A Sensitivity Analysis on the Spectral Signatures of Low-Backscattering Sea Areas in Sentinel-1 SAR Images
Abstract
:1. Introduction
2. Theoretical Background
2.1. Physical Rationale
2.2. Methodology
- The VV-polarized uncalibrated intensity image of the SAR scene is divided into non-overlapped square boxes whose size is n = 128 pixels. This value is set according to the S1 pixel spacing, i.e., 10 m, in order to ensure both a satisfactory degree of homogeneity and a consistent number of samples for a reliable AACF estimation;
- For each box, the 2-D PSD is evaluated as the square modulus of the Fourier transform of the VV-polarized uncalibrated intensity image;
- The 1-D azimuth PSD, PSDx, is evaluated by averaging the PSD along the range direction;
- The AACF is obtained by applying the inverse Fourier transform:
- A smoothing 7 × 1 median filter is applied to the modulus of the azimuth autocorrelation function (AACF) in order to remove the 0-lag contribution.
3. Dataset
4. Experiments
4.1. Experimental Settings
4.2. Discussion
5. Conclusions
- The AACF is sensitive to different low-backscattering areas, with and values which are at least twice and 50% larger, respectively, than the intrinsic sea surface variability;
- Among the low-backscattering sea areas, the oil slicks exhibit the largest AACF deviation with respect to the reference slick-free sea surface, with a maximum of = 3.31 and = 98.2%;
- The additive noise does not play a key role in broadening the AACF;
- The AACF is practically independent on the incidence angle while the backscattering contrast depends on it.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AACF | azimuth autocorrelation function |
ECMWF | European centre for medium-range weather forecasting |
ESA | European space agency |
FFT | fast Fourier transform |
ID | identifier |
IFFT | inverse fast Fourier transform |
IW | interferometric wide |
NESZ | noise equivalent sigma zero |
NRCS | normalized radar cross section |
PSD | power spectral density |
ROI | region of interest |
S1 | Sentinel-1 |
SAR | synthetic aperture radar |
SNR | signal-to-noise ratio |
TOPSAR | terrain observation with progressive scans SAR |
VH | vertical transmit horizontal receive |
VV | vertical transmit vertical receive |
References
- Visbeck, M. Ocean Science Research Is Key for a Sustainable Future. Nat. Commun. 2018, 9, 1–4. [Google Scholar] [CrossRef]
- Li, X.; Guo, H.; Chen, K.-S.; Yang, X. Advances in SAR Remote Sensing of Oceans; Taylor & Francis Group: Boca Raton, FL, USA; CRC Press: Boca Raton, FL, USA, 2018; 344p. [Google Scholar]
- Alpers, W.; Holt, W.B.; Zeng, K. Oil Spill Detection by Imaging Radars: Challenges and Pitfalls. Remote Sens. Environ. 2017, 201, 133–147. [Google Scholar] [CrossRef]
- Migliaccio, M.; Huang, L.; Buono, A. SAR Speckle Dependence on Ocean Surface Wind Field. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5447–5455. [Google Scholar] [CrossRef]
- Velotto, D.; Bentes, C.; Tings, B.; Lehner, S. First Comparison of Sentinel-1 and TerraSAR-X Data in the Framework of Maritime Targets Detection: South Italy Case. IEEE J. Ocean. Eng. 2016, 41, 993–1006. [Google Scholar] [CrossRef]
- Shen, H.; Perrie, W.; He, Y.; Liu, G. Wind Speed Retrieval From VH Dual-Polarization RADARSAT-2 SAR Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5820–5826. [Google Scholar] [CrossRef]
- Hanowski, P. Copernicus Sentinel Data Access 2018 Annual Report; COPE-SERCO-RP-19-0389; Frascati, Italy, 2019. [Google Scholar]
- Vachon, P.W.; Wolfe, J. GMES Sentinel-1 Analysis of Marine Applications Potential (AMAP); Defence Research and Development: Ottawa, ON, Canada, 2008.
- Malenovsky, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for Science: Potential of Sentinel-1, -2, and -3 Missions for Scientific Observations of Ocean, Cryosphere, and Land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Misra, A.; Balaji, R. Simple Approaches to Oil Spill Detection Using Sentinel Application Platform (SNAP)-Ocean Application Tools and Texture Analysis: A Comparative Study. J. Indian Soc. Remote Sens. 2017, 45, 1065–1075. [Google Scholar] [CrossRef]
- Trivero, P.; Fiscella, B.; Gomez, F.; Pavese, P. SAR Detection and Characterization of Sea Surface Slicks. Int. J. Remote Sens. 1998, 19, 543–548. [Google Scholar] [CrossRef]
- Bertacca, M.; Berizzi, F.; Mese, E.D. A FARIMA-Based Technique for Oil Slick and Low-Wind Areas Discrimination in Sea SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2484–2493. [Google Scholar] [CrossRef]
- Topouzelis, K. Oil Spill Detection by SAR Images: Dark Formation Detection, Feature Extraction and Classification Algorithms. Sensors 2008, 8, 6642–6659. [Google Scholar] [CrossRef] [Green Version]
- Nunziata, F.; Buono, A.; Migliaccio, M. COSMO-SkyMed Synthetic Aperture Radar Data to Observe the Deepwater Horizon Oil Spill. Sustainability 2018, 10, 3599. [Google Scholar] [CrossRef] [Green Version]
- Lang, H.; Zhang, X.; Xi, Y.; Zhang, X.; Li, W. Dark-Spot Segmentation for Oil Spill Detection Based on Multifeature Fusion Classification in Single-pol Synthetic Aperture Radar Imagery. J. Appl. Remote Sens. 2017, 11, 015006. [Google Scholar] [CrossRef]
- Song, H.; Huang, B.; Zhang, K. A Globally Statistical Active Contour Model for Segmentation of Oil Slick in SAR Imagery. IEEE J. Selected Topics Appl. Earth Obs. Remote Sens. 2013, 6, 2402–2409. [Google Scholar] [CrossRef]
- Girard-Ardhuin, F.; Mercier, G.; Collard, F.; Garello, R. Operational Oil-Slick Characterization by SAR Imagery and Synergistic Data. IEEE J. Ocean. Eng. 2005, 30, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Buono, A.; Nunziata, F.; De Macedo, C.R.; Velotto, D.; Migliaccio, M. A Sensitivity Analysis of the Standard Deviation of the Co-polarized Phase Difference for Sea Oil Slick Observation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2022–2030. [Google Scholar] [CrossRef]
- Skrunes, S.; Brekke, C.; Eltoft, T. Characterization of Marine Surface Slicks by Radarsat-2 Multipolarization Features. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5302–5319. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Perrie, W.; He, Y.; Wu, J.; Luo, X. Analysis of the Polarimetric SAR Scattering Properties of Oil-Covered Waters. IEEE J. Selected Topics Appl. Earth Obs. Remote Sens. 2015, 8, 3751–3759. [Google Scholar] [CrossRef]
- Yin, J.; Yang, J.; Zhou, Z.-S.; Song, J. The Extended Bragg Scattering Model-Based Method for Ship and Oil-Spill Observation Using Compact Polarimetric SAR. IEEE J. Selected Topics Appl. Earth Obs. Remote Sens. 2015, 8, 3760–3772. [Google Scholar] [CrossRef]
- Clemente-Colón, P.; Yan, X.-H. Low-Backscatter Ocean Features in Synthetic Aperture Radar Imagery. Johns Hopkins APL Tech. Digest 2000, 21, 116–121. [Google Scholar]
- Meng, H.; Wang, X.; Chong, J.; Wei, X.; Kong, W. Doppler Spectrum-Based NRCS Estimation Method for Low-Scattering Areas in Ocean SAR Images. Remote Sens. 2017, 9, 219. [Google Scholar] [CrossRef] [Green Version]
- Raney, R.K. Theory and Measure of Certain Image Norms in SAR. IEEE Trans. Geosci. Remote Sens. 1985, 23, 343–348. [Google Scholar] [CrossRef]
- Nunziata, F.; Migliaccio, M. On the COSMO-SkyMed PingPong Mode to Observe Metallic Targets at Sea. IEEE J. Ocean. Eng. 2013, 38, 71–79. [Google Scholar] [CrossRef]
- Nunziata, F.; Migliaccio, M.; Li, X.; Ding, X. Coastline Extraction Using Dual-Polarimetric COSMO-SkyMed PingPong Mode SAR Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 104–108. [Google Scholar] [CrossRef]
- Elfouhaily, T.; Guérin, C.A. A Critical Survey of Approximate Scattering Wave Theories From Random Rough Surfaces. Waves Random Med. 2004, 14, R1–R40. [Google Scholar] [CrossRef]
- Nunziata, F.; Sobieski, P.; Migliaccio, M. The Two-Scale BPM Scattering Model for Sea Biogenic Slicks Contrast. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1949–1956. [Google Scholar] [CrossRef]
- Lemaire, D.; Sobieski, P.; Craeye, C.; Guissard, A. Two-scale models for rough surface scattering: Comparison between the boundary perturbation method and the integral equation method. Radio Sci. 2002, 37, 1001. [Google Scholar] [CrossRef]
- Gade, M.; Alpers, W.; Hühnerfuss, H.; Wismann, V.R.; Lange, A. On the Reduction of the Radar Backscatter by Oceanic Surface Films: Scatterometer Measurements and Their Theoretical Interpretation. Remote Sens. Environ 1998, 66, 52–70. [Google Scholar] [CrossRef]
- Boukabara, S.A.; Eymard, L.; Guillou, C.; Lemaire, D.; Sobieski, P.; Guissard, A. Development of a modified two-scale electromagnetic model simulating both active and passive microwave measurements: Comparison to data remotely sensed over the ocean. Radio Sci. 2002, 37, 16-1–16-11. [Google Scholar] [CrossRef]
- Guissard, A.; Sobieski, P.; Baufays, C. A unified approach to bistatic scattering for active and passive remote sensing of rough ocean surfaces. Trends Geophys. Res. 1992, 1, 43–68. [Google Scholar]
- Grieco, G.; Lin, W.; Migliaccio, M.; Nirchio, F.; Portabella, M. Dependency of the Sentinel-1 Azimuth Wavelength Cut-off on Significant Wave Height and Wind Speed. Int. J. Remote Sens. 2016, 37, 5086–5104. [Google Scholar] [CrossRef]
- Lombardini, P.; Fiscella, B.; Trivero, P.; Cappa, C.; Garrett, W. Modulation of the Spectra of Short Gravity Waves by Sea Surface Films: Slick Detection and Characterization With a Microwave Probe. J. Atmos. Ocean. Technol. 1989, 6, 882–890. [Google Scholar] [CrossRef] [Green Version]
- Hasselmann, K.; Hasselmann, S. On the Nonlinear Mapping of an Ocean Wave Spectrum into a Synthetic Aperture Radar Image Spectrum and Its Inversion. J. Geophys. Res. Oceans 1991, 96, 10713–10729. [Google Scholar] [CrossRef]
- Vachon, P.W.; Raney, R.K. Ocean Waves and Optimal SAR Processing: Don’t Adjust the Focus! IEEE Trans. Geosci. Remote Sens. 1992, 30, 627–629. [Google Scholar] [CrossRef]
- Vachon, P.W.; Krogstad, H.E.; Paterson, J.S. Airborne and Spaceborne Synthetic Aperture Radar Observations of Ocean Waves. Atmos. Ocean 1994, 32, 83–112. [Google Scholar] [CrossRef]
- Kerbaol, V.; Chapron, B.; Vachon, P.W. Analysis of ERS-1/2 Synthetic Aperture Radar Wave Mode Imagettes. J. Geophys. Res. 1998, 103, 7833–7846. [Google Scholar] [CrossRef]
- Corcione, V.; Grieco, G.; Portabella, M.; Nunziata, F.; Migliaccio, M. A Novel Azimuth Cutoff Implementation to Retrieve Sea Surface Wind Speed From SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3331–3340. [Google Scholar] [CrossRef]
- Mera, D.; Cotos, J.M.; Varela-Pet, J.; Garcia-Pineda, O. Adaptive Thresholding Algorithm Based on SAR Images and Wind Data to Segment Oil Spills Along the Northwest Coast of the Iberian Peninsula. Marine Poll. Bullet. 2012, 64, 2090–2096. [Google Scholar] [CrossRef] [PubMed]
- Amos, J. Satellite Imagery Reveals Scope of Last Week’s Oil Spill in Kuwait. Skytruth Report. 2017. Available online: https://skytruth.org/2017/08/satellite-imagery-reveals-scope-of-last-weeks-massive-oil-spill-in-kuwait/ (accessed on 11 March 2020).
- ESI. Major Oil Spill in the Mediterranean. European Space Imaging Press. 2018. Available online: https://www.euspaceimaging.com/major-oil-spill-in-the-mediterranean/ (accessed on 11 March 2020).
- ESA. Applications: Mediterranean Slick. European Space Agency Press. 2018. Available online: https://www.esa.int/ESA_Multimedia/Images/2018/10/Mediterranean_slick (accessed on 11 March 2020).
- Thomas, C. Oil Spill in the Persian Gulf. Shytruth Report. 2017. Available online: https://skytruth.org/2017/03/oil-spill-in-the-persian-gulf/ (accessed on 15 July 2019).
- ESA. Applications: Earth From Space—Gotland Baltic Blooms. European Space Agency Press. 2019. Available online: http://www.esa.int/ESA_Multimedia/Videos/2019/12/Earth_from_Space_Gotland_Baltic_blo-\oms (accessed on 11 March 2020).
- Koto, J.; Putrawidjaja, M. Subsea Pipeline Damaged in Balikpapan Bay Caused by Anchor Load. J. Subsea Offshore Sci. Eng. 2018, 14, 6–12. [Google Scholar]
- Setiani, P.; Ramdani, F. Oil Spill Mapping Using Multi-sensor Sentinel Data in Balikpapan Bay, Indonesia. In Proceedings of the 2018 4th IEEE International Symposium on Geoinformatics (ISyG), Malang, Indonesia, 17–18 November 2018; pp. 1–4. [Google Scholar]
- Gouveia, N.D.A.; Alves, F.C.; Pereira, L.D.O. Pre-processing of Sentinel-1 C-Band SAR Images Based on Incidence Angle Correction for Dark Target Detection. Remote Sens. Lett. 2019, 10, 939–948. [Google Scholar] [CrossRef]
- ESA. Sentinel-1 Product Specification. Sentinel-1 User Handbook. 2016. Available online: https://sentinels.copernicus.eu/documents/247904/685163/Sentinel-1_User_Handbook (accessed on 10 September 2020).
- Nunziata, F.; De Macedo, C.R.; Buono, A.; Velotto, D.; Migliaccio, M. On the Analysis of a Time Series of X-band TerraSAR-X SAR Imagery Over Oil Seepages. Int. J. Remote Sens. 2019, 40, 3623–3646. [Google Scholar] [CrossRef]
- Topouzelis, K.; Singha, S.; Kitsiou, D. Incidence angle Normalization of Wide Swath SAR Data for Oceanographic Applications. Open Geosci. 2016, 8, 450–464. [Google Scholar] [CrossRef] [Green Version]
Data | Acquisition | Figure | ROIs Wind | ROIs | Reference |
---|---|---|---|---|---|
ID | Date | Speed (m/s) | |||
1 | 10/8/2017 | Figure 2a | 2–3 | Slick-free sea surface, oil slick, look-alike | [41] |
2 | 8/10/2018 | Figure 2b | <3 & 4–6 | Slick-free sea surface, oil slick, look-alike | [42,43] |
3 | 8/3/2017 | Figure 2c | 5 | Slick-free sea surface, oil slick | [44] |
4 | 11/3/2017 | Figure 2d | <3 | Slick-free sea surface, oil slick, look-alike | [44] |
5 | 20/7/2019 | Figure 2e | <3 | Slick-free sea surface, look-alike | [45] |
6 | 1/4/2018 | Figure 2f | 6–7 | Slick-free sea surface, oil slick | [46,47] |
SAR Scene | ID 1, See Figure 2a | ID 2, See Figure 2b | ID 3, See Figure 2c | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | ||||||||||
ROI | S | O | L | S | O | L | S | O | L | |
Incidence angle (°) | 32 | 33–41 | 35 | |||||||
(dB) | −17.4 ± 1.3 | −23.7 ± 1.4 | −23.9 ± 1.3 | −17.4 ± 1.4 | −22.2 ± 2.2 | −24.7 ± 1.3 | −18.2 ± 1.5 | −23.8 ± 1.3 | – | |
SNR (dB) | 7.7 | 1.6 | 2.8 | 9.0 | 4.2 | 0.7 | 6.8 | 1.5 | – | |
(dB) | – | 6.3 | 6.5 | – | 4.8 | 7.3 | – | 5.6 | – | |
0.30 | 3.31 | 1.80 | 0.01 | 0.55 | 0.14 | 0.08 | 1.15 | – | ||
(%) | – | 90.9 | 83.3 | – | 98.2 | 92.9 | – | 93.0 | – | |
SAR Scene | ID 4, see Figure 2d | ID 5, see Figure 2e | ID 6, see Figure 2f | |||||||
Parameter | ||||||||||
ROI | S | O | L | S | O | L | S | O | L | |
Incidence angle (°) | 35–40 | 38 | 43 | |||||||
(dB) | −21.7 ± 1.4 | −28.5 ± 1.5 | −25.7 ± 1.8 | −18.4 ± 1.4 | – | −27.2 ± 1.4 | −20.9 ± 1.4 | −27.9 ± 1.4 | – | |
SNR (dB) | 8.9 | 1.7 | 0.5 | 8.8 | – | 0.8 | 7.6 | 3.1 | – | |
(dB) | – | 6.8 | 4.0 | – | – | 8.9 | – | 7.0 | – | |
0.14 | 2.68 | 0.38 | 0.07 | – | 0.14 | 0.14 | 1.39 | – | ||
(%) | – | 94.8 | 63.2 | – | – | 50.0 | – | 89.9 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corcione, V.; Buono, A.; Nunziata, F.; Migliaccio, M. A Sensitivity Analysis on the Spectral Signatures of Low-Backscattering Sea Areas in Sentinel-1 SAR Images. Remote Sens. 2021, 13, 1183. https://doi.org/10.3390/rs13061183
Corcione V, Buono A, Nunziata F, Migliaccio M. A Sensitivity Analysis on the Spectral Signatures of Low-Backscattering Sea Areas in Sentinel-1 SAR Images. Remote Sensing. 2021; 13(6):1183. https://doi.org/10.3390/rs13061183
Chicago/Turabian StyleCorcione, Valeria, Andrea Buono, Ferdinando Nunziata, and Maurizio Migliaccio. 2021. "A Sensitivity Analysis on the Spectral Signatures of Low-Backscattering Sea Areas in Sentinel-1 SAR Images" Remote Sensing 13, no. 6: 1183. https://doi.org/10.3390/rs13061183
APA StyleCorcione, V., Buono, A., Nunziata, F., & Migliaccio, M. (2021). A Sensitivity Analysis on the Spectral Signatures of Low-Backscattering Sea Areas in Sentinel-1 SAR Images. Remote Sensing, 13(6), 1183. https://doi.org/10.3390/rs13061183