

Weights assigned to causal factors differ as the characteristics of conditioning factors
vary from region to region [6,8]. For the area of the Moldavian Plateau in Romania, the
statistic interpretations revealed that the lithology, the geomorphology and the topography
had stronger relations with the landslide compared to climate and land cover/use [4]. In
both hilly areas and lower mountain regions in Romania, the prevailing landslide causal
factors, whose weights were assessed using logistic regression, were slope, land cover/use
and slope height above channel network [5]. For the earthquake-induced landslides
in Sichuan Province, China, rock mass and slope were evaluated to have the greatest
relative contributions to landslides [12]. For the shallow landslides in the hilly region
in the Valnerina area in Italy, it was observed that the distance to faults and lithology
had a significant impact on landslides [21]. For the semi-arid mountain environment in
Granada, Spain, elevation, lithology, slope angle and aspect were proved as the most
relevant landslide determining factors [24].

Despite the many studies on landslide susceptibility and hazard modeling, effect and
accurate feature selection are still open questions [23]. Together with landslide susceptibility
mapping, the geographical detection method has been introduced as a new and powerful
tool for feature selection. The integration of Geo-detector and statistically based approaches
have shown potential to the application of accuracy improvement of landslide suscepti-
bility models [8,12]. Therefore, investigation of the combined methods and techniques in
the different landslide-prone areas in the world is highly necessary to acquire adequate
background to explore reasonable improvements for landslide susceptibility mapping.

The main purpose of this study is to improve landslide susceptibility mapping’s per-
formance by integrating Geo-detector and the Random Forest model. The first stage was to
examine further the integration of the select landslide conditioning factors with Q-statistic
in Geo-detector for determining stratification and selection of landslide conditioning factors.
Then, the Random Forest model was adopted for the datasets optimized using Geo-detector
as a classification method for building a landslide susceptibility model. Finally, the receiver
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operating characteristics (ROC) were used for the assessment, validation and comparison
of the four different Geo-detector-RF models derived with four selected composites of
conditioning factors. The location chosen for the study was the Atsuma Town, where more
than 3000 landslides triggered by the 2018 Mw 6.6 Hokkaido Eastern Iburi Earthquake
over an area of about 360 km2 with extensive damage (https://www.gsi.go.jp/ accessed
on 6 July 2020).

2. Materials and Methods
2.1. Study Area

On September 5, 2018, a magnitude Mw 6.6 earthquake, with its epicenter located
at 42◦41′10′′ N, 141◦55′44′′ E and focal depth at 35.0 km, struck Eastern Iburi, Hokkaido,
Japan (https://earthquake.usgs.gov/ accessed on 6 July 2020). According to the focal
fault model, a high-angle slip striking in the north-south direction happened in a rectangle
reverse fault at 14 km wide, 15.9 km long and 16.2 km upper edge deep and caused the
severe earthquake (https://www.gsi.go.jp/ accessed on 6 July 2020). The earthquake and
its derived disasters, such as landslides and mudslides, caused a large number of casualties
and public facilities damaged.

The study area (Figure 1) is located in Atsuma Town, Iburi, Hokkaido, Japan, the
central disaster district of the 2018 Hokkaido Eastern Iburi earthquake. It spans longitudes
from 141◦48′ E to 142◦07′ E, latitudes from 42◦35′ N to 42◦52′ N, with an area of about
408 km2. The landslides triggered by the earthquake are mostly shallow, several meters
deep, and distributed with high density over an area of approximately 18 km2 [25,26].

The topography of the study area is characterized by the remarkable transition zone
from the southwest coastal plains on the Pacific Ocean to the northeast hilly land. The
topographic inclination follows the NE–SW direction with elevation generally lower than
604 m above sea level (a.s.l.) and mean elevation about 137 m a.s.l. The terrain is relatively
flat, with an average slope angle of about 9.93◦. Areas with slope less than 15◦ account
for more than 75% of the region, while areas greater than 25◦ cover less than 5%. Owning
to its geographic location in coastal area of Hokkaido facing the Pacific Ocean to the
south, the study area has a humid continental climate according to the Köppen Climate
classification (https://www.jma.go.jp/ accessed on 6 July 2020). The recorded average
annual precipitation of this area is about 1014.3 mm, with the highest value of 171.6mm in
August and the lowest value of 31.2 mm in February (https://www.jma.go.jp/ accessed
on 6 July 2020).

Tectonic forces and faults caused by relative movements under the interactions be-
tween the Pacific, North American, Eurasian, and Philippine plates make the geological
structure and tectonic evolution of the study area rather complicated [26]. Most subsidences
of the study area are marine and non-marine sediments, geologically aged from Holocene
to Jurassic with a total thickness of 4–5 m and covered by surface soil inter-bedded with
pumice and ash [26]. Such geological structure and stratigraphy make this area prone to
geological disasters such as earthquakes and landslides.

2.2. Spatial Database
2.2.1. Landslide Inventory Map

The landslide inventory map plays an important role in hazard assessment [1,4,6,24].
The landslide inventory map was prepared at 1:10,000 scale through a combination of
field surveys and photo interpretation based on stereoscopic and pseudo-stereoscopic
aerial photography (Figure 2a,b). Different types of aerial photographs were analyzed
visually to prepare the landslide inventory map by the Geographical Survey Institute,
Japan (GSI, hereafter) (https://www.gsi.go.jp/ accessed on 6 July 2020). A total of about
1000 landslides covering an area of about 48 km2 were extracted in the study area and
plotted as polygon features on the digital inventory map for further analysis.

https://www.gsi.go.jp/
https://earthquake.usgs.gov/
https://www.gsi.go.jp/
https://www.jma.go.jp/
https://www.jma.go.jp/
https://www.gsi.go.jp/
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Figure 1. The digital maps showing the geographic location, topography, active faults, seismic 
magnitude and distribution of earthquake-triggered landslides over the study area, along with the 
location of the epicenter as well as the fault-model simulated results for the 2018 Eastern Iburi 
Earthquake at Hokkaido, Japan [2]. 
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Only landslides with an area greater than 1000 m2 were used for landslide suscepti-
bility analysis [26]. Manual and random sampling approaches were utilized to generate 

Figure 1. The digital maps showing the geographic location, topography, active faults, seismic
magnitude and distribution of earthquake-triggered landslides over the study area, along with the
location of the epicenter as well as the fault-model simulated results for the 2018 Eastern Iburi
Earthquake at Hokkaido, Japan [2].

Only landslides with an area greater than 1000 m2 were used for landslide susceptibil-
ity analysis [26]. Manual and random sampling approaches were utilized to generate land-
slide sample datasets. For manual sampling, given the high-resolution orthoimages and the
existing landslide distribution vector from GSI Map Vector (https://maps.gsi.go.jp/vector/
accessed on 6 July 2020), the landslide sample points were extracted in the landslide source
areas (Figure 2c), which were distinguished from debris deposits, while random sampling
of landslide points (Figure 2d) and non-landslide points was derived with the aid of the
software ArcGIS 10.6.

https://maps.gsi.go.jp/vector/
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Figure 2. Part of (a) Landslide inventory map interpreted from (b) Aerial photograph by Geographical Survey Insti-
tute, Japan (GSI). (c) Distribution of manually sampled landslide points and (d) Distribution of randomly sampled
landslide points.

1000 positive sample points were collected in the landslide area and divided into two
subsets: 70% of the landslide points were used for model training, whereas the remaining
30% were used for the model validation, as shown in Figure 3. Meanwhile, 1000 negative
sample points were randomly sampled from the landslide-free area and divided into
training datasets and validation datasets at a ratio of 7:3 as well.

2.2.2. Landslide Conditioning Factors

Making a reference to the literature, i.e., Shao et al. (2019), Yi et al. (2019), etc.,
the appropriate initial set of conditioning factors was obtained using the data from the
conventional field survey, observation station and remotely sensed information. The
factors selected in this study could be divided into six categories: geology (lithology);
geomorphology (elevation, slope, aspect, curvature); seismology (active fault, epicenter,
peak ground velocity (PGV) and peak ground acceleration (PGA)); hydrology (topographic
wetness index (TWI), river channels); land cover/use and human activity (roads).
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Figure 3. Landslide conditioning factor layers and their classes used for landslide susceptibility mapping in the study area. 
(a) Elevation, (b) Slope, (c) Aspect, (d) Curvature, (e) Topographic wetness index (TWI), generated from Shuttle Radar 
Topography Mission (SRTM) data, (f) Distance to roads, (g) Distance to rivers, digitized from GSI map, (h) Lithology, 
derived from GSI map, (i) Land cover, produced by Tsinghua University, (j) Peak ground acceleration (PGA), (k) Peak 
ground velocity (PGV), (l) Distance to epicenter, downloaded from the USGS and (m) Distance to active fault, collected 
from GSI. The landslide distribution used for training and testing was generated as described in Section 2.2.1. 
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vided into 9 directions (Figure 3c), surface curvatures were divided into 6 classes (Figure 
3d) and TWIs were divided into 6 categories (Figure 3e). 

The surface curvature is a topographic index which represents the physical charac-
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corresponding surface (https://desktop.arcgis.com/ accessed on 26 July 2020) [28]: 𝐷 = ቂ(రାల)ଶ − 𝑍ହቃ /𝐿ଶ𝐸 = ቂ(మାఴ)ଶ − 𝑍ହቃ /𝐿ଶ𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 = −2(𝐷 + 𝐸) × 100, (1) 

where 𝑍 are the corresponding altitudes as shown in Figure 4, and 100 is the constant 
coefficient, as curvature is generally small [28]. 

Figure 3. Landslide conditioning factor layers and their classes used for landslide susceptibility mapping in the study area. (a)
Elevation, (b) Slope, (c) Aspect, (d) Curvature, (e) Topographic wetness index (TWI), generated from Shuttle Radar Topography
Mission (SRTM) data, (f) Distance to roads, (g) Distance to rivers, digitized from GSI map, (h) Lithology, derived from GSI map, (i)
Land cover, produced by Tsinghua University, (j) Peak ground acceleration (PGA), (k) Peak ground velocity (PGV), (l) Distance to
epicenter, downloaded from the USGS and (m) Distance to active fault, collected from GSI. The landslide distribution used for training
and testing was generated as described in Section 2.2.1.

A digital elevation model (DEM) of the study area was derived from Shuttle Radar
Topography Mission (SRTM) with 1 arc-second (about 30 m) spatial resolution and was
divided into 6 classes (Figure 3a). Based on DEM data, another four topographical con-
ditioning factors were generated with the same resolution using the tools provided by
software ArcGIS 10.6: slope angles were divided into 5 classes (Figure 3b), aspects were di-
vided into 9 directions (Figure 3c), surface curvatures were divided into 6 classes (Figure 3d)
and TWIs were divided into 6 categories (Figure 3e).

The surface curvature is a topographic index which represents the physical charac-
teristics of the river basin [27,28]. Given an 3× 3 altitude submatrix as shown in Figure 4,
the surface curvature of its central point is calculated as the second derivative of its corre-
sponding surface (https://desktop.arcgis.com/ accessed on 26 July 2020) [28]:

D =
[
(Z4+Z6)

2 − Z5

]
/L2

E =
[
(Z2+Z8)

2 − Z5

]
/L2

Curvature = −2(D + E)× 100

, (1)

where Zi are the corresponding altitudes as shown in Figure 4, and 100 is the constant
coefficient, as curvature is generally small [28].

The TWI is a topographic index which represents a theoretical estimation of the
accumulation of flow at any point and is calculated as follows [29]:

TWI = Ln(a/ tan β), (2)

where, in the terms of a raster DEM, a stands for upslope contributing area per unit contour,
and β stands for local slope angle. a is calculated as follows:

a =

{
S·A/L, flow direction = Z2, Z4, Z6, Z8

S·A/
√

2L, flow direction = Z1, Z3, Z7, Z9
, (3)

where, in the terms of a raster DEM, S stands for area of a cell, A represents flow accumula-
tion of the cell, L stands for size of a cell and Zi are the corresponding locations as shown
in Figure 4.

https://desktop.arcgis.com/
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are the nine submatrix altitudes. Z5 is the altitude of the central point. L is the distance between
matrix points in the row and column directions and must be in the same units as Z [28].

Undercutting and erosion functions of rivers and roads on the natural topography
may affect landslide susceptibility; therefore, distance to roads and rivers has often been
taken into account in landslide susceptibility analysis [26]. In this study, the roads and
rivers were digitized from the standard GSI Map Vector (https://maps.gsi.go.jp/ accessed
on 6 July 2020), and both of them were classified into 7 classes with a 200m buffer interval
and then converted to raster format with the same resolution as the DEM, respectively
(Figure 3f,g).

Lithology is directly related to landslide susceptibility, so it is usually taken as condi-
tioning factor in landslide analysis [5,12,14,26,30]. The lithology data of the study area was
collected from the Seamless Digital Geological Map of Japan at 1:200,000 scale produced
by the Geological Survey of Japan [31]. In total, about 11 geological formation units were
classified according to age and lithology (Figure 3h), including Hsr (Late Pleistocene to
Holocene marine and non-marine sediments), N1sr (Early Miocene to Middle Miocene
marine and non-marine sediments), N2sn (Middle to Late Miocene non-marine sediments),
N3sn (Late Miocene to Pliocene non-marine sediments), PG2sr (Middle Eocene marine and
non-marine sediments), PG3sr (Late Eocene to Early Oligocene marine and non-marine
sediments), Q2sr (Middle Pleistocene marine and non-marine sediments), Q2th (Middle
Pleistocene higher terrace), Q3tl (Late Pleistocene lower terrace), Q3vp (Late Pleistocene
non-alkaline pyroclastic flow volcanic rocks) and wt (water), specifically. Most landslides
slid down over the air-fall pumice and ash layers [22]. Over 90% of the landslides occurred
in central Atsuma, where the main lithology was N2sn. Worth mentioning at this time is
that N2sn is the dominant lithology in the region, accounting for around 48%, followed by
Hsr (20%) and N3sn (12%). In addition, landslide occurrence ratios within each geological
formation units were calculated for a deeper understanding of the relation between lithol-
ogy and landslides. The lithology with the largest landslide occurrence ratio is N2sn (18%),
followed by Q2sr (8%), N3sn (3%), wt (2%), Hsr (1%), Q3tl (1%), Q2th and the others are
no more than 1%.

Land cover affects surface water and soil conditions and thus influences landslide
susceptibility. In this study, the land cover map (Figure 3i) was downloaded from the 10-m
resolution global land cover datasets from 2017, produced by Tsinghua University [32].

Amplitude and position of ground deformation are strongly related to seismic land-
slides, and earthquake-triggered landslides are usually found in the vicinity of active
faults [14]. Based on the availability of seismic data, four conditioning factors were con-
structed: PGA, PGV, distance to active fault and distance to epicenter. The PGA data
ranging from 0.42 g (gravitational acceleration, approximately 9.8 m/s2) to 0.66 g in the
study area was classified into 13 classes with 2 g intervals (Figure 3j), while the PGV
data ranging from 24 cm/s to 92 cm/s in the study area was divided into 8 categories
with 10 cm/s intervals (Figure 3k). Both of them were downloaded from the USGS
(https://earthquake.usgs.gov/ accessed on 6 July 2020) and were converted to raster for-

https://desktop.arcgis.com/
https://maps.gsi.go.jp/
https://earthquake.usgs.gov/
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mat with the same resolution as the DEM, respectively. The distance was generated from
the ring buffers in 2 km intervals with the epicenter as the origin (Figure 3l). The active
fault data was derived from the fault model of the 2018 Hokkaido Eastern Iburi Earthquake
constructed by GSI and was made up of buffers with 2 km intervals in the study area.
The distance to the active fault was divided into 15 categories with a sigh and distance
combined (Figure 3m), where the positive value represented the location to the west of the
fault and the negative value represented the location to the east of the fault, respectively.

2.3. Methodology

As a binary classification approach, the quality and quantity of independent condi-
tioning factors adopted in a model for landslide susceptibility mapping greatly affect the
accuracy of the model. To assess the optimization effects of Geo-detector on landslide
conditioning factors, two main steps were conducted in this study. First, preparation of
training and validation datasets to select and determine weights of each conditioning factor
by using Geo-detector; in this process, 4 datasets were generated according to different
optimized combinations of conditioning factors, respectively. Next, the Random Forest
Model for landslide susceptibility mapping was trained with 4 different optimized combi-
nations of conditioning factors and validated for final mapping. The receiver operating
characteristics (ROC), a statistical evaluation measure, was used to assess the predictive
capability of the model trained by the 4 different datasets.

2.3.1. Geo-Detector

The quality and the quantity of the conditioning factor data layers used are essential
for the reliability of landslide susceptibility mapping and the evaluation and optimization
of conditioning factors regarding their predictive capabilities are vital to improving the
accuracy of a model for landslide susceptibility mapping [2].

Geo-detector is a tool to detect and utilize spatial stratified heterogeneity (SSH), a
basic characteristic of geographical phenomena being applied in many fields of natural and
social sciences for assessing the optimization effects of the combination of conditioning
factors [33]. An assumption beyond the Geo-detector is that the greater the influence of an
independent variable on a dependent variable, the more similar their spatial distribution
will be. The Q-statistic in Geo-detector that is used to measure spatial distribution similarity
is calculated according to Wang et al. (2012) as follows:

q = 1− ∑l
1 Niσ

2
i

Nσ2 , (4)

where i = 1, 2, . . . , L, represent the stratum i of variables and Ni and N represent the unit
numbers of stratum i and the whole region of interest, respectively. σ2

i and σ2 represent
the variance of stratum i and the whole area, respectively, and the second term in the right
side of the equation above denotes the ratio of within sum of squares to the total sum of
squares, q ∈ [0, 1]. According to different bases of stratification, the Q-statistic contains
three meanings: SSH detection, factor detection and interactive factor detection. In SSH
detection, stratification is based on the variable itself, and the more obvious the SSH is, the
larger the Q-statistic will be; in factor detection, stratification of the dependent variable Y is
based on the independent variable X, so a larger Q-statistic represents stronger explanatory
power of the independent variable X on the dependent variable Y; while in interactive
factor detection, the basis of stratification is the overlay of two independent variable X1 and
X2 and the Q-statistic obtained can be compared with the Q-statistic of two single variables
to evaluate the interaction, which can be divided into five types: nonlinear weakening,
single-factor nonlinear weakening, double-factor enhancement, independent and nonlinear
enhancement. For detailed explanations of Geo-detector, please refer to Wang et al. (2017).

For samples in training datasets, landslide samples were assigned to a value of “1”
while non-landslide samples were assigned to a value of “0”; they were taken as the
dependent variable Y used in Geo-detector. Values for the 13 initial landslide conditioning
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factors that were extracted from the conditioning factor maps generated previously were
taken as the independent variables Xs for Geo-detector. The Q-statistic of each independent
variable X was calculated according to Equation (4) to perform feature selection. The
larger the Q-statistic was, the stronger the explanatory power of the conditioning factor on
landslide occurrence, and vice versa.

2.3.2. Dataset Generation Based on Geo-Detector

As mentioned above, initial conditioning factor datasets were discretized in the first
step. Next, Geo-detector was used to detect the contributions of all potential influencing
factors to the spatial stratified heterogeneity of the landslides. Landslide sample points
with truth values and conditioning factor classification values as attributes were input
into Geo-detector. Next, according to the distribution of output Q-statistics and the geo-
graphical correlation between the determinants and landslide distribution, variables that
ranked higher in the Q-statistics were selected as the independent variables in the Random
Forest model.

2.3.3. Random Forest Model

A decision tree is a hierarchical model that divides feature space into sub-spaces as
homogeneously as possible by recursive partitioning in order to achieve sample classifi-
cation [34,35]. The implementation of an individual decision tree is simple and easy to
explain, but it is prone to over-fitting, which is manifested as good performance on the
training set but a poor generalization of the data on the validation set. A Random Forest is a
kind of ensemble algorithm that combines tree predictors to vote for the most popular class
to achieve significant reduction of generalization error and improvement of classification
accuracy [36,37].

The base tree classifier used in this study was the Classification and Regression Tree
(CART, hereafter), using the Gini Index as a measure of impurity to determine the features
and thresholds for splitting nodes, and pruning was performed by the validation data
independently from training data to suppress over-fitting [34].

For binary classification, where categories are represented by 0, 1, respectively, the
Gini Index of nodes, where there is a total of samples with features, can be calculated as
follows [35]:

G(m) = 2·∑i∈Nm yi = 0
Nm

·∑i∈Nm yi = 1
Nm

, (5)

When node m is split using feature xj and threshold t, the impurity of the partition is
evaluated as follows [35]:

I(j, t) = G(m(xj <= t)) + G(m(xj > t)), (6)

Lower impurity represents the stronger partition effects. The parameters j and t,
which minimize the impurity, are selected to split the node m.

The Random Forest reduces variance and improves the robustness of the model by
injecting randomness and combining the average value of the predictors. Randomness is
mainly realized by two parameters, the number of selected features and samples. Each tree
is trained by a certain number of samples randomly selected from the whole dataset. When
splitting nodes, the impurities of the partition are calculated only using a certain number
of features rather than all of them [35,36]. After all the trees are generated, the scores of all
trees are combined to obtain an average value [35].

2.3.4. The Receiver Operating Characteristic Curve

For validation and comparison of landslide susceptibility models with different
datasets of combined conditioning factors as inputs, the receiver operating character-
istic (ROC) curve was adopted on training datasets for examining training accuracy as well
as on validation datasets for prediction accuracy.
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To investigate the prediction performance of the models, the false positive rate (FPR)
and true positive rate (TPR) were taken as the horizontal and vertical axis, respectively,
to obtain the ROC and area under the ROC (AUC) [35,38]. For a binary classification,
samples were assigned as positive and negative, representing landslide and non-landslide,
respectively. False positive (FP) stands for the samples wherein prediction class is landslide
but the ground truth is not, while true positive (TP) stands for the samples wherein both
prediction class and ground truth are landslide. Hence, FPR denotes the ratio of the
number of FP over the number of all real landslides; meanwhile, TPR denotes the ratio of
the number over the number of all the non-landslides in the ground truth. When plotting
the ROC curve, the model prediction scores of all samples are ranked in descending order.
The evaluation method considers that the sample should be assigned to the positive class
if its score is greater than c, where the threshold c denotes the likelihood of occurrence
of a landslide and varies from [0, 1]. A fixed threshold c corresponds to a certain set of
coordinates composed of (FPR, TPR). In particular, a threshold c, equaling 0, corresponds
to a coordinate (1, 1), while a threshold c, equaling 1, corresponds to a coordinate (0, 0).
With the group of sets of coordinates, the ROC is given, as well as the AUC [35,38]. The
AUC ranges from 0 to 1, where 1 represents that all pixels are correctly classified and 0
indicates a poor predictive capacity of the model [39].

3. Results
3.1. Geo-Detector and Dataset Generation

In this study, the explanatory powers of conditioning factors on landslide distribution
were identified by Q-statistics using Geo-detector. Two training datasets of landslide and
non-landslide points were generated by random generation and manual sampling, respec-
tively, and were taken as the inputs to Geo-detector, while Q-statistics of every conditioning
factor (Figure 5) were the output. The results demonstrated that the distribution of relative
contribution of all the potential landslide conditioning factors calculated from the Manual
Points with 13 Features Dataset (MPD13, hereafter) and Random Points with 13 Features
Dataset (RPD13, hereafter) were basically in the similar variation trend with the same
significant data gap, in which seven conditioning factors with larger Q-statistics, including
elevation, slope, lithology, distance to fault, distance to epicenter, PGA and PGV, and the
remaining six factors with lower explanatory power, including aspect, curvature, TWI,
distance to road, distance to river and land cover can be recognized. Lithology had the
highest relative contribution to the landslide distribution for the two examined datasets,
with a Q-statistic value of 0.318 in MPD and a Q-statistic value of 0.277 in RPD, respectively,
followed by PGV, epicenter, and fault, etc., while river and road contributed the least.

Considering the dimensions of feature space and their explanatory powers, the first
nine variables with satisfied critical values (q > 0.04 both in MPD and RPD) regarding to
their relative contributions were selected as the optimized feature space. The values of the
selected variables were extracted and combined with landslide tags to generate two new
datasets: Manual Points with 9 Features Dataset (MPD9, hereafter) and Random Points with
9 Features Dataset (RPD9, hereafter). Together with the two original datasets composed
of all 13 conditioning factors and landslide labels, a total of four datasets, including the
training dataset and the validation dataset, were used in the following Random Forest
model for landslide susceptibility mapping.

3.2. Model Accuracy Assessment and Comparison

Random Forest models were built using the four abovementioned datasets generated
from different sampling methods and feature combinations based on the results of Geo-
detector. To investigate the prediction performance of the models, FPR and TPR were taken
as the horizontal and vertical axes, respectively, to obtain the ROC and AUC as shown
in Figure 6. Performances of the Random Forest models trained from those four datasets
were satisfactory in general, with all AUC values above 85%. More detailed observation
suggested that the model trained by MPD9 outperformed the others with the highest AUC
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value of 89.90%, about 0.4% higher than the model trained by MPD13, which implied that
a smaller number of conditioning factors was sufficient to produce reasonable results even
with higher accuracy. Generally, model performance was ranked the best from the model
trained by MPD followed by the model trained by RPD13 (88.63%) and the model trained
by RPD9 (87.07%), respectively, which suggested that the precision of the model trained
by manually selected samples was indeed improved compared with the one trained by
randomly selected samples.
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3.3. Landslide Susceptibility Mapping

The landslide susceptibility indexes of all the pixels in the study area were calculated
by using the trained classification models. In order to clearly visualize the predicted
landslide susceptibility distribution, the indexes of landslide susceptibility over the study
area were classified into five categories as presented in Figure 7: very high (80–100%),
high (60–80%), moderate (40–60%), low (20–40%) and very low (0–20%) by using the equal
interval method, and the relationship between the percentage of landslide truth value and
the percentage of grading area was exhibited as a curve [1,14,40].
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Details of the distribution of landslides in each relative grading area are listed in
Table 1. It was observed that the landslide susceptibility maps generated by the models
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trained from the four datasets had consistent trends with slight differences. The category
that accounted for the largest percentage of the study area was “very low”, nearly half, fol-
lowed by category “high”, with approximately 20 percent. The remaining three categories,
“very high”, “moderate” and “low”, were basically at the same level; however, for MPD9,
the proportion of “very high” was the least, while for RPD13, it was slightly greater than the
other two. In addition, it was obvious that the higher the landslide susceptibility, the higher
the landslide distribution density tended to be. The classification of landslide susceptibility
obtained from the four datasets suggested that in the category “very high”, there were
30–40 km2 of landslide per 100 km2 on average, while in the “very low” category, there
were almost no landslides. The distribution density of landslides in the middle three levels
decreased by approximately half with the decrease of landslide susceptibility. At the same
time, the proportion of landslides in the region showed the same trend, which decreased
with the decrease of the susceptibility. Except for MPD13, category “high” was about 5
percent higher than category “very high”. In general, for the four datasets, landslides in
areas of the landslide susceptibility levels of “high” and “very high” accounted for nearly
80 percent of the total landslide areas, while level “moderate” accounted for half or more
of the remaining 20% and level “low” was slightly higher than level “very low”.

Table 1. Landslide distribution of landslide susceptibility derived from the models trained by using MPD9, RPD9, MPD13
and RPD13, respectively.

A B C D E F G H I

Datasets Susceptibility Pixels Landslide
Pixels Density Map Pixels Percentage

of Map
Map Landslide

Pixels
Percentage

of Landslide

(A) (B) (C) (D) (D/C) (F) (C/F) (H) (100D/H)

MPD9

Very High 54066 17339 0.32 574471 9.41 52190 33.22
High 132482 24693 0.19 574471 23.06 52190 47.31

Moderate 55040 5476 0.10 574471 9.58 52190 10.49
Low 52676 2599 0.05 574471 9.17 52190 4.98

Very Low 280207 2083 0.01 574471 48.78 52190 3.99

RPD9

Very High 53832 19429 0.36 574471 9.37 52190 37.23
High 127100 24195 0.19 574471 22.12 52190 46.36

Moderate 74226 6114 0.08 574471 12.92 52190 11.71
Low 75861 1787 0.02 574471 13.21 52190 3.42

Very Low 243452 665 0.00 574471 42.38 52190 1.27

MPD13

Very High 56965 20252 0.36 574471 9.92 52190 38.80
High 121146 22143 0.18 574471 21.09 52190 42.43

Moderate 65411 6331 0.10 574471 11.39 52190 12.13
Low 66750 2272 0.03 574471 11.62 52190 4.35

Very Low 264199 1192 0.00 574471 45.99 52190 2.28

RPD13

Very High 47632 18392 0.39 574471 8.29 52190 35.24
High 131947 25964 0.20 574471 22.97 52190 49.75

Moderate 73086 5671 0.08 574471 12.72 52190 10.87
Low 71690 1608 0.02 574471 12.48 52190 3.08

Very Low 250116 555 0.00 574471 43.54 52190 1.06

4. Discussion

A new, integrated model for landslide susceptibility analysis based on Geo-detector
and the Random Forest method has been proposed in this study. The new model was
carried out in the main disaster area of eastern Iburi in Hokkaido in Japan where there were
widespread and extremely severe earthquake-triggered landslides. The prediction accuracy
of landslide susceptibility mapping showed improvement by taking full advantage of
spatial structure information and removing redundant information.

In this study, two sampling methods of landslide points were used for considering that
the landslide distribution map downloaded from GSI did not distinguish between landslide
source and debris deposits, while the location of selected samples may have had a certain
influence on the prediction accuracy of the landslide susceptibility mapping model [26].
The results demonstrated that the accuracy of landslide prediction was improved by
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limiting the landslide samples of the landslide source to 1–2 percent compared to randomly
sampling points in the case of the same dimension of feature spaces.

The accuracy of the prediction depends not only on the method chosen but also on
the quantity and quality of conditioning factors. Previous studies have shown that a
small number of conditioning factors are sufficient to produce landslide susceptibility
maps with a reasonable quality [1,6,12]. After abandoning the last four factors with
smaller contributions, as evaluated by Geo-detector in manually selected datasets, results
suggested that the AUC of the classifier had a particular rising. This finding revealed
that a less complex landslide susceptibility model of more reasonable quality could be
expected for a small but sufficient number of conditioning factors integration. In the case
of random sampling, the prediction accuracy of the model decreases, with the dimension
of the feature space decreasing from 13 to 9, showing an opposite trend compared with
previous results. These results demonstrated that the quality and quantity of conditioning
factors determine the performance of landslide susceptibility modeling together. Removing
redundant information should be carried out while maintaining the dimension of feature
space at a reasonable level based on the analysis of landslide types and the characteristics
of the study area.

However, there are still some limitations to the proposed method that need to be
improved. Firstly, a detailed and accurate landslide inventory map is the first and most
important stage of landslide susceptibility analysis, which is defined as using the conditions
of slope failure in the past and present to assess the likelihood of causing landslides in the
future [1,4,14]. In this study, the extracted landslide distribution area comprised landslide
scarps and debris deposits in which there were shallow landslides of planar types as
well as some deep-seated landslides of dip-slipping types [25]. We did not accurately
distinguish the landslide types before due to the limitations of historical images. Further
work should be carried out on the type purification of more detailed landslide inventories.
Secondly, landslide susceptibility mapping employs topological, environmental, geological
and hydrological parameters; an increase in the number of conditioning factors could
result in improved accuracy, whereas the noise in the independent variables may well
reduce predictive quality [1,6,12]. In the proposed method, different accuracy variation
trends were obtained in the two datasets with the reduction of the dimensions of feature
spaces. The effect of the dynamic combination of quantity and quality of conditioning
factors on the predictive ability of the model is not explored further here. Regardless, if
more variation in dimensions of feature space were included, the results would have been
more convincing.

5. Conclusions

Landslide susceptibility mapping is considered to be an important step in landslide
risk assessment, carrying great significance for reducing damage to life and properties
caused by disasters. The process of landslide susceptibility analysis consists of three stages.
At the first stage, landslide inventory maps and conditioning factors datasets should be
collected and preprocessed into common formats, in which procedure features should be
evaluated and cleaned. Modeling should include model training and model evaluation
based on the detailed and accurate datasets generated in the first phase. Next, the resulting
model should be applied to predict the likelihood of occurrence of landslides in the area of
interest and make further analyses or decisions based on the results. In this study, with
multi-geoscience information data as the inputs and Geo-detector as the feature selection
method, the Random Forest model was used for landslide susceptibility analysis and model
evaluation was carried out through ROC. The results illustrated the improvements and
reliability after purification and putting limitations on the location of landslide sampling
points and demonstrated a reasonable predictive quality when removing factors with little
predictive ability. Geo-detector-RF model has shown a reliable assessment and predictive
ability in landslide susceptibility analysis, and the integration of Geo-detector and some
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other machine learning techniques should be taken into account for advancements in
future studies.
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