A Surging Glacier Recognized by Remote Sensing on the Zangser Kangri Ice Field, Central Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. SRTM DEM
2.1.2. TanDEM-X 90 m
2.1.3. High Mountain Asia 8-Meter DEM
2.1.4. ASTER DEMs
2.1.5. Landsat Images and Topographic Map
2.1.6. Global Land Ice Velocity Extraction from Landsat 8 (GoLIVE)
2.2. Methods
2.2.1. Glacier Outline Delineation and Glacier Length
2.2.2. Datum Adjustment
2.2.3. DEM Co-Registration
2.2.4. Surface Trend, Curvature, and Penetration Corrections
2.2.5. Glacier Mass Balance Estimation
2.2.6. Glacier Velocity Extraction
2.2.7. Uncertainty Assessment
3. Results
3.1. Glacier Elevation Change and Mass Balance
3.2. Other Surging Characteristics
3.3. Velocity of Glacier G085885E34389N during the Surge
4. Discussion
4.1. DEM Accuracy
4.2. Mass Balance Comparison
4.3. Evolution of the Surge
4.4. Mechanism of the Surge
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
ID | Acquisition Start Time |
---|---|
1025046_11_PO_ITP_14 | 2011-08-19T12:11:54.656099Z |
1025046_12_PO_ITP_14 | 2011-08-19T12:12:01.656028Z |
1042359_30_PO_ITP_06 | 2011-11-04T12:11:56.053254Z |
1057021_11_PO_ITP_12 | 2012-03-04T12:11:52.092323Z |
1059493_03_PO_ITP_11 | 2012-01-31T12:11:52.456143Z |
1059493_04_PO_ITP_11 | 2012-01-31T12:11:59.182974Z |
1081220_08_OP_ITP_16 | 2012-10-10T12:11:59.928249Z |
1081220_09_OP_ITP_16 | 2012-10-10T12:12:06.928258Z |
1083733_07_OP_ITP_16 | 2012-09-07T12:12:00.078820Z |
Data | Product ID/Date | Pixel Size/Scale | Cloud Cover (%) | Purpose |
---|---|---|---|---|
SRTM C DEM | SRTM1N34E085V3 | 1-arcsecond | Elevation change | |
SRTM X DEM | E080N30 | ~25 m | Elevation change | |
HMA | HMA_DEM8m_AT_20151002_0649_1020010044807000_1020010043B63700 | 8 m | Elevation change | |
ASTER DEM | AST_L1A#00305052014050415_05052014194701 | 30 m | The start time of the surge | |
ASTER DEM | AST_L1A#00303122015051010_03132015141806 | 30 m | The start time of the surge | |
ASTER DEM | AST_L1A#00303122015051019_03132015141819 | 30 m | The start time of the surge | |
Topographical maps | 9-45-52/December 1971 | 1:100,000 | Flow line delineation | |
Landsat MSS | LM02_L1TP_152036_19770303_20180422_01_T2 | 60 m | 1.00 | Flow line delineation |
Landsat TM | LT05_L1TP_142036_19910403_20170127_01_T1 | 30 m | 5.00 | Flow line delineation |
Landsat TM | LT05_L1TP_142036_19930830_20170117_01_T1 | 30 m | 0.00 | Flow line delineation |
Landsat TM | LT05_L1TP_142036_19980524_20161224_01_T1 | 30 m | 0.00 | Outline delineation |
Landsat ETM+ | LE07_L1TP_142036_20000724_20170210_01_T1 | 30 m | 30.00 | Outline delineation and flow line delineation |
Landsat ETM+ | LE07_L1TP_142036_20001028_20170209_01_T1 | 30 m | 3.00 | Outline delineation |
Landsat TM | LT05_L1TP_142036_20060919_20161119_01_T1 | 30 m | 1.00 | Flow line delineation |
Landsat ETM+ | LE07_L1TP_142036_20120911_20161129_01_T1 | 15 m | 16.00 | Outline delineation |
Landsat ETM+ | LE07_L1TP_142036_20120927_20161128_01_T1 | 15 m | 0.00 | Outline delineation and flow line delineation |
Landsat OLI | LC08_L1TP_142036_20150912_20170404_01_T1 | 15 m | 0.28 | Outline delineation, flow line delineation, and velocity measurement |
Landsat ETM+ | LE07_L1TP_142036_19991111_20170216_01_T1 | 15 m | 7.00 | Velocity measurement |
Landsat ETM+ | LE07_L1TP_142036_20011116_20170202_01_T1 | 15 m | 1.00 | Velocity measurement |
Landsat ETM+ | LE07_L1TP_142036_20101109_20161212_01_T1 | 15 m | 2.00 | Velocity measurement |
Landsat ETM+ | LE07_L1TP_142036_20101125_20161211_01_T1 | 15 m | 1.00 | Velocity measurement |
Landsat ETM+ | LE07_L1TP_142036_20111230_20161204_01_T1 | 15 m | 0.00 | Velocity measurement |
Landsat ETM+ | LE07_L1TP_142036_20120131_20161204_01_T1 | 15 m | 2.00 | Velocity measurement |
Landsat OLI | LC08_L1TP_142036_20131227_20170427_01_T1 | 15 m | 1.69 | Flow line delineation and velocity measurement |
Landsat OLI | LC08_L1TP_142036_20140723_20180524_01_T1 | 15 m | 1.28 | Flow line delineation and velocity measurement |
Landsat OLI | LC08_L1TP_142036_20140909_20170419_01_T1 | 15 m | 33.79 | Velocity measurement |
Landsat OLI | LC08_L1TP_142036_20151014_20170403_01_T1 | 15 m | 8.63 | Velocity measurement |
Landsat OLI | LC08_L1TP_142036_20160914_20170321_01_T1 | 15 m | 11.82 | Flow line delineation and velocity measurement |
Landsat OLI | LC08_L1TP_142036_20171003_20171014_01_T1 | 15 m | 0.40 | Flow line delineation and velocity measurement |
Landsat OLI | LC08_L1TP_142036_20180920_20180928_01_T1 | 15 m | 10.83 | Flow line delineation and velocity measurement |
Landsat OLI | LC08_L1TP_142036_20190907_20190917_01_T1 | 15 m | 1.05 | Flow line delineation and velocity measurement |
Landsat OLI | LC08_L1TP_142036_20200909_20200918_01_T1 | 15 m | 0.89 | Flow line delineation and velocity measurement |
References
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2010. [Google Scholar]
- Meier, M.F.; Post, A. What are glacier surges? Can. J. Earth Sci. 1969, 6, 807–817. [Google Scholar] [CrossRef]
- Benn, D.I.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L.I.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Sci. Rev. 2012, 114, 156–174. [Google Scholar] [CrossRef] [Green Version]
- Harrison, W.D.; Post, A. How much do we really know about glacier surging? Ann. Glaciol. 2003, 36, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Li, Z.; Zhou, J. Characterizing the surge behavior of Alakesayi Glacier in the West Kunlun Shan, Northwestern Tibetan Plateau, from remote-sensing data between 2013 and 2018. J. Glaciol. 2018, 65, 168–172. [Google Scholar] [CrossRef] [Green Version]
- Dowdeswell, J.A.; Williams, M. Surge-type glaciers in the Russian High Arctic identified from digital satellite imagery. J. Glaciol. 1997, 43, 489–494. [Google Scholar] [CrossRef] [Green Version]
- Kamb, B.; Raymond, C.F.; Harrison, W.D.; Engelhardt, H.; Echelmeyer, K.; Humphery, N.F.; Brugman, M.; Pfeffer, T. Glacier Surge Mechanism: 1982-1983 Surge of Variegated Glacier, Alaska. Science 1985, 1985, 4686. [Google Scholar] [CrossRef] [Green Version]
- Clarke, G.K.C. Thermal regulation of glacier surging. J. Glaciol. 1976, 16, 231–250. [Google Scholar] [CrossRef] [Green Version]
- Murray, T.; Stuart, G.W.; Miller, P.J.; Woodward, J.; Smith, A.M.; Porter, P.R.; Jiskoot, H. Glacier surge propagation by thermal evolution at the bed. J. Geophys. Res. Solid Earth. 2000, 105, 13491–13507. [Google Scholar] [CrossRef] [Green Version]
- Kamb, B. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res. 1987, 92, 9083. [Google Scholar] [CrossRef] [Green Version]
- Murray, T.; Strozzi, T.; Luckman, A.; Jiskoot, H.; Christakos, P. Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Guo, L.; Li, J.; Li, Z.-W.; Wu, L.-X.; Li, X.; Hu, J.; Li, H.-L.; Li, H.-Y.; Miao, Z.-L.; Li, Z.-Q. The Surge of the Hispar Glacier, Central Karakoram: SAR 3-D Flow Velocity Time Series and Thickness Changes. J. Geophys. Res. Solid Earth 2020, 125. [Google Scholar] [CrossRef]
- Quincey, D.J.; Glasser, N.F.; Cook, S.J.; Luckman, A. Heterogeneity in Karakoram glacier surges. J. Geophys. Res. Earth Surf. 2015, 120, 1288–1300. [Google Scholar] [CrossRef] [Green Version]
- Herreid, S.; Truffer, M. Automated detection of unstable glacier flow and a spectrum of speedup behavior in the Alaska Range. J. Geophys. Res. Earth Surf. 2016, 121, 64–81. [Google Scholar] [CrossRef]
- Dowdeswell, J.A.; Hodgkins, R.; Nuttal, A.-M.; Hagen, J.O.; Hamilton, G.S. Mass balance change as a control on the frequency and occurrence of glacier surges in Svalbard, Norwegian High Arctic. Geophys. Res. Lett. 1995, 22, 2909–2912. [Google Scholar] [CrossRef]
- Halfar, P. Surging glaciers I: Dynamics and geometry. Acta Mech. 2020, 231, 827–842. [Google Scholar] [CrossRef]
- Yasuda, T.; Furuya, M. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet. J. Geophys. Res. Earth Surf. 2015, 120, 2393–2405. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, A.; Leinss, S.; Kargel, J.; Kääb, A.; Gascoin, S.; Leonard, G.; Berthier, E.; Karki, A.; Yao, T. Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range, Tibet. Cryosphere 2018, 12, 2883–2900. [Google Scholar] [CrossRef] [Green Version]
- Sevestre, H.; Benn, D.I. Climatic and geometric controls on the global distribution of surge-type glaciers: Implications for a unifying model of surging. J. Glaciol. 2015, 61, 646–662. [Google Scholar] [CrossRef] [Green Version]
- Jiskoot, H.; Boyle, P.; Murray, T. The incidence of glacier surging in Svalbard: Evidence from multivariate statistics. Comput. Geosci. 1998, 24, 387–399. [Google Scholar] [CrossRef]
- Post, A. Distribution of surging glaciers in western north America. J. Glaciol. 1969, 8, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Jiskoot, H.; Murray, T.; Boyle, P. Controls on the distribution of surge-type glaciers in Svalbard. J. Glaciol. 2000, 46, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Kotlyakov, V.M.; Osipova, G.B.; Tsvetkov, D.G. Monitoring surging glaciers of the Pamirs, central Asia, from space. Ann. Glaciol. 2008, 48, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Copland, L.; Sylvestre, T.; Bishop, M.P.; Shroder, J.F.; Seong, Y.B.; Owen, L.A.; Bush, A.; Kamp, U. Expanded and Recently Increased Glacier Surging in the Karakoram. Arct. Antarct. Alp. Res. 2011, 43, 503–516. [Google Scholar] [CrossRef] [Green Version]
- Clarke, G.K.C. Fast glacier flow: Ice streams, surging, and tidewater glaciers. J. Geophys. Res. 1987, 92, 8835. [Google Scholar] [CrossRef]
- Lv, M.; Lu, X.; Guo, H.; Liu, G.; Ding, Y.; Ruan, Z.; Ren, Y.; Yan, S. A rapid glacier surge on Mount Tobe Feng, western China, 2015. J. Glaciol. 2016, 62, 407–409. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Yao, T.; Gao, Y.; Thompson, L.; Mosley-Thompson, E.; Muhammad, S.; Zong, J.; Wang, C.; Jin, S.; Li, Z. Two glaciers collapse in western Tibet. J. Glaciol. 2016, 63, 194–197. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Zhang, W. Identification of glaciers with surge characteristics on the Tibetan Plateau. Ann. Glaciol. 1992, 16, 168–172. [Google Scholar]
- Zheng, D. The system of physico geographical regions of Qinghai-Xizang (Tibetan) Plateau. Sci. China Ser. D 1996, 26, 336–341. (In Chinese) [Google Scholar]
- Shi, Y.; Xie, Z. The basic characterist ics of the existing glaciers in China. Acta Geogr. Sinica 1964, 30, 183–208. (In Chinese) [Google Scholar]
- Guo, W.; Liu, S.; Wei, J.; Bao, W. The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Ann. Glaciol. 2013, 54, 299–310. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.; Sun, Y.; Yi, C.; Wang, H.; Hsu, H. Glacier elevation changes (2012–2016) of the Puruogangri Ice Field on the Tibetan Plateau derived from bi-temporal TanDEM-X InSAR data. Int. J. Remote Sens. 2016, 37, 5687–5707. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Jiang, Z.; Shangguan, D.; Wei, J.; Guo, W.; Xu, J.; Zhang, Y.; Zhang, S.; Huang, D. Glacier Variations at Xinqingfeng and Malan Ice Caps in the Inner Tibetan Plateau Since 1970. Remote Sens. 2020, 12, 421. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Guo, H.; Yan, S.; Song, R.; Ruan, Z.; Lv, M. Revealing the surge behaviour of the Yangtze River headwater glacier during 1989–2015 with TanDEM-X and Landsat images. J. Glaciol. 2017, 63, 382–386. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Tian, L. Mass balance and a glacier surge of Guliya ice cap in the western Kunlun Shan between 2005 and 2015. Remote Sens. Environ. 2020, 244, 111832. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, L.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Liu, S.; Ye, B.; Liu, C.; Wang, Z. Concise Glacier Inventory of China; Shanghai Popular Science Press: Shanghai, China, 2008. [Google Scholar]
- Wei, J.; Liu, S.; Guo, W.; Yao, X.; Xu, J.; Bao, W.; Jiang, Z. Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Ann. Glaciol. 2014, 55, 213–222. [Google Scholar]
- Cogley, J.G. Glacier shrinkage across High Mountain Asia. Ann. Glaciol. 2016, 57, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Neckel, N.; Kropacek, J.; Bolch, T.; Hochschild, V. Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett. 2014, 9, 014009. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kaab, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000–2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.R.; Arendt, A.; Osmanoglu, B. A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance. Front. Earth Sci. 2020, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Shean, D.E.; Alexandrov, O.; Moratto, Z.M.; Smith, B.E.; Joughin, I.R.; Porter, C.; Morin, P. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. Int. J. Photogramm. Remote Sens. 2016, 116, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Girod, L.; Nuth, C.; Kaab, A.; MacNabb, R.; Galland, O. MMASTER: Improved ASTER DEMs for Elevation Change Monitoring. Remote Sens. 2017, 9, 704. [Google Scholar] [CrossRef] [Green Version]
- Scambos, T.; Fahnestock, M.; Moon, T.; Gardner, A.; Klinger, M. Global Land Ice Velocity Extraction from Landsat 8 (GoLIVE), Version 1.1. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. Available online: https://doi.org/10.7265/N5ZP442B (accessed on 1 November 2020).
- Fahnestock, M.; Scambos, T.; Moon, T.; Gardner, A.; Haran, T.; Klinger, M. Rapid large-area mapping of ice flow using Landsat 8. Remote Sens. Environ. 2016, 185, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Le Bris, R.; Paul, F. An automatic method to create flow lines for determination of glacier length: A pilot study with Alaskan glaciers. Comput. Geosci. 2013, 52, 234–245. [Google Scholar] [CrossRef] [Green Version]
- Bhang, K.J.; Schwartz, F.W.; Braun, A. Verification of the Vertical Error in C-Band SRTM DEM Using ICESat and Landsat-7, Otter Tail County, MN. IEEE Trans. Geosci. Remote Sens. 2007, 45, 36–44. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Lu, H.; Yue, S.; Zhang, G.; Lei, Y.; La, Z.; Wang, W. Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau. Clim. Chang. 2018, 147, 149–163. [Google Scholar] [CrossRef]
- Pieczonka, T.; Bolch, T.; Buchroithner, M. Generation and evaluation of multitemporal digital terrain models of the Mt. Everest area from different optical sensors. Int. J. Photogramm. Remote Sens. 2011, 66, 927–940. [Google Scholar] [CrossRef]
- Bolch, T.; Pieczonka, T.; Benn, D.I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, Z.; Li, J.; Zhao, R.; Ding, X. Geodetic glacier mass balance (1975–1999) in the central Pamir using the SRTM DEM and KH-9 imagery. J. Glaciol. 2019, 65, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol. 2012, 58, 419–422. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. Int. J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Kolecka, N.; Kozak, J. Assessment of the Accuracy of SRTM C- and X-Band High Mountain Elevation Data: A Case Study of the Polish Tatra Mountains. Pure Appl. Geophys. 2013, 171, 897–912. [Google Scholar] [CrossRef] [Green Version]
- Schwitter, M.P.; Raymond, C.F. Changes in the longitudinal profiles of glaciers during advance and retreat. J. Glaciol. 1993, 39, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Pieczonka, T.; Bolch, T. Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery. Glob. Planet. Chang. 2015, 128, 1–13. [Google Scholar] [CrossRef]
- McNabb, R.W.; Nuth, C.; Kaab, A.; Girod, L.M.R. Sensitivity of glacier volume change estimation to DEM void interpolation. Cryosphere 2019, 13, 895–910. [Google Scholar] [CrossRef] [Green Version]
- Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.-P. Automatic and Precise Orthorectification, Coregistration, and Subpixel Correlation of Satellite Images, Application to Ground Deformation Measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef] [Green Version]
- Scherler, D.; Leprince, S.; Strecker, M. Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment. Remote Sens. Environ. 2008, 112, 3806–3819. [Google Scholar] [CrossRef]
- Lv, M.; Guo, H.; Lu, X.; Liu, G.; Yan, S.; Ruan, Z.; Ding, Y.; Quincey, D. Characterizing the behaviour of surge- and non-surge-type glaciers in the Kingata Mountains, eastern Pamir, from 1999 to 2016. Cryosphere 2019, 13, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Herman, F.; Anderson, B.; Leprince, S. Mountain glacier velocity variation during a retreat/advance cycle quantified using sub-pixel analysis of ASTER images. J. Glaciol. 2011, 57, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Zeng, C.; Shen, H.; Zhang, L. Recovering missing pixels for Landsat ETM+ SLC-off imagery using multi-temporal regression analysis and a regularization method. Remote Sens. Environ. 2013, 131, 182–194. [Google Scholar] [CrossRef]
- Thorsten, S.; Phillips, M.; Christian, S.; Soruco, A.; Rabatel, A.; Braun, M. Mass balance and area changes of glaciers in the Cordillera Real and Tres Cruces, Bolivia, between 2000 and 2016. J. Glaciol. 2019, 66, 124–136. [Google Scholar]
- Wang, Y.; Hou, S.; Huai, B.; An, W.; Pang, H.; Liu, Y. Glacier anomaly over the western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s. J. Glaciol. 2018, 64, 624–636. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Jiang, L.; Jiang, H.; Wang, H.; Ma, N.; Xu, H. Accelerated glacier mass loss (2011–2016) over the Puruogangri ice field in the inner Tibetan Plateau revealed by bistatic InSAR measurements. Remote Sens. Environ. 2019, 231, 111241. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Pieczonka, T.; Bolch, T.; Wei, J.; Liu, S. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sens. Environ. 2013, 130, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K. The Karakoram Anomaly? Glacier Expansion and the ‘Elevation Effect,’ Karakoram Himalaya. Mt. Res. Dev. 2005, 25, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Leinss, S.; Gilbert, A.; Bühler, Y.; Gascoin, S.; Evans, S.G.; Bartelt, P.; Berthier, E.; Brun, F.; Chao, W.-A.; et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat. Geosci. 2018, 11, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Li, G.; Cuo, L.; Hooper, A.; Ye, Q. A decreasing glacier mass balance gradient from the edge of the Upper Tarim Basin to the Karakoram during 2000–2014. Sci. Rep. 2017, 7, 6712. [Google Scholar] [CrossRef] [PubMed]
- Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat sensor performance: History and current status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [Google Scholar] [CrossRef]
- Jiskoot, H.; Juhlin, D. Surge of a small East Greenland glacier, 2001–2007, suggests Svalbard-type surge mechanism. J. Glaciol. 2009, 55, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Neckel, N.; Braun, A.; Kropáček, J.; Hochschild, V. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry. Cryosphere 2013, 7, 1623–1633. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Jiang, L.; Zhang, Z.; Wang, H.; Ding, X. Recent Accelerating Glacier Mass Loss of the Geladandong Mountain, Inner Tibetan Plateau, Estimated from ZiYuan-3 and TanDEM-X Measurements. Remote Sens. 2020, 12, 472. [Google Scholar] [CrossRef] [Green Version]
- Benn, D.I.; Fowler, A.C.; Hewitt, I.; Sevestre, H. A general theory of glacier surges. J. Glaciol. 2019, 65, 701–716. [Google Scholar] [CrossRef] [Green Version]
Vector | Iteration Times | Displacements | ||
---|---|---|---|---|
X (m) | Y (m) | Z (m) | ||
HMA→SRTM | 2 | 10.78 | 10.74 | 1.63 |
TDM90→SRTM | 2 | 16.36 | 6.65 | 2.08 |
HMA→TDM90 | 1 | −4.44 | 10.58 | −0.74 |
Region | Category | Area (km2) | Slope (°) | Length (km) |
---|---|---|---|---|
Surge | 35.6 | 7.9 | 13.5 | |
Non-surge | 3.4 | 22.3 | 2.2 | |
Western Kunlun Mountains (WKM) | Surge | 96.0 | 9.2 | 19.1 |
Non-surge | 4.8 | 22.8 | 2.4 | |
Puruogangri | Surge | 14.1 | 12.0 | 7.6 |
Non-surge | 6.5 | 18.0 | 3.2 | |
Geladandong | Surge | 26.1 | 11.5 | 10.2 |
Non-surge | 5.0 | 18.3 | 2.9 | |
Xinqingfeng and Malan | Surge | 57.2 | 8.2 | 14.5 |
Non-surge | 3.7 | 18.3 | 2.4 | |
Muztag | Surge | 96.6 | 14.3 | 13.2 |
Non-surge | 3.3 | 20.7 | 2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, B.; Hou, S.; Wang, Y. A Surging Glacier Recognized by Remote Sensing on the Zangser Kangri Ice Field, Central Tibetan Plateau. Remote Sens. 2021, 13, 1220. https://doi.org/10.3390/rs13061220
Jia B, Hou S, Wang Y. A Surging Glacier Recognized by Remote Sensing on the Zangser Kangri Ice Field, Central Tibetan Plateau. Remote Sensing. 2021; 13(6):1220. https://doi.org/10.3390/rs13061220
Chicago/Turabian StyleJia, Bowen, Shugui Hou, and Yetang Wang. 2021. "A Surging Glacier Recognized by Remote Sensing on the Zangser Kangri Ice Field, Central Tibetan Plateau" Remote Sensing 13, no. 6: 1220. https://doi.org/10.3390/rs13061220
APA StyleJia, B., Hou, S., & Wang, Y. (2021). A Surging Glacier Recognized by Remote Sensing on the Zangser Kangri Ice Field, Central Tibetan Plateau. Remote Sensing, 13(6), 1220. https://doi.org/10.3390/rs13061220