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Abstract: Bottom reflectance is a significant parameter characterizing the bottom types for clear
optically shallow waters, typically in oceanic islands and reefs. However, there is not an effective
physics-based method for inverting the bottom reflectance using multispectral images. In this
study, we propose a novel approach for quantitatively inverting the bottom reflectance at 550 nm
without the dependence of in situ bottom reflectance data or any other priori knowledge. By linking
different pixels in the same image and utilizing the strong linear relationship between their water
depths and the spectral related parameters, the global situation of the radiative transfer model was
constrained, and an exponential relationship between the log-transformed ratio of the blue–green
band reflectance and the bottom reflectance was established. The proposed model was checked by
comparing the Hydrolight input bottom reflectance with that inverted from Hydrolight simulated
spectrum, resulting in correlating well. Our method has successfully performed using WorldView-2
and Landsat-8 in Midway Island in the North Pacific Ocean, with the cross- and indirectly checking
and obtained reliable and robust results. In addition, we assessed the potential of the quantitative
bottom reflectance in benthic classification and inversion ranges under different bottom reflectance.
These results indicated that compared with those methods relying on in situ data or hyperspectral
imagery, our algorithm is more likely to efficiently improve the parameterization of bottom reflectance,
which can be very useful for benthic habitat mapping and transferred to large-scale regions in clean
reef waters, as well as monitor time-series dynamics of oceanic bottom types to forecast coral
reef bleaching.

Keywords: bottom reflectance; oceanic islands and reefs; log rotation ratio model; Hydrolight;
multispectral remote sensing; water depth

1. Introduction

In the context of deteriorating marine environment and increasing threats [1,2], de-
tailed, consistent, and accurate information in real time on seafloor conditions is critical
for sustainability and conservation of marine ecosystems. This is especially important for
oceanic islands and reefs with high organic productivity to support necessary habitats for
oceanic flora and fauna [3,4]. Bottom types, such as coral reef, sand, and rubble play an
important role in understanding the physical benthic habitat and developing management
strategies [5]. Moreover, bottom reflectance is a significant indicator to effectively monitor
the composition of bottom types.

Remote sensing, as a low-cost and time-efficient technology, has attracted substantial
attention and prompted the combination with other technologies, such as multibeam
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echosounders [6,7]. Remote sensing images are usually applied to optically shallow waters,
where the optical information of the bottom types in the visible wavelengths can be
obtained radiometrically by optical sensors above the water, typically in clean oceanic
islands and reefs with depth less than 30 m. The most widely used spectral range is
blue–green bands that have a stronger penetrating ability, because the attenuation of
visible wavelengths in seawater is weaker compared with other longer wavelengths [8,9].
In recent decades, the methods applied to explore the seafloor through satellite remote
sensing can be roughly divided into two categories: empirical methods and model based
analytic algorithm. These empirical methods are also called statistical algorithms, such as a
neural networks [10], supervised classification [11], unsupervised classification [12], cluster
analysis [13], object-based classification [14,15], and feature selection based on maximum
likelihood classifier [16], which map the bottom types effectively without considering any
physical mechanism. Such methods rely heavily on the availability of a large volume of
field-based training data for targeting a statistical robustness. This is impracticable to
collect in in-situ bottom types or reflectance in dangerous areas that are inaccessible by ship
or unmanned aerial vehicles. In addition, some uncertainties will remain due to differences
in the optical conditions of different image scenes when transfer the training model to
other regions.

The other method that based on radiative transfer model can be applied to both hyper-
spectral and multispectral imagery which can simultaneously invert the bottom reflectance
and bathymetry, even water optical parameters [17–22]. The major advantage of using
hyperspectral data is that it can directly invert water properties without in situ data. But
compared the two data sources, there are some spatial and temporal resolution limitations
of hyperspectral data, and multispectral remote sensing has a longer development history
and richer data source, such as Landsat-5/7/8, Sentinel-2, WorldView-2/3, GeoEye-1,
QuickBird, IKONOS, Planet Dove, Gaofen-1/2, and other medium- and high-resolution
images. However, the number of bands for multispectral data is inadequate to separate the
components of the bottom reflection and water column scattering; typically, water depth
(from the top of a bottom-type object to the surface of the water) will interfere with the iden-
tification of bottom types [10,23,24]. In this scenario, some ground-based measurements or
empirical coefficients will be needed to reduce the number of unknown parameters [25–29],
which makes it difficult for a precise and large-scale mapping of coral reefs, especially a
quantitative bottom reflectance without any prior knowledge. Furthermore, pixel by pixel
iteration of high spatial resolution imagery through a physics-based approach is inefficient
and time-consuming work.

To address the above-mentioned problems, we integrated an empirical and semi-
analytical model and aim to propose a novel relationship between the subsurface reflectance
and bottom reflectance without ground–based measurements or a priori information. The
empirical model based on the log-ratio model of Stumpf et al. [30] was used to constrain
the entire situation, to build more equations and reduce the unknown parameters of the
semi-analytical model. Through the combination of the log-ratio model and semi-analytical
model, we can iteratively invert the bottom reflectance using the semi-analytical model of
Lee et al. [19] (the specific algorithm of this calculation process is in Appendix A). Then,
we can build an exponential model between the bottom reflectance we inverted above
and the log-transformed subsurface reflectance of blue–green bands, which can invert the
bottom reflectance quantitatively with most multispectral remote sensing images and not
interfered by underwater terrain; i.e., the Log rotation Ratio and Semi-analytical model
(we called LR-S model). We used two different multispectral remote sensing images (i.e.,
WorldView-2 and Landsat-8) to perform the method in Midway Island. The model and
results were then checked using the Hydrolight simulation dataset, a benthic map of the
Allen Coral Atlas, and in-situ data of multibeam soundings.
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2. Methods
2.1. Basic Model

According to single- or quasi-single-scattering theory and the single radiation trans-
mission process in optically shallow water, the subsurface remote-sensing reflectance can
be approximated and simplified as a sum of the contributions from the water column and
the bottom [7,18].

rrs = rdp
rs [1− exp(−0.75× gH)] + rb exp(−gH) (1)

where rdp
rs is the subsurface remote sensing reflectance of optically deep waters, g is the

sum of the diffuse attenuation coefficients of upwelling light, rb is the ratio of the bottom
irradiance reflectance to π, and H is the water depth. The bottom is assumed to be a
Lambertian reflector.

By taking the logarithm of Equation (1) and combined the subsurface reflectance rrs1
with rrs2 of the blue–green bands:

H =
(
− 1

2g1

)
ln
[(

rrs1 − rdp
rs1

)
/
(

rb1 − Ardp
rs1

)]
+
(
− 1

2g2

)
ln
[(

rrs2 − rdp
rs2

)
/
(

rb2 − Ardp
rs2

)] (2)

In the HOPE model of Lee et al. (1999), ρ(λ) is expressed as ρ(λ) = Bρnormal(λ),
for ρ(λ) a 550-nm-normalized albedo shape ρnormal(λ), which was a linear function that
was used, where B is the bottom albedo value at 550 nm (green band), then the bottom
reflectance in the blue band was simplified. Thus, we can establish a connection between
the bottom reflectance of blue (rb1) and green (rb2) wavelength, which is ln[rb1] = c∗ ln[rb2].
In this way, Equation (2) can be rewritten as:
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where A = exp(0.25× gH).
Based on Equation (2), Stumpf et al. [30] built the log-ratio model (the ratio of the

logarithm values of the two bands) which corrected different bottom types to invert water
depth. Following Stumpf et al. and according to Equation (3), we found an alternative
exponential solution on the logarithmic ratio of the two bands in inverting the bottom
reflectance at 550 nm by rotating the ln[rrs1] − ln[rrs2] coordinate system. If this ratio
condition applies, we would expect that the transformed ratio would approximate the
bottom reflectance independently of water depth and needs not be scaled to the actual
bottom types (LR-S model):

B = a1 × exp
(
a2 × C′i

)
(4)

where B = rb, which is the bottom reflectance at 550 nm, C′i =
[ln(n×Rblue)]

′

[ln(n×Rgreen)]
′ , [ln(n× Rblue)]

′,

and
[
ln
(
n× Rgreen

)]′ are the logarithmic values of the blue- and green-band subsurface
reflectance after rotation, respectively. a1 and a2 are determined by the first two items on
the right side of Equation (3),

(
1

2g1

)
/
(

1
2g1

+ c
2g2

)
and

(
1

2g2

)
/
(

1
2g1

+ c
2g2

)
which can be

seen as the rotation transformation. The last term on the right side of Equation (3) can be
regarded as the translation transformation. n, is typically set to 10,000 to ensure that the
logarithmic value is greater than 1.

2.2. Model Checking Using Hydrolight Simulation Dataset

Hydrolight version 5.3 [31] was used to simulate the propagation of light in clean shal-
low reef waters. Based on the assumption that the inherent and apparent optical properties
are highly similar across oceanic and reef waters (Case-1 phytoplankton dominated water),
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we only considered one dominant Inherent Optical Property (IOP) of Chl-a [32], which we
set at 0.05, 0.1, 0.15 and 0.2 mg/m3, respectively [33–36]. Please note that the content of
the simulation shown in the following is a result at 0.2 mg/m3 of Chl-a (the other three
situation results are in the Appendix B, Figure A1, Figure A2, Figure A3). The detailed
simulation steps are described in the Appendix B, and the settings for each parameter are
shown in Table A1.

After simulating the reflectance of different wavelengths in each scenario, we repre-
sented the logarithmic value of the blue–green band for the ln(n× Rblue)− ln

(
n× Rgreen

)
coordinate system (Figure 1a). Figure 1b shows a scatter plot of H and Ci, which is the ratio
of ln(n× Rblue)− ln

(
n× Rgreen

)
for the scenarios. Based on Equation (3), we rotated the

ln(n× Rblue)− ln
(
n× Rgreen

)
coordinate system around the center of gravity from –90–90◦

(i.e., the stipulation that the clockwise rotation is negative). Prior to rotation, C′i and B were
arranged regularly, and there was no specific functional relationship (Figure 1d). As the
rotation angle was gradually adjusted, there was a significant change in the correlation
coefficient of the exponential relationship between them (Figure 1e). The rotation angle at
which the relationship had the largest correlation coefficient was selected as the optimal
rotation angle (Figure 1c). In this case, Figure 1f shows the relationship between B and C′i ,
which is the optimal exponential correlation.

Figure 1. (a) Hydrolight simulation reflectance of blue–green bands. Different colors represent different water depths,
and different shapes represent different bottom reflectance. Black straight lines represent the water depth contours, and
black dotted lines represent the bottom reflectance contours. (b) Fitting curve of Ci and the corresponding water depth, H.
(c) Scattered points in (a) before and after a clockwise rotation of 18.89◦ (−18.89◦) to , C′i where the best correlation with
bottom reflectance occurs. (d) Relationship between Ci and the bottom reflectance before rotation. (e) Relationship between
R2 and rotation angle during rotation (R2: the correlation coefficient between Ci and B). (f) Exponential fitting curve of C′i
and bottom reflectance, B.

To evaluate the applicability of our LR-S model, the subsurface reflectance of the
blue–green–red–Nir band values were used as the input for the LR-S model to perform
the inversion of the bottom reflectance at 550 nm and water depth. The effectiveness of
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our method was quantitatively checked by comparing the input bottom reflectance B1 and
water depth H1 with the inverted bottom reflectance B2 and water depth H2. Figure 2
shows the specific checking workflow.

Figure 2. Checking workflow using simulation dataset and the LR-S model.

Figure 3a shows the overall fit between the inverted bottom reflectance and the input
values from Hydrolight. We used different colors to display the bottom reflectance under
different water depths. In some bias exits, B2 was distributed in all water depth ranges as
we input B1 from 0.35 to 0.90, and the overall fit showed high accuracy with an RMSE of
0.06, indicating that the bottom reflectance we inverted was independent of underwater
topography. Figure 3b shows that the bathymetric inversion results were not limited by
bottom-covering types either, although the accuracy of approximately 20 m was slightly
worse. Similarly, with a whole RMSE of 1.12 m, the water depth inversion results were
consistent with the input depth of H1. Therefore, the good results of this quantitative
checking proved the applicability of our algorithm.

Figure 3. Fitting curve of the inversion result B2, H2, and Hydrolight input value B1, H1: (a) B2–B1 (b) H2–H1.



Remote Sens. 2021, 13, 1169 6 of 21

2.3. Workflow

The workflow of the proposed LR-S model is shown in Figure 4. When the model
was applied to invert the bottom reflectance, a series of multispectral image preprocessing
steps had to be completed. Then, based on the semi-analytical and log-ratio models,
the multispectral remote sensing images were used to simultaneously obtain the bottom
reflectance and water depth of each self-inferred point (SIP) selected on the corrected
imagery according to the spectral characteristics randomly [37] (the specific algorithm of
this calculation process is in the Appendix A). With the results of the above steps, the LR-S
model was applied to the whole corrected image to invert the bottom reflectance, B, and
the water depth, H, over the study area.

Figure 4. Workflow of the Log-transformed ratio and Semi-analytical (LR-S) model.

3. Case Study
3.1. Study Area, In-Situ Water Depth Data and Benthic Mapping

Midway Island is part of the Hawaiian archipelago, approximately 2100 km northwest
of Honolulu in the central Pacific Ocean. Midway is a coral atoll with a circumference of
24 km and a land area of 5 km2. The terrain is low and flat. The highest point of the island
is 13 m above sea level. The central longitude and latitude of the study area are 28◦12′38′′ N
and 177◦21′16′′ W. Figure 5a shows the geographical location of Midway Island.

This study used measured water depth data from the NOAA Pacific Island Fisheries
Science Center and the Coral Reef Ecosystem Division Pacific Islands Benthic Habitat
Mapping Center (ftp://ftp.soest.hawaii.edu/pibhmc/website/data/nwhi/bathymetry/,

ftp://ftp.soest.hawaii.edu/pibhmc/website/data/nwhi/bathymetry/
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accessed on 29 January 2021). The bathymetric data were measured from 29 July 2003, to
7 December 2011, and published on 21 December 2011. As mentioned in the metadata
files, the measured data were obtained with multibeam soundings, a depth measurement
range of 0–200 m, and a sampling interval of 1 m. GPS was used for geo-positioning,
with a horizontal positioning accuracy of 25 m and a depth-measurement accuracy of 1 m.
Figure 5b shows the distribution of measured depth points within the study area.

Figure 5. (a) Location of Midway Island. (b) Distribution map of measured water depth data around Midway Island.
(c) Benthic map of the Allen Coral Atlas.

We used the University of Queensland Habitat Map (https://github.com/CoralMapping/
AllenCoralAtlas, accessed on 29 January 2021) for comparison with the bottom reflectance
we inverted. Figure 5c shows this benthic map, which includes coral/algae, microalgal
mats, rock, rubble, and sand. Their classification scheme was determined according to
machine learning random forest classification followed by an object-based cleaning ap-
proach using eco-geomorphological rules and without relying on in situ data, which may
create inaccuracies.

3.2. Satellite Images

A WorldView-2 multispectral image over Midway Island acquired on 14 March 2016,
was used. The WorldView-2 high-resolution commercial imaging satellite runs in a sun-
synchronous orbit at a height of 770 km, which provides a multispectral image with a
resolution of 2 m. Figure 6a shows the WorldView-2 original image. In the image selected,
cloud coverage was only 0.3%.

A Landsat-8 multispectral image with the spatial resolution of 30 m acquired on
February 02, 2016 (Figure 6c) over Midway Island was also used to invert the bottom
reflectance and water depth. The image scene over the study case exhibited excellent
environmental quality, with little to no cloud cover. In order to make our method universal
to all available multispectral remote sensing imagery, we mainly considered four bands
from the visible bands to the near-infrared band (WorldView-2: band 2, 3, 5, 7; Landsat-8:
band 2–5).

3.3. Preprocessing of the Images

The preprocessing of the WorldView-2 (Figure 6a) and Landsat-8 (Figure 6c) multi-
spectral remote sensing images of Midway Island included radiometric, sun glint, and
atmospheric corrections. First, we used radiation correction to eliminate, as far as possible,
the difference between the sensor’s measured value and the target’s spectral reflectance
caused by the sensor’s own conditions (i.e., atmospheric conditions such as mist, solar
position, and angle conditions). Then, we converted the raw digital numbers to the remote
sensing reflectance.

https://github.com/CoralMapping/AllenCoralAtlas
https://github.com/CoralMapping/AllenCoralAtlas
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Figure 6. True-color remote sensing images of Midway Island in 2016 before (a,c) and after (b,d)
the preprocessing. (a,b) WorldView-2 image; (c,d) Landsat image; yellow points in (b,d) are the
distribution of self-inferred points (SIPs) selected before inverting the bottom reflectance in Section 3.4;
red lines (A−B and C−D) in b are used to indirectly check the bottom reflectance inversion results in
Section 4.2.

3.3.1. Sun Glint Correction

We effectively suppressed the interference of sun glint on sea surface signals through
the linear relationship between the visible and near-infrared bands [37]. First of all, we
assume that the multispectral image satisfies the following conditions: that the near-
infrared band sea surface radiation is very low, and that the near-infrared band sea surface
radiation value has only the environmental constant and the sun glint contribution. The
mathematical model is as follows:

ρ
deg
TOC(λ) = ρTOC(λ)− bλ(ρNIR −MINρNIR) (5)

where ρ
deg
TOC(λ) is the surface reflectance after the sun glint is removed, ρTOC(λ) is the

apparent reflectance at the top of the atmosphere, ρNIR is the reflectance in the near-
infrared band, MINρNIR is the minimum reflectance of the near-infrared band in a given
range, bλ is the regression coefficient of the near-infrared band and the visible bands in a
given range, and λ is the center wavelength.

3.3.2. Atmospheric Correction

In marine remote-sensing, nearly 90% of the signals received by satellite sensors come
from the atmosphere. Therefore, in order to achieve more accurate inversion results of
bottom reflectance and water properties, it is necessary to perform an accurate atmospheric
correction first. The physics-based correction methods by radiative transfer model are
usually hard for users to operate practically, which require synchronous measurement of
atmospheric aerosol parameters at the imaging time. In this way, some researchers [38,39]
proposed the image-based methods which are solely based on remote sensing images and
without the dependence of in situ measurement. The dark object subtraction (DOS) method
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is one of the techniques and has been widely used [8,37,40], which assumes stable dark
objects (nearly zero-pixel value) exist, such as the clear optically deep waters.

Based on these considerations, we used the DOS method to eliminate radiation errors
due to the atmospheric absorption and scattering. We regarded the spectrum of the optically
deep-water pixels of the synchronous MODIS RRS product as the benchmark, wherein
the dark objects’ remote-sensing reflectance of the blue, green and red bands during the
correction was estimated 0.0060, 0.0020 and 0.0002, respectively. The atmosphere in the
study area was assumed to be uniform, then the pixel values of each band in optically deep
waters were corrected to this datum. Finally, the sea surface remote sensing reflectance
of the optically shallow waters was calculated according to the correction amount in the
deep waters. Figure 6b,d shows the preprocessing resulting image of WorldView-2 and
Landsat-8, respectively.

3.4. Inversion of Bottom Reflectance and Water Depth

According to Xia et al. [37], we selected a total of 209 SIPs from the WorldView-2 image
(Figure 6b) and 181 SIPs from the Landsat-8 image (Figure 6d) and simultaneously obtained
the bottom reflectance, B, and water depth, H, of each SIP. The results had a good expo-
nential relationship between the rotated C′i and the inverted bottom reflectance (Figure 7c)
which was consistent with the simulated data (Figure 1f). Figure 7a,b corresponded to
Figure 1a,b, respectively.

Figure 7. SIPs on WorldView-2: (a) Inversion results of water depth H and bottom reflectance B using
the LR-S model. (b) Fitting curve of Ci and H. (c) Exponential fitting curve of C′i (after rotation) and B.

The LR-S model was finally used to invert the bottom reflectance (550 nm) and
the water depth of the entire WorldView-2 image. We used the OSU Tidal Prediction
software [41] to calculate the tide level corresponding to the imaging time (−0.04 m),
and we corrected the water depth inversion results accordingly. Figure 8a,d show the
final calculation results. Figure 8b,c showed the local fine-structure characteristics of the
underwater terrain, while Figure 8e,f showed the local fine-structure features of the change
in bottom reflectance. Based on Figure 8a, deep water was located outside the atoll area and
shallow water was located inside this area. The circle lagoon, obtained by inversion, in the
southwest of the image corresponded to what was shown in the remote sensing image. The
enlarged image in Figure 8c, the contours of the middle reef flats were accurately identified.
The distribution of the bottom reflectance in Figure 8d showed clear spatial patterns, which
was not as regular as the water depth.

The variation trend in the bottom reflectance from inside the reef to the outside was
more complicated. In the atoll and middle island reef areas, the bottom reflectance was
relatively homogeneous (generally between 0.02 and 0.2). In contrast, the reflectance of
the bottom in shallow water beyond these areas was higher, i.e., between 0.3 and 0.56.
The enlarged diagrams (Figure 8e,f) showed that the bottom reflectance in the shallow
water area may be high or low. In addition, the maximum inverted water depth at the
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outer edge of the reef may not reach 30 m in some places due to the bottom types, i.e.,
section EF we selected was 30 m, which corresponded to a larger sediment reflectivity,
while the maximum water depth of section GH was 20 m, which corresponded to a lower
sediment reflectivity.

To produce a certain three-dimensional effect from the above results, we used the
hillshade tool to create a shaded relief from the bathymetry which were then overlaid
with the bottom reflectance map. The overlay effect and the partial magnification maps
are shown in Figure 8g–i. The superposition showed the texture structure visually and
intuitively, i.e., the blue-striped bulge areas and the gaps between them and the convex
point reefs, which had a good stereoscopic effect.

The LR-S model was further used to invert the bottom reflectance and the water depth
of the entire Landsat-8 image of Midway Island with similar imaging time using the same
process as with the WorldView-2 image. The mapped results from the Landsat-8 image had
a coarser spatial resolution but similar gradients of bottom reflectance and water depth as
compared to those from the WorldView-2 image (Figure 8; Figure 9). Such results suggest
that our method is robust for different satellites.

Figure 8. Inversion results of Midway Island using WorldView-2. (a) Bathymetry map, where (b,c)
are partial magnification maps of (a), EF, GH were used to assess inversion ranges under different
bottom reflectance in Section 4.4. (d) Bottom reflectance map at 550 nm, where (e,f) are partial
magnification maps of (d). (g) Superimposed map of (a,d), where (h,i) are superimposed maps of (g).
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Figure 9. Inversion results of Midway Island using Landsat-8. (a) Bathymetry map. (d) Bottom
reflectance map at 550 nm. (g) Superimposed map of (a,d). Where (b,c), (e,f), (h,i) are superimposed
maps of (a,d,g), respectively.

4. Discussion
4.1. Cross-Checking Using WorldView-2 and Landsat-8 Images

To further check the reliability and robustness of our algorithm, certain samples were
selected for a quantitative assessment of the Landsat-8 and WorldView-2 inversion results.
We reduced the spatial resolution of the raster data of the bottom reflectance and the
water depth inverted from the WorldView-2 and resampled them to the same as Landsat-
8 to ensure consistency in space. We then created thousands of random points on the
overlapping area of the two data sets and distributed them in different pixels, which meant
one sample point at most was positioned in a pixel, and the pixel values were then extracted
at the corresponding positions of the two data inversion results. Figure 10a showed the
distribution of the sample points while Figure 10b,c provided a scatter density map of
the results.

The bottom reflectance at 550 nm and water depth inversion results of the two data
sets had high correlation coefficients and both fluctuated near the 1:1 line with a mean
deviation of 0.05 and 1.02 m, respectively. There were two clusters of the bottom reflectance
between 0.05–0.20 and 0.35–0.50 in (b), indicating that low reflectivity and high reflectivity
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areas made up most of the Midway Island. The water depth in the range of 5–10 m had the
highest density, while in other ranges, the fitting results were slightly scattering.

Figure 10. (a) Distribution of the sample points used to compare the inversion results in (b,c). (b,c) Scatter density maps of
the bottom reflectance and bathymetry inverted by WorldView-2 and Landsat-8.

4.2. Indirect Checking Using In-Situ Water Depth Data

The LR-S model can simultaneously invert the bottom reflectance and water depth, so
that the quantitative validation of the inverted water depth can be used to indirectly check
the reliability of the bottom reflectance results. When the water depth meets the accuracy,
the bottom reflectance is considered to be reasonable. Here, we selected two representative
sections (AB and CD) on WorldView-2 imagery with large variations in water depth,
as marked in Figure 6b, and compared the inversion data to in-situ data. As shown in
Figure 11a,b, the variation trends of the inverted and measured depth were basically the
same. In regions where there was no matching validation data, the results also accurately
reflected the changes in water depth shallower than 5 m, based on a trend perspective.

Additionally, we generated a series of random points in the range of 5–30 m of the two
sections to quantitatively validate the inversion depth. Figure 11c shows a scatter density
plot of WorldView-2 with a root mean square error (RMSE) of 1.25 m, which had a high
accuracy. In addition, it is worth noting that the positioning error of measured water depth
data may slightly affect the accuracy of the result.

4.3. Indication of the Bottom Reflectance for Benthic Habitat Mapping

The benthic habitat mapping in our study is defined by us as “The use of multispectral
remote sensing imagery to indirectly obtain the dominant coverage types (e.g., coral/algal,
sand, rubble) distributions on the shallow seafloor areas which are different from their
surroundings in terms of bottom reflectance characteristics, when observed at particular
spatial and temporal scales” [42,43]. For example, coral habitat is any hard bottom area
supporting living corals and/or algae, with a dark signal (lower reflectance on the whole,
typically at 550 nm) and potentially occurring in the sand class; sand includes any soft-
bottom area dominated by fine unconsolidated sediments, with bright signal characteristics
(higher reflectance on the whole, typically at 550 nm) [44].

Figure 12 visualizes the assessment result between our inverted bottom reflectance and
the benthic map of the Allen Coral Atlas for each type. According to the Atlas in Figure 5c,
there are three dominant types (coral/algae: 28.43%, rubble: 22.84%, and sand: 44.95%)
and one low coverage type of Microalgal Mats (3.41%). The area of the other type of rock
in this atlas corresponding to the remote sensing images were covered by broken waves
which we masked in the pre-processing, comprising the remaining 0.21% (1.85% before
masking). Therefore, the bottom reflectance of Sand, Coral/Algae, Microalgal Mats and
Rubble in Figure 12 were distributed normally, while the bottom reflectance distribution of
Rock cannot represent the true shape. Although there was a small proportion part outside
the 80% confidence interval, sand had the highest reflectance peak range, followed by
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Microalgal Mats and rubble, and coral/algae was the lowest, which was consistent with
empirical knowledge.

Figure 11. (a,b) Validation of the inversion depth with in-situ depth along AB and CD on WorldView-
2. (c) Fitting result between the in-situ and inversion water depth of the points selected on AB and
CD of WorldView-2.

Figure 12. Histograms and kernel density estimation curves of the bottom reflectance at 550 nm
corresponding to coral/algae, rubble, and sand, respectively.

Due to the coverage being nearly zero, there may be larger errors in the classification
of rock and Microalgal Mats, which had a scattered distribution in Allen Atlas and did not
have sufficient statistical conditions. The classification of the Allen Atlas itself may create
some inaccuracy as the empirical method they used was not entirely based on in situ data.
However, this would not make a substantial difference to our result because we only use
this atlas to evaluate the indicative role of bottom reflectance for benthic habitat mapping
in this section.

From Figure 11b, the bottom reflectance between 0.05–0.20 and 0.35–0.50 of the two
inversion results was the most concentrated, which corresponded to coral/algae and
sand in Figure 12, respectively, while the bottom reflectance in the middle range between
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0.20–0.35 corresponded to Rubble or Microalgal Mats accordingly. These all showed that the
quantitative bottom reflectance we inverted would greatly contribute to the determination
of sediment types, which has great potential and application value in benthic classification.

4.4. Inversion Ranges under Different Bottom Reflectance

Within a small geographic region in the study area, the maximum inversion depth
could not be consistent. As we have seen, it could only reach 20 m in the northernmost
part of the island which indicated that our vertical detection range would be restricted
under certain conditions. Thus, to evaluate the inversion ranges in vertical direction
under different bottom reflectance, we selected the EF and GH sections in Figure 8a, with
significantly different variation ranges. Figure 13a comprehensively showed the inversion
ranges in the verticality corresponding to the respective bottom reflectance B across the
two sections. Here, EF’s bottom reflectance was generally high, and the range that can be
inverted in the vertical direction was large, while the bottom reflectance of GH was lower
on the whole, and the range that can be inverted was small. As we can see, the red line
broke at minimum B which was almost zero (after transect 400) while the blue line can
reach a deeper value. Why did this phenomenon occur?

Figure 13. (a) Changing curves of the water depth and bottom reflectance along EF and GH. (b) Chang-
ing curves of blue band subsurface reflectance along EF and GH. The dotted line represented the
approximate threshold, above which the inversion range was within our detection. The red arrow
represented the position corresponding to the threshold of GH, while blue arrow represented EF.

From the subsurface reflectance changes of the blue bands (has the strongest penetra-
tion) across the two sections in Figure 13b, GH contained much less reflected energy from
the substrate with a lower bottom reflectance which was almost completely absorbed or
scattered and cannot reach the subsurface, especially after transect 400. Accordingly, it was
impossible to perform a large inversion range in such areas. By contrast, the subsurface
reflectance of EF remained higher such that we can obtain a deeper range. Thus, we used
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the dotted line in Figure 13b to define an approximate blue band threshold, below which
the inversion range was beyond our detection. Only the part above the dotted line is the
applicable and reliable range for the inversion of B and H.

5. Conclusions

We developed a novel method for quantitatively inverting the bottom reflectance
of oceanic reefs without a priori knowledge, by integrating a semi-analytical model and
a log-ratio model. Through linking different pixels in the same image and utilizing the
strong linear relationship between their water depths and the spectral related parameters,
a physics-based LR-S model between the bottom and subsurface reflectance was estab-
lished. Based on a Hydrolight simulation spectrum, which was the result after inputting
bottom reflectance B1, water depth H1 and other parameters, we inverted B2, H2, which
both correlated well with the input values, indicating that the application of the bottom
reflectance inversion method we proposed is feasible, robust, and reliable. In addition,
the two interfering variables we obtained, i.e., bottom reflectance and water depth, were
separated successfully in the inversion process. Future work that collect the field-based
bottom reflectance spectra, is required for direct validation.

In the case study of Midway Island, the bottom reflectance mapping we inverted
showed clear spatial patterns and the water depth mapping conformed to the actual
situation. We conducted a cross-checking for this method using Landsat-8, whose imaging
time is similar to that of WorldView-2. The results showed that the inversion results of the
two datasets were highly consistent and the mean deviation between the bottom reflectance
was 0.05, which were highly convincing and indicated that we obtained reasonable and
fine-resolution inversion results of the bottom reflectance. The water depth inversion
results of WorldView-2 correlated well with the in-situ data, which indirectly indicated
the reliability of the inversion results of the bottom reflectance and the applicability of the
LR-S model we developed. The bottom coverage distributions in Figures 8d and 9d was
basically consistent with the two clusters in Figure 11b and the distribution in Figure 5c.
Additionally, according to Figure 8; Figure 9, in deeper waters around the atoll, healthy
corals, seagrass, or algae may be located, which had a reflectance equal to the lower bottom
reflectance in the study area. The bottom in the middle island reef area may be bleached
coral or sand, which coincided with the higher reflectance shown in Figure 8d.

From the textural structure in Figure 8h, the reflectance of the blue striped bulge
area was low, which we predicted as a typical growth zone of coral reefs. The yellow
and red parts in their growth gaps were sand with a high reflectance. In Figure 8i, the
bottom reflectance at the water depth of approximately 10 m was low, in which the bottom
coverage in the flat area might correspond to small seagrass or algae; the convex part might
be submarine coral reefs, while the bottom of the area around 7 m may be covered by sand
with a high reflectance. The histogram of each bottom type in Figure 12 corresponded
well with the benthic map of Allen Coral Atlas. These all illustrated that the quantitative
bottom reflectance we inverted is an important factor in determining bottom types, which
has great potential in benthic mapping. We also found that the inversion ranges in vertical
direction within a small region may vary greatly under different bottom reflectance. The
higher the bottom reflectance was, the much the reflected energy from the bottom would
be contained, then the higher the subsurface reflectance would remain, finally the deeper
range we would obtain.

The physics-based method we proposed is the first to quantitatively invert the bottom
reflectance using multispectral images without the dependence of in situ data, which can
be used to establish a unified bottom index on a large regional scale (even the global
scale) to understand the composition of bottom types. Specifically, it can be used to
quantitatively compare the bottom reflectance among different research areas or image
scenes. In addition, this method weakens the influence of water depth by simultaneously
obtaining water depth and the bottom reflectance. Consequently, it is helpful to more
reliably map the bottom reflectance, while not interfering with water depth. Moreover, the
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method is robust for different remote sensing images with various spatial resolutions. With
the increasing availability of medium- and high-resolution remote sensing data, our method
holds promise in detecting oceanic island reef bottoms, benthic mapping, and the early
forecast of the coral reef bleaching because of the important indication of the quantitative
bottom reflectance for bottom types. Our physics-based method can be transferred to other
clear optically shallow regions, and the inverted bottom reflectance can provide essential
information of benthic types, which is of great importance for environmental conservation
and sustainability.

Author Contributions: Conceptualization, Y.M. and H.Z.; methodology, H.Z.; software, Y.M.; vali-
dation, Y.M. and X.L. (Xiaorun Li); formal analysis, X.L. (Xiaorun Li) and J.W.; resources, J.W. and
W.C.; writing—original draft preparation, Y.M. and H.Z.; writing—review and editing, D.L. and X.L.
(Xiulin Lou); project administration, X.L. (Xiulin Lou) and D.L.; funding acquisition, W.C. and K.F.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China,
grant number 41,876,208 and in part by the National Key Research and Development Program of
China, grant number 2016YFC1400900.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository.

Acknowledgments: The measured water depth data were provided by the NOAA Pacific Island
Fisheries Science Center and Coral Reef Ecosystem Division Pacific Islands Benthic Habitat Mapping
Center (ftp://ftp.soest.hawaii.edu/pibhmc/website/data/nwhi/bathymetry/, accessed on 29 Jan-
uary 2021). The benthic mapping was provided by the University of Queensland Habitat Mapping
(https://github.com/CoralMapping/AllenCoralAtlas, accessed on 29 January 2021). The authors
would like to thank Professor Yan Li from Xiamen University for his comments on this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The detained algorithm about the iterate calculation of the bottom reflectance and
water depth for the randomly selected pixes (SIPs) by combining the Log-ratio model of
Stumpf (2003) and Semi-analytical model of Lee (1999) is as following (The basics of our
LR-S model before applying to the whole image) [37]:

(1) Log-ratio model

H = m1
ln(n× Rblue)

ln
(
n× Rgreen

) + m0 (A1)

ln(n× Rblue) and ln
(
n× Rgreen

)
are the logarithmic values of the blue- and green band

water reflectance, respectively. To ensure that the logarithmic value is greater than 1, the
proportionality coefficient, n, is typically set to 10,000. H is the water depth and m1 and m0
are the fitting coefficients controlled by the in situ water depth.

(2) Semi-analytical model
For multispectral imagery, the modelled surface reflectance Rrs(λ) in the Semi-analytical

model of Lee et al. (1999) can be summarized as:

Rrs(λ) = f (P, G, X, B, H, Y, λ) (A2)

where f is a nonlinear equation, P represents the absorption coefficient of phytoplankton
at 440 nm, G represents the absorption coefficient of Colored dissolved organic matter
(CDOM) at 440 nm, X represents the backscattering coefficient of suspended particles, B
represents the bottom reflectance at 550 nm, H represents the water depth, Y represents the
spectral shape parameter, λ represents the central wavelength of different bands.

ftp://ftp.soest.hawaii.edu/pibhmc/website/data/nwhi/bathymetry/
https://github.com/CoralMapping/AllenCoralAtlas
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The specific equations in the radiative transfer model are as follows:

Rm
rs =

0.5rrs

1− 1.5rrs
(A3)

rrs = rC
rs + rB

rs ≈ rdp
rs

(
1− exp

{
−
[

1
cos(θω)

+ DC
u

]
kH
})

+
ρ

π
exp

{
−
[

1
cos(θs)

+
DB

u
cos(θv)

]}
kH (A4)

rdp
rs (λ) ≈ (0.084 + 0.177u(λ))u(λ) (A5)

u(λ) =
bb(λ)

a(λ) + bb(λ)
(A6)

k(λ) = a(λ) + bb(λ) (A7)

DC
u (λ) ≈ 1.03(1 + 2.4u(λ))0.5 (A8)

DB
u (λ) ≈ 1.10(1 + 5.0u(λ))0.5 (A9)

bb(λ) = bbw(λ) + ε(λ)bbp(λ) (A10)

a(λ) = aω(λ) + a∅(λ) + ag(λ) (A11)

ε(λ) = 1 +
[

0.1 +
0.8bbp(λ)

bb(λ)

]
sin θs sin θv (A12)

αϕ(λ) = [α0 + α1In(P)]P (A13)

αg(λ) = Gexp[−S(λ− 440)] (A14)

bbp(λ) = X
(

400
λ

)Y
(A15)

ρ(λ) = Bρnorm(λ) (A16)

MINoptimization =
chn

∑
ch1

{Rm
rs(ch)− Rrs(ch)}2 (A17)

where rrs represents subsurface reflectance, rdp
rs is the remote sensing reflectance in optically

deep waters, θs is the subsurface solar zenith angle, and θv is the view angle from satellite,
DC

u (λ) represents optical path-elongation factors for scattered photons from the water
column, DB

u (λ) represents optical path-elongation factors for scattered photons from the
bottom, k(λ) is the attenuation coefficient, H represents the water depth. For ρ(λ) a
550-nm-normalized albedo shape ρnormal(λ) was used (considered the bottom type was
sand), where B is the bottom albedo value at 550 nm (green band). The 550-nm-normalized
albedo shape was simplified as a linear function, then the bottom albedo at blue band can
be expressed.

Within a small geographical area, the water properties is nearly homogeneous whose
change not significantly, such as in one remote sensing image scene. So we can regard
the P, G and X as constant variables. Based on this assumption and by using a nonlinear
optimization method, we can invert thousands of B, H, Y by iterating P, G and X values.

(3) Combination
Due to the limitation of the number of bands of multispectral imagery, the above

Semi-analytical method in (2) cannot obtain the optimization solution directly. So we used
the equation in (1) to constrain the method. For each pixel we selected, the water depth
inverted by the Semi-analytical model can be expressed using the two models as

Semi-analytical depth = Log-ratio depth = m1
ln(n×Rblue)

ln(n×Rgreen)
+ m0 The m1 and m0 can be

calculated through least-squares method. By adjusting P, G and X, when the correlation
coefficient between the Semi-analytical depth and ln(n×Rblue)

ln(n×Rgreen)
is the maximum, the result of
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B, H, Y can be regarded as the optimization value, the P, G and X at this point can correctly
represent the water properties. Finally, we can establish the novel exponential relationship
according to B which we inverted above of these hundreds of pixels (SIPs).

Appendix B

The detailed simulation steps were as follows. (1) According to the in-situ measure-
ments of Chl-a in the South China Sea, we set the simulated level of chlorophyll at 0.05–0.2
mg/m3. Here, we only selected the results at 0.2 mg/m3 for display, because we assume
the water properties to be constant in a small geographical area (one image scene). (2) A
total of 320 bottom effects were simulated with eight bottom types [36] with water depths
of 0.5–20 m at a step length of 0.5 m. (3) Ignoring inelastic scattering, the solar zenith
angle, sea surface wind speed, and salinity were fixed at 30◦, 5 m/s, and 0.035, respectively.
Therefore, the combination of 320 bottom effects resulted in the simulation of 320 scenarios,
which were then synthesized. Hydrolight was used to calculate the reflectance of the 320
scenarios in different bands.

Table A1. Environmental inputs used in the Hydrolight simulations.

Variable Inputs

Particle phase function Petzold average particle
Inelastic scattering Ignore

Chlorophyl a [chl-a](mg/m3) 0.05, 0.1, 0.15, 0.2
B (550 nm): ooid_sand 0.44, 0.49, 0.54, 0.59, 0.64, 0.69, 0.74, 0.79

H: water depth 0.5–20 m, every 0.5 m
λ 400–700 nm, every 10 nm

Sea surface wind speed 5 m/s
Salinity 0.035

Solar zenith angle 30◦
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Figure A1. The Hydrolight simulation result at 0.05 mg/m3 of Chl-a. (a) Hydrolight simulation
reflectance of blue–green bands. Different colors represent different water depths, and different shapes
represent different bottom reflectance. Black straight lines represent the water depth contours, and black
dotted lines represent the bottom reflectance contours. (b) Fitting curve of Ci and the corresponding
water depth, H. (c) Scattered points in (a) before and after a clockwise rotation of 26.35◦ (–26.35◦) to C′i ,
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where the best correlation with bottom reflectance occurs. (d) Exponential fitting curve of C′i and
bottom reflectance, B. (e) Fitting curve of the inversion result B2 and Hydrolight input value B1.
(f) Fitting curve of the inversion result H2 and Hydrolight input value H1.

Figure A2. The Hydrolight simulation result at 0.1 mg/m3 of Chl-a. (a) Hydrolight simulation
reflectance of blue–green bands. Different colors represent different water depths, and different
shapes represent different bottom reflectance. Black straight lines represent the water depth contours,
and black dotted lines represent the bottom reflectance contours. (b) Fitting curve of Ci and the
corresponding water depth, H. (c) Scattered points in (a) before and after a clockwise rotation of 23.18◦

(–23.18◦) to C′i , where the best correlation with bottom reflectance occurs. (d) Exponential fitting
curve of C′i and bottom reflectance, B. (e) Fitting curve of the inversion result B2 and Hydrolight
input value B1. (f) Fitting curve of the inversion result H2 and Hydrolight input value H1.

Figure A3. The Hydrolight simulation result at 0.15 mg/m3 of Chl-a. (a) Hydrolight simulation
reflectance of blue–green bands. Different colors represent different water depths, and different shapes
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represent different bottom reflectance. Black straight lines represent the water depth contours,
and black dotted lines represent the bottom reflectance contours. (b) Fitting curve of Ci and the
corresponding water depth, H. (c) Scattered points in (a) before and after a clockwise rotation of 20.81◦

(–20.81◦) to C′i , where the best correlation with bottom reflectance occurs. (d) Exponential fitting
curve of C′i and bottom reflectance, B. (e) Fitting curve of the inversion result B2 and Hydrolight
input value B1. (f) Fitting curve of the inversion result H2 and Hydrolight input value H1.
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