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Abstract: Very Long Baseline Interferometry (VLBI) solution can yield accurate information of
angular position, and has been successfully used in the field of deep space exploration, such as
astrophysics, imaging, detector positioning, and so on. The increase in VLBI data volume puts higher
demands on efficient processing. Essentially, the main step of VLBI is the correlation processing,
through which the angular position can be calculated. Since the VLBI correlation processing is
both computation-intensive and data-intensive, the CPU cluster is usually employed in practical
application to perform complex distributed computation. In this paper, we propose a parallel
implementation of VLBI correlator based on graphics processing unit (GPU) to realize a more efficient
and economical angular position calculation of deep space target. On the basis of massively GPU
parallel computing, the coalesced access strategy and the parallel pipeline strategy are introduced
to further accelerate the VLBI correlator. Experimental results show that the optimized GPU-based
VLBI method can meet the real-time processing requirements of the received data stream. Compared
with the sequential method, the proposed approach can reach a 224.1× calculation speedup, and a
36.8× application speedup. Compared with the multi-CPUs method, it can achieve 28.6× calculation
speedup and 4.7× application speedup.

Keywords: very long baseline interferometry; graphics process unit; massively parallel;
deep space exploration

1. Introduction

The computational demands of scientific research are constantly increasing. In the field
of radio astronomy, observation has evolved from the single telescope to the interferometer
arrays, which is currently under development. At the same time, the Very Long Baseline
Interferometry (VLBI) technology, which increases the accuracy of observation by extending
the distance between the stations, has also been rapidly developed. They are all developed
based on interferometric technology, but the data processing methods of them are different.

VLBI plays a key role in deep space exploration and astronomical observation due to
the capability of high accurate angular measurement. The technology performs correla-
tion calculations on the observation data of multiple radio telescopes, thus synthesizing
multiple telescopes into a synthetic aperture telescope with an equivalent diameter of the
longest baseline length [1,2]. Until now, the VLBI has been widely used in many fields,
such as geodetic survey, astrophysics, detector positioning, and so on [3,4]. With the
increase of VLBI stations and the observation bandwidth, there is a strong demand for fast
correlation processing [5,6].

For the interferometric technology, the most important part is the design of correlators.
In the past few decades, many correlators based on dedicated hardware have been devel-
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oped. Among various dedicated hardware, application specific integrated circuit (ASIC),
digital signal processing (DSP) and field-programmable gate arrays (FPGA) are usually
employed in the development of VLBI correlators. A. R. Whitney et al. [7] implemented a
VLBI system based on the the custom-VLSI chip and the DSP. Compared with ASIC, FPGA
has a shorter design cycle, lower development cost and more flexible design. Rurik A.
Primiani et al. [8] designed a new VLBI correlator, which replaced the previously-coined
ASIC correlator. Hitoshi Kiuchi et al. [9] proposed six preset correlation processing system
on the basis of FPGA. In order to avoid programming, testing and debugging issues in
the traditional FPGA development process, Gan et al. [10] adopted the OpenCL tool flow
to convert the OpenCL kernel function into customized FPGA hardware accelerator files,
automatically. DSP is more suitable for processing computing tasks, and the FPGA is
better for logic operations. Shanghai Astronomical Observatory (SHAO) developed the
third-generation Chinese VLBI Data Acquisition System (CDAS), and then equipped the
DSP board with Xilinx XC7K480T FPGA for data processing [11]. The joint research activity
in the RadioNet FP7 Programme designed a generic high-performance computing platform
based on DSP and FPGA for radio astronomy, named UniBoard [12]. Although the methods
based on dedicated chips can effectively implement the VLBI correlator, their economic
costs and scalability are still insufficient.

A recent trend is to correlate in software instead of dedicated hardware. With the
rapid development of high-performance computing technology [13–16], the correlators
have begun to be developed on the general CPU platform. In the earlier work, VLBI
software correlators are implemented based on a single CPU [17], e.g., the VLBI correlator
from National Radio Astronomy Observatory (NRAO) was developed based on an IBM
360/50 [18]. Furthermore, the VLBI correlators are implemented on CPU clusters to achieve
higher efficiency, such as the Chinese VLBI Network (CVN) Earth software developed
by Shanghai Astronomical Observatory of the Chinese Academy of Sciences [19] and
DiFX VLBI correlator proposed by Swinburne University of Technology [20]. Extensive
experiments verify that the CPU cluster can realize real-time VLBI data processing at a
medium data rate, and it is easier to design and develop compared with the dedicated chips.

The emergence of the graphics processing unit (GPU) and the compute unified device
architecture (CUDA) provide new opportunities for accelerating VLBI correlators [21,22].
GPU has been developed as a high-performance device with the characteristics of high
parallelism, multithreading, many-cores, huge bandwidth capacity, and hundreds of com-
puting cells. But they only discussed how to deploy the algorithm on heterogeneous
platforms and analyze the processing results of the software. In recent years, for the inter-
ferometric array observation technology, some correlators have been accomplished on the
GPU. Thomas Hobiger et al. [23] discussed the feasibility of implementing correlator on
GPU. The Cobalt project implemented a GPU-based correlator for LOFAR [24]. However,
the GPU-based parallel acceleration method of VLBI algorithm has not been studied yet.
Besides, GPU has been widely used in the field of remote sensing for big data process-
ing [25–28]. Inspired by the remote sensing applications and correlators of interferometric
array observation technology on GPU, we try to implement a high efficient GPU-based
VLBI correlator considering hierarchical optimization strategies.

In order to meet real-time processing at high data rate, we propose a parallel im-
plementation of VLBI algorithm on the CPU-GPU heterogeneous platform. To solve the
computation-intensive issue, the VLBI algorithm is implemented in GPU massively parallel
mode, and is designed to realize the fine-grained task partitioning and calculation. Further,
to deal with the data-intensive problem, the multi-level GPU optimization strategies have
been introduced to improve the efficiency of data access and processing pipeline. Finally,
the proposed method has been evaluated by the actual observation data. It is proved that
the GPU implementation can meet the demands of high data rate real-time calculation,
and is superior to the serial CPU method and multi-core CPU method.

In all, compared with previous works, we make the following contributions.
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(1) GPU parallelization of the VLBI algorithm is presented. According to the characteris-
tics of the GPU, multi-point calculation tasks are allocated to GPU threads to make full
use of the computing capability of the threads and the hardware resources of the GPU.

(2) Shared memory is used to solve the uncoalescing problem encountered when access-
ing global memory.

(3) According to the characteristics of VLBI data, CUDA stream is used to optimize the
data transmission between CPU and GPU.

The remainder of this paper is organized as follows. Section II presents the calculation
flow of the VLBI algorithm and analyzes the algorithm complexity. Section III gives the
details of the proposed GPU-based parallel VLBI method. Experimental results are shown
and analyzed in Section IV. Conclusions and perspectives are given in Section V.

2. Methodology

In this section, the principle and implementation of VLBI correlator are introduced
specifically. Meanwhile, the analysis of the algorithm complexity is also briefly analyzed.

2.1. The Principle of VLBI

The physical process of VLBI system is shown in Figure 1. The two ground stations
simultaneously receive signals from the same observation target. Then, each station sends
the observation data to the VLBI correlator, which performs correlation calculations to
obtain the residual delay. Finally, the residual delay and estimated delay are employed to
calculate the angular position of the observed target (i.e., θ). Through the above accurate
coherent processing, sub-millisecond spatial resolution and nanosecond delay estimation
can be obtained.

Figure 1. The illustration of Very Long Baseline Interferometry (VLBI) system.

2.1.1. The Physical Process of the VLBI

Because the distance between the observation target and the earth is long enough,
the signals received by the station can be approximately regarded as the plane waves.
In addition, due to the different geographic locations, the stations will receive the same
wavefront signal at different time points. Therefore, there will be a delay between the
two stations when receiving the same signal. According to the geometric relationship in
Figure 1, the delay τ can be calculated as the following:

τ =
B cos θ

c
, (1)
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where B is the baseline length between the two stations, c is the speed of light, and θ is
the intersection angle between the direction of the observation target and the baseline,
that is, the angular position information of the target. Accordingly, the orbital position of
the target can be determined with θ. Therefore, τ needs to be calculated for obtaining the
angular position of the observation target.

By calculating the derivative with respect to θ in Equation (1), the accuracy expression
of the angular position θ can be obtained as below.

∂θ =
c∂τ

B sin θ
. (2)

It can be seen from Equation (2) that the accuracy of the angular position θ is directly
proportional to the delay accuracy ∂τ and inversely proportional to the baseline length B.
Therefore, the higher angular position accuracy can be obtained by increasing the baseline
length or the delay accuracy.

2.1.2. The Signal Model of VLBI Correlator

As aforementioned, there is a time delay between the signals of the two stations that
receive the same target signal. To acquire a more accurate delay, the following two steps
are performed. Firstly, some compensation methods are utilized to roughly compensate
for the delay between the signals of the stations. Then, the residual delay can be obtained
through the correlation operations of the compensated signal. Next, the single-frequency
signal model is employed to introduce the principle of VLBI method.

First, the real delay between two stations is assumed to be τg. The signals received by
the two stations from the observation target are expressed as follows:

x1(t) = cos ωt, (3)

x2(t) = cos ω(t− τg), (4)

where ω is the carrier frequency of the observation signal, and t is the time scale. After the
carrier synchronization, the signals of the two stations can be expressed as:

x1(t) = cos (ω−ω0)t, (5)

x2(t) = cos [(ω−ω0)t−ωτg], (6)

where ω0 is the frequency of local oscillator. After the rough delay compensation of the
signal, the signal of Station 2 can be obtained as follows:

x
′
2(t) = cos [(ω−ω0)(t + τg0)−ωτg], (7)

where τg0 is the rough delay estimation of the actual delay compensation model. The rough
delay value is usually calculated by the empirical formula of fifth degree polynomial.

Then, based on the rough delay compensation, the result of correlation
processing is as follows:

R = x1(t)⊗ x
′
2(t)

= cos [(ω−ω0)τg0 −ωτg]

= cos [−(ω0 −ω)(τg − τg0)−ω0τg]

= cos [(ω−ω0)∆τg + ω0τg]

, (8)

where ∆τg is the residual delay value. It can be seen from the correlation results that
the phase contains a linear component that varies with frequency. The slop of the phase-
frequency diagram is just the residual delay, which can be employed to calculate the
angular position.
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Based on the residual delay calculated from the above processing, the angular position
information of the observation target can be obtained by calculation with Equation (1).

θ = arccos
c(∆τg + τg0)

B
. (9)

2.2. The Implementation of VLBI Correlator

As shown in Figure 2, the VLBI algorithm mainly includes four parts, respectively,
rough delay calculation, delay compensation, correlation, and residual delay calculation.
Through the above calculations, the real-time angular position can be acquired for the deep
space exploration system.

Figure 2. The structure of VLBI algorithm.

2.2.1. Rough Delay Calculation

The orbit prediction [29,30] method is used to estimate the delay compensation τg0
between the two stations. Generally, the empirical formula of fifth degree polynomial is
accurate enough to calculate the rough delay of any sampling time t,

τg0 = a0 + a1 · t + a2 · t2 + a3 · t3 + a4 · t4 + a5 · t5

= τg0
I + τg0

F

= Ni ∗ Ts + N f ∗ Ts

, (10)

where ai (i = 0, 1, 2, 3, 4, 5) is the empirical coefficients, τg0
I and τg0

F, respectively, indicate
the integer and fractional delay, Ni and N f represent the number of sampling periods for
the integer and fractional delay, and Ts is the sampling period.

2.2.2. Delay Compensation

Because the delay of the two stations is not always an integer multiple of the signal
sampling period, the delay compensation can be divided into integer delay and fractional
delay. Normally, the integer delay is compensated with the time domain shift, and the
fractional delay is compensated through the frequency domain phase multiplication. Mean-
while, it is crucial to eliminate the influence of the Doppler effect in the delay compensation
process, which corresponds to the fringe rotation part in the VLBI algorithm. As shown
in Figure 2, the delay compensation includes three steps, including the integer delay
compensation, the fringe rotation and the fractional delay compensation. The specific
implementations are as follows.
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(i) Integer delay compensation
The signals of one station cope with the integer delay as follows:

I(n) = x(n + Ni), (11)

where n indicates the discrete time scale, x(n) is the received signal, and I(n) indicates
the processed signal after the integer delay compensation.

(ii) Fringe rotation
The processing step is introduced to counteract the influence of the Doppler effect,
which is denoted as follows:

Fri(n) = I(n)× ej2π· fd(n), (12)

where Fri(n) is the result after eliminating the Doppler effect, and fd(n) is the Doppler
frequency employed in the estimation.

(iii) Fractional delay compensation
After carrying out the fractional delay compensation, the signal can presented below:

Fra( f ) = FFT(Fri(n))× e−j2π· f ·τF
g0 , (13)

where f indicates the discrete frequency scale, and FFT(·) means the
Fourier transform operator.

2.2.3. Signal Correlation

Through the above operations, the compensation operations of the signals are ac-
complished. According to Equation (8), the correlation between the two stations can be
executed as below:

P( f ) = Fra(s1)( f )× ¯Fra(s2)( f ) = |P( f )|ejϕ( f ), (14)

where s1 and s2 indicate the different stations that observing the same target.

2.2.4. Angular Position Calculation

After finishing the above operations, the residual delay can be obtained through
calculating the slop of the phase spectrum in the correlation results.

∆τg =
∂ϕ( f )
2π · ∂ f

. (15)

After solving the two values τg0 and ∆τg, the angular position can be figured
out by Equation (9).

2.3. The Analysis of Algorithm Complexity

According to the previous VLBI introduction, the complexity analysis of the four steps
will be given successively [31]. As for the calculations of rough delay, it is independent of
signal length L, and its computational complexity is O(1). Next, the integer delay compen-
sation can be implemented through the data shift operation, which can be implemented
along with the data reading process. Therefore, the computational complexity of this part
can be seen as O(1). As Equation (12) described, the essence of fringe rotation includes
the Doppler frequency calculation of L points and the multiplication of L points in time
domain. In the next step, the Fourier transform of L points and the multiplication will be
employed to finish the fractional delay compensation. Accordingly, the computational
complexity can be expressed as O(LlogL). The algorithm complexities of the correlation
calculation and the slop estimation are related to the signal length L.

As aforementioned, the calculation of VLBI mainly includes the multiplication and
Fourier transform in the signal dimension. For the consideration of efficiency, Intel
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Integrated Performance Primitives (IPP) [32,33] is employed to implement these time-
consuming steps in a serial way. Figure 3 depicts the time-consuming ratio of the serial
VLBI algorithm. It can be seen that the time-consuming situation of the fringe rotation and
fractional delay are slightly different from the above complexity analysis. The main reasons
include two aspects: first, due to the application of Intel IPP library library, the operations
of FFT and sequence multiplication are optimized at the software and hardware level;
second, although the complexity is the same, the amount of calculation is different between
the fringe rotation and the fractional delay. Thus, the fringe rotation takes more time in
the implementation. In general, the most time-consuming part is concentrated on the
calculation of delay compensation and correlation, which accounting for about 99.98% of
the total running time.

In practical applications, in order to improve the signal-to-noise ratio and acquire
a more accurate delay, the signal is divided into multiple blocks. Concretely, the signal-
to-noise ratio will be enhanced by accumulating the results of these blocks. First of all,
the pending signals of one station which contains C channels are divided into blocks as
follows. There are Z signals in one channel. Each signal is divided into A integration time;
an integration time includes F FFT time; and one FFT time has N discrete points. According
to the above definitions of the blocks, there are M (i.e., M = Z× A) integration time in
one channel. Algorithm 1 shows the pseudo-code of the serial VLBI algorithm, which
processes the data of one channel. From Algorithm 1, the main time consumption comes
from the two four-layer loops. Combine the analysis of time complexity and Algorithm 1,
our experiment mainly optimizes the operations of delay compensation and correlation in
parallel.

Algorithm 1: Serial version of VLBI.
Input: The data of S stations x[n]
Output: The residual delay

1 Step1:
2 for each s ∈ [1, S] do
3 I[s][n] = x[s][n + N]
4 end
5 Step2:
6 for each a ∈ [1, M] do
7 for each s ∈ [1, S] do
8 for each i ∈ [1, F] do
9 for each n ∈ [1, N] do

10 Fri[a][s][i][n] = I[a][s][i][n]× ej2π fd [n]

11 end
12 for each n ∈ [1, N] do
13 Fri f [a][s][i] = FFT(Fri[a][s][i])

14 Fra[a][s][i][n] = Fri f [a][s][i][n]× e−j2πτF
g0 [n]

15 end
16 end
17 end
18 end
19 Step3:
20 for each z ∈ [1, Z] do
21 P[z] = Fra[s1][z]× ¯Fra[s2][z]← Calculate the Correlation between two stations

(s1 and s2)
22 end
23 Step4:
24 for each z ∈ [1, Z] do
25 Calculate the residual delay
26 end
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Figure 3. Time proportion of each part in the serial version.

3. Proposed Method

It can be seen from the above analysis that the fringe rotation, fractional delay compensa-
tion, and signal correlation are the most time-consuming parts of the VLBI algorithm. In order
to accelerate the VLBI algorithm, the three parts are parallelized in the GPU. The GPU par-
allel version of VLBI is displayed in Figures 4 and 5. According to the characteristics of the
GPU, it has thousands of physical threads, so it is more suitable for performing data-intensive
and computationally intensive operations. It can be seen from Figure 4 that the CPU-based
parallel VLBI algorithm may require multiple devices to achieve the processing effect of the
GPU-based parallel algorithm.

Figure 4. Illustration of parallel VLBI based on multilevel graphics processing unit (GPU) optimization.
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Figure 5. GPU-based parallel VLBI framework.

As shown in Figure 5, it can be seen that the calculations of rough delay, the integer
delay, and the angular position are executed on the CPU. Besides, the operations of fringe
rotation, fractional delay and correlation are executed on the GPU. After the calculation of
correlation is completed, the results will be returned from the GPU to the CPU. Eventually,
the phase and frequency in the correlation results are fitted to a straight line to obtain the
residual delay on the CPU.

3.1. The Parallel Optimization Strategies
3.1.1. The CPU-GPU Data Transfer Optimization

According to the CUDA programming paradigm, the data transfer is necessary be-
tween CPU and GPU. Basically, the required input data is transferred from CPU to GPU for
the parallel function. After the high performance computing, the results will be transferred
from the GPU to the CPU. Since the peak bandwidth between the CPU memory and the
GPU memory is relatively low, it means that the data transfers between the CPU and GPU
may slow the whole application performance. The following are some general guidelines
for the data transfer between them.

• Minimize the number of transfers between the host and the device.
• Merge many small transfers into one.

In this paper, we will treat the data in an integration time as a basic data unit, and trans-
fer it to the GPU, which will eliminate most of the per-transfer overhead.

3.1.2. The Solution of the Uncoalescing Problem

Since the data type is complex, when we operate on the real or imaginary part of the
data on the global memory, the uncoalescing problem will be encountered. As shown in
Figure 6, the discontinuous storage areas of global memory are accessed, and will lead
to the performance decline. If the data access is continuous, one instruction can read
more data. This means fewer instructions will be used to perform data access operations.
Thus, the data reading time will be shortened. Memory coalescing technology can greatly
improve the speed of global memory access. The hardware will detect whether the location
accessed by the thread is an adjacent location in the global memory. When 16 threads of
a warp are coalesced in memory transactions, the bandwidth of the global memory will
be maximized. Therefore, shared memory is employed to solve the uncoalescing problem
in this article, as shown in Figure 6. We employ a continuous method to access data from
global memory to shared memory, firstly. Since there is no need to consider the order of
access when using shared memory, the problem of uncoalescing problem can be avoided.
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Figure 6. The uncoalescing problem and the corresponding solution.

When a block starts to execute, the GPU will allocate a certain amount of shared
memory, and the address space of the shared memory will be shared by all threads in the
block. Shared memory is allocated to all blocks in Streaming Multiprocessing (SM), which
is also a scarce resource of the GPU. Therefore, the more shared memory is employed,
the less active threads that can be parallelized.

The main operations of memory coalescing method is shown below. Firstly, adjacent
threads read the neighboring real or imaginary number from global memory to shared
memory. Then, in the kernel function, the data in the shared memory is converted into
a complex type and calculated. Finally, the complex number is divided into the real and
imaginary part for output.

3.1.3. The Thread Task Allocation

The main content of a parallel algorithm is the task partitioning and scheduling,
namely, the task allocation on each thread. When formulating tasks to be executed on
each thread, the following two aspects are mainly considered. First, the GPU thread has
limited computing ability. Nevertheless, when designing the thread computing tasks, it
must give full play to its capabilities within the scope of its computing power. Secondly,
if more resources (such as shared memory, register, etc.) are used in a thread block, fewer
active thread blocks that can be parallelized.

Based on the parallel design guidelines, the calculation of multiple data points will be
considered to execute in one thread. To optimize the performance of the GPU implementa-
tion, the maximum number of threads, namely 1024, is set to each thread block. Accordingly,
the block number can be calculated as (F×N/(1024×Nt)), where F and Nt are the dimen-
sion of Fourier transform and the number of points computed in one thread, respectively.

3.1.4. The Cuda Stream

It is noted that the data calculation process of each station is independent in the serial
algorithm. In order to optimize the execution pipeline, the CUDA stream technology is
introduced to realize concurrent execution of parallel calculation and data transmission.
Thus, the overall running time can be decreased greatly. From Figure 7, it can be seen
that CUDA can start multiple streams, simultaneously. The data transmission and kernel
calculation are performed in each stream, independently. In this way, when the data
of current station performs the calculation, the data of next station can transmit data or
execute the calculation operation. In the GPU parallel implementation, the parallel pipeline
strategy outperforms the serial pipeline by hiding the data transfer overhead.
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Figure 7. The principle of compute unified device architecture (CUDA) stream.

3.2. The Overall Approach of Gpu Parallel VLBI

A detailed step-by-step algorithm description of the parallel VLBI on the CPU–GPU
heterogeneous platform is summarized in Algorithm 2. The calculations of fringe rotation,
fractional delay, and correlation are denoted as kernel 1, kernel 2 and, kernel 3, which are
executed on the GPU. The CUFFT library is used to perform FFT operations on the GPU.
Besides, the CUDA stream is used to reduce the time of the data transmission.

Algorithm 2: Parallel version of VLBI.
Input: The data of S stations x[n]
Output: The residual delay

1 Step1:
2 for each s ∈ [1, S] do
3 I[s][n] = x[s][n + N]
4 end
5 Step2:
6 for each a ∈ [1, M] do
7 Start CUDA stream
8 for each s ∈ [1, S] do
9 kernel 1:

10 Copy I[a][i] from the CPU to the GPU
11 The following part runs on GPU
12 apply for 1D CUDA block and thread
13 Fri[a][s][threadId] = I[a][i][threadId]× ej2π fdt

14 end kernel 1
15 Fri f [a][s] = CUFFT(Fri[a][s])
16 kernel 2:
17 apply for 1D CUDA block and thread
18 Fra[a][s][threadId] = Fri f [a][i][threadId]× e−j2π f τgF

19 end kernel 2
20 end
21 end CUDA stream
22 end
23 Step3:
24 for each z ∈ [1, Z] do
25 kernel 3:
26 P[z] = Fra[z][s1]× ¯Fra[a][s2]← Calculate the Correlation between two stations

(s1 and s2)
27 end kernel 3
28 end
29 Step4:
30 for each z ∈ [1, Z] do
31 Calculate the residual delay
32 end
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4. Results
4.1. Experimental Configuration

The hardware specification is described in Table 1. It also shows the bandwidth of
data transfer between the CPU and the GPU. The software environment includes Win-
dows 10 64 bit operating system, Visual Studio 2017, CUDA 9.2, and Intel IPP library.
The experimental data are from Beijing Aerospace Control Center. The observation stations
are Kashi Station and Jiamusi Station, respectively. The data of each station has 8 channels,
and the data rate is 64 Mb/s. The sampling rate and quantization bit are 4 MHz and 1 bit.
The observation time of the experimental data is 6 s.

Table 1. Experimental platform hardware specifications.

CPU

CPU version Intel i5-4950

Processor base frequency 3.3 GHz

CPU memory DDR3

Number of cores 4 in total (1 CPU)

Main memory 8 GB

GPU

GeForce NVIDIA RTX 2070

Architecture Turing

Frequency of CUDA cores 1725 MHz

Number of CUDA cores 2304

Single precision floating point performance(peak) 7.5T Floats/s

Dedicated memory 8 GB

Memory speed 7001 MHz

Memory interface 256-bit

Memory bandwidth 448 GB/s

CUDA compute capability 7.5

Threads/warp 32

Threads/block 1024

Shared memory/block 49,152 bytes

Registers/block 65,536

Bandwidth

Host To Device 11,891.6 MB/s

Device To Host 10,054.8 MB/s

Device To Device 374,734.7 MB/s

4.2. Efficiency Analysis

In the experiments, the proposed GPU-based VLBI algorithm (denoted as GPU
version) are compared with the corresponding serial version and the multi-CPU
version. The serial version is implemented in C language based on the intel IPP library.
The multi-CPU version of VLBI (denoted as multi-CPU version) is implemented
with the message passing interface (MPI) and the Intel IPP library. We evaluate the
performance improvement (acceleration factors) of the GPU implementation relative
to the multi-CPU version and the serial version.
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4.2.1. The Analysis of the Optimization Strategies

Figure 8 depicts the calculation time of fractional delay and fringe rotation for one
channel data of a station. Through shared memory bridging, the problem of discontinuous
data access is solved. When reading data from global memory, the bandwidth of the global
memory is fully utilized. After solving the uncoalescing problem, the execution time of the
algorithm is significantly reduced. From Figure 8, it can be seen that the processing time of
fringe rotation and fractional delay is reduced along with the decrease of the block number.
If multi-point computing tasks are allocated on a thread, the computing resources of the
thread can be fully utilized, and sufficient hardware resources can be allocated for each
thread. The aforementioned optimization methods can reduce the time of processing data.
Furthermore, the results verify the effectiveness of the method proposed. For the fractional
delay, the time change is more obvious after optimization. According to the analysis of
the algorithm in Section II, although the complexity is the same, the amount of calculation
is different between the fringe rotation and the fractional delay. Therefore, the thread in
Kernel1 has a larger amount of calculation and consumes more hardware resources. Thus,
the repartitioning of GPU resources has less impact on edge rotation.

(a) (b)

Figure 8. The thread allocation optimization under different number of blocks. (a) Fractional delay. (b) Fringe rotation.

Figure 9 shows the percentages of the data transmission time and the calculation
time. It can be observed that the data transfer time is reduced after applying the proposed
parallel pipeline. In particular, after using CUDA stream for transmission optimization,
the time percentage of data transfer has been reduced from 90.37% to 66.86%. However,
the time for data transfer still accounts for a large part of the total time. That is because
the CUDA stream operation only hides a part of the data transfer time between the CPU
and GPU, but it does not shorten it, as shown in Figure 7. In addition, when optimizing
without using CUDA streams, the data transmission time accounts for more than 90%
of the total time. In view of the above two reasons, the proportion of data transmission
time still accounts for a large proportion. Regardless, for the VLBI algorithm, the CUDA
stream is capable of shortening the ratio of data transmission, and is essential to promote
algorithm performance.
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(a) (b)

Figure 9. Proportion of kernel calculation and data transmission time. (a) Without the CUDA stream for optimization.
(b) Optimization after using CUDA stream.

Table 2 indicates the time consumption and speedups of various optimization strate-
gies applied in this article. The different approaches are employed to process the data in
one channel. “Serial” refers to the serial algorithm running on the single CPU. Moreover,
the model and frequency of the CPU are revealed in Table 1. In the version of “Initializa-
tion”, the task performed on each thread is a single point calculation, where CUFFT is
used to optimize the FFT. Based on the “Initialization” , “Coalesce” solves the uncoalescing
problem when accessing the global memory. “Allocation” version redesigned the comput-
ing tasks performed on each thread in the GPU. The version of "CUDA stream" further
optimize the data transmission between the CPU and the GPU.

According to the above results, the multilevel GPU optimization strategy is consistent
with the design ideas. Based on the basic GPU parallel, the serial algorithm is accelerated
by 18.1×. After solving the uncoalescing problem, the bandwidth of global memory is fully
utilized. Hence, the ”Coalesce” version attains the speedup of 19.1×. When making full
use of thread computing resources and GPU hardware resources, the acceleration effect
reaches 22.1×. Benefiting from the CUDA stream, multiple streams can be started at the
same time to process data from different stations. Finally, compared with the serial version,
the method proposed in this article can achieve 36.6×. It can be seen from the optimization
results of the above acceleration method that data transmission has the most significant
impact on the computational efficiency of the VLBI algorithm. Therefore, after using stream
optimization, the acceleration effect is significantly improved.

Table 2. Speedup after using different optimization strategies (Result: The result of the residual delay
of one channel data.)

.
Method Time(ms) Speedup Result (s)

Serial 2461.5 1× −1.28× 10−11

Initialization 135.6 18.1× −1.28× 10−11

Coalesce 128.6 19.1× −1.28× 10−11

Allocation 111.6 22.1× −1.28× 10−11

CUDA stream 67.3 36.6× −1.28× 10−11

4.2.2. The Comparison with Serial Version and Multi-CPU Version

Table 3 lists the specific time-consumption comparison of the serial version and the
GPU version. The last two rows show that the time and speedups of “Calculation” (that
is, only the calculation part, excluding data transmission time) and “Overall|” (including
data transmission time), respectively. The part of fringe rotation achieves a high speedup
of about 853.5×. And the fractional delay reaches about 98× speedup. The GPU parallel
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implementation of the correlation achieves a speedup of 22.7×. Besides, the speedups of the
“Calculation” and “Overall|” are about 224.1× and 36.8×, separately. As can be seen from
Table 1, the GPU used in this paper (NVIDIA RTX 2070) has 2304 CUDA cores. In theory, it
should be 2304× the execution speed of the serial version. However, the computing power
of CPU and GPU threads si different. Besides, the data transfer between CPU and GPU is
inevitable. Therefore, compared with the serial version, the GPU-based parallel version
cannot achieve an acceleration of 2304×.

It is obvious from Table 3 that the GPU version achieves remarkable acceleration
factors on the platform as compared to the serial version. As for the practical data process-
ing, the execution time of the serial version is about 39s, which is far from meeting the
requirements of real-time processing. However, the GPU-based method can fulfill the data
processing in about 1s in that it takes full advantages of the computational power of GPUs,
the high bandwidth, as well as low latency of shared memory, and benefits from exploiting
the massively parallel nature of GPUs.

Table 3. The comparison between GPU version and serial version.

Component Serial Version (ms) GPU Version (ms) Speedup

Integer delay 0 0 1×
Fringe rotation 28, 164 33 853.5×

Fractional delay 10, 496 107.2 98×
Correlation 790 34.8 22.7×

Residual delay 1.2 1 1×
Calculation 39, 451.2 176 224.1×

Overall 39, 451.2 1072 36.8×

To further evaluate the efficiency of the proposed parallel approach, we compare
the GPU implementation with the multi-CPU correlator developed by Beijing Aerospace
Control Center ( denoted as the multi-CPU version in this article). The multi-CPU version
runs on a workstation with two CPUs. The processor employed in the experiment is Intel(R)
Xeon(R) CPU E5-2683 v3 with 28 threads (2 GHz). The workstation has 2 correlation
computing nodes. Each node starts 20 threads to perform the computing tasks.

Table 4 is consistent with the content in Table 3. Compared with the fringe rotation,
fractional delay and correlation of the multi-CPU version, the acceleration ratio of the
GPU version has reached 124.7×, 6.4×, and 7×, respectively. Specifically, the part of
“Calculation” and “Overall|” achieves about 28.6× and 4.7× speedup. It can be seen from
the results that the multi-CPU version requires about 5 s to process data of 6 s observation
time. Although the multi-CPU version can achieve real-time processing, the GPU version
only needs 1s, which can further improve the processing capability. This means that it
may take 5 such machines to achieve the GPU computing effect, as shown in Figure 4.
The details of the time consumption on the three versions are displayed in Figure 10. It
can be seen, in Tables 3 and 4, that the acceleration effect of the fringe rotation is more
obvious than the fractional delay. The main reasons include two sides: firstly, the fractional
delay contains the FFT operation, and the FFT operation has the highest time complexity;
secondly, Compared with the Intel IPP library, the optimization effect of CUDA CUFFT has
the limited optimization capabilities. Therefore, the optimization effect of the fractional
delay is not as good as the fringe rotation.
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Table 4. The comparison between GPU version and message passing interface (MPI) version.

Component Multi-CPU Version (ms) GPU Version (ms) Speedup

Integer delay 0 0 1×
Fringe rotation 4114 33 124.7×

Fractional delay 686.7 107.2 6.4×
Correlation 243.2 34.8 7×

Residual delay 1.4 1 1.4×
Calculation 5045.3 176 28.6×

Overall 5045.3 1072 4.7×

(a) (b)

(c)

Figure 10. Execution time (ms) of each part in VLBI. (a) Fringe rotation. (b) Fractional delay.
(c) Correlation.

4.2.3. The Comparison of Data Processing Rate

In the practical application, the data processing rate needs to reach 128 Mbps to meet
the requirements of the real-time processing. From Table 5, it can be seen that the multi-
CPU version has achieved the requirements of real-time processing. With the increase of
data volume and data transmission rate, it will be difficult to undertake the future data
processing. As for the GPU-based method, it has enough computing power margin to deal
with this situation. Combining Figure 4 and Table 5, it can be summarized that the GPU-
based VLBI algorithm can complete signal processing with fewer hardware resources and
higher data processing efficiency than the multi-CPU version. Therefore, the GPU-based
VLBI correlator will play a greater role in deep space exploration system.

Table 5. The comparison between GPU version and serial version.

Component Running Time (ms) Data Processing Rate (Mbps)

Serial version 39,451.2 19.3
Multi-CPU version 5045.3 151.2

GPU version 1072 711.7

4.3. Accuracy Analysis

VLBI technology aims to achieve higher observation accuracy by increasing the dis-
tance among stations. Therefore, the parallel algorithm design of the VLBI algorithm
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should not only pay attention to the final acceleration effect, but also control the calculation
error within an acceptable range.

Theoretically, there should be no difference between the results of the GPU-based
method and the CPU-based method. In fact, the mathematical function libraries of the
GPU and the CPU have different calculation accuracy. Furthermore, the instruction set
optimization degree of CPUs and GPUs is different. Thus, their calculation results will
exist a little difference in value.

As shown in Table 6, the value differences between CPU version and GPU version are
listed for comparison. Mean absolute error (MAE) are employed to measure the difference
of the two methods. It can be seen that the errors of FFT and fractional delay between two
versions are both around 10−6. The MAE difference of the residual delay step is about
5.1× 10−15. It can be observed from the overall MAE results that the calculation accuracy
of the angular position can bee guaranteed.

Table 6. Differences in calculation results between serial version and parallel version.

Algorithm MAE

Fringe rotation 0
FFT 0.8× 10−6

Fractional delay 1.75× 10−6

total 5.1× 10−15

5. Conclusions

In this paper, a GPU-based VLBI parallel correlator is proposed to meet the growing
demands for high computing power. Through the algorithm complexity analysis, the tar-
gets of the parallel acceleration are determined, namely calculations of the fringe rotation,
fractional delay and the correlation. By assigning the multi-point calculation as single
thread task, the VLBI algorithm is massively parallelized. As a kind of computing-intensive
and data-intensive issue, the GPU-based VLBI algorithm is further optimized in terms
of data transfer. Through multi-level optimization strategies, namely data transmission
rules, coalescing access and concurrent pipelines, the efficiency is increased by 2-fold.
Under the premise of ensuring the calculation accuracy, compared with the serial ver-
sion, the calculation part and the overall calculation have reached the speedups of 224.1×
and 36.8×, respectively. Compared with the multi-CPU version, the corresponding parts
have achieved speedups of 28.6× and 4.7×. In addition, the data processing rate of the
GPU-based correlator can reach 712 Mbps, which can far meet the current ground station
processing needs. The GPU-based correlator outperforms the actual multi-CPU-based
correlator in terms of computing performance and data rate. In the future work, we will
study the multi-GPU-based VLBI algorithm and deploy it to the better performance CPU
cluster to further improve the data processing capability for deep space exploration.

Author Contributions: Conceptualization, F.Z. and S.H.; Formal analysis, F.Z. and C.Z.; Methodol-
ogy, C.Z. and S.H.; Project administration, F.Z.; Supervision, F.Z., F.M. and S.H.; Visualization, C.Z.
and D.X.; Writing—original draft, C.Z.; Writing— review and editing, F.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 61871413, 41801236, and in part by the Fundamental Research Funds for the Central
Universities under Grant XK2020-03.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the three anonymous reviewers for improving
the quality of this article with their comments.



Remote Sens. 2021, 13, 1226 18 of 19

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hewett, P. An introduction to radio astronomy. Endeavour 1997, 21, 134. [CrossRef]
2. Hao, W.; Dong, G.; Li, H.; Huang, L.; Zhou, H. The spacecraft signal correlation approach in China’s Delta-DOR correlator for

Chang’E-3 mission. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014; IEEE: New York,
NY, USA, 2014; pp. 1–9.

3. Antreasian, P.G.; Baird, D.T.; Border, J.S.; Burckhart, P.D.; Graat, E.J.; Jah, M.K.; Mase, R.A.; Mcelrath, T.P.; Portock, B.M. 2001
Mars Odyssey Orbit Determination During Interplanetary Cruise. J. Spacecr. Rocket. 2005, 42, 394–405. [CrossRef]

4. Kroger, P.M.; Folkner, W.M.; Iijima, B.A.; Hildebrand, C.E. Very-long-baseline-interferometry measurements of planetary orbiters
at Mars and Venus. NASA STI/Recon Tech. Rep. A 1993, 95, 1023–1037.

5. Hilliard, L.M.; Petrov, L.; LeMoine, F.; Rajagopalan, G.; Elosegui, P.; Ruszczyk, C.; Gipson, J.; Horsley, D.; Brown, G. 5 Year
Technology Roadmap for VLBI Global Observing System (VGOS). In Proceedings of the IGARSS 2019—2019 IEEE International
Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: New York, NY, USA, 2019;
pp. 8956–8959.

6. García-Carreño, P.; García-Álvaro, S.; López-Pérez, J.; Patino-Esteban, M.; Serna, J.M.; Vaquero-Jiménez, B.; López-Fernández, J.;
López-Espí, P.; Sánchez-Montero, R. Geodetic VLBI ultra low noise broad-band receiver for 13 meter VGOS radiotelescopes.
In Proceedings of the 2016 11th European Microwave Integrated Circuits Conference (EuMIC), London, UK, 3–4 October
2016; pp. 476–479.

7. Whitney, A.R.; Cappallo, R.; Aldrich, W.; Anderson, B.; Bos, A.; Casse, J.; Goodman, J.; Parsley, S.; Pogrebenko, S.;
Schilizzi, R.; et al. Mark 4 VLBI correlator: Architecture and algorithms. Radio Sci. 2004, 39, 1–24. [CrossRef]

8. Primiani, R.A.; Young, K.H.; Young, A.; Patel, N.; Wilson, R.W.; Vertatschitsch, L.; Chitwood, B.B.; Srinivasan, R.; MacMahon, D.;
Weintroub, J. SWARM: A 32 GHz Correlator and VLBI Beamformer for the Submillimeter Array. J. Astron. Instrum.
2016, 05, 1641006. [CrossRef]

9. Kiuchi, H.; Imae, M.; Kondo, T.; Sekido, M.; Hama, S.; Hoshino, T.; Uose, H.; Yamamoto, T. Real-time VLBI system using ATM
network. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1290–1297. [CrossRef]

10. Gan, J.; Xu, Z. The Research of FPGA Acceleration for VLBI Hardware Correlator. In Proceedings of the 2018 Progress in
Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–5 August 2018; pp. 2088–2091.

11. Zhu, R.; Wu, Y.; Li, J.; Guo, S.; Gan, J.; Xu, Z. The Development of VLBI Digital Backend in SHAO. In Proceedings of the 2018
Progress in Electromagnetics Research Symposium (PIERS-Toyama), Toyama, Japan, 1–5 August 2018; pp. 1310–1314.

12. Hargreaves, J.E. UniBoard: Generic hardware for radio astronomy signal processing. In Millimeter, Submillimeter, and Far-
Infrared Detectors and Instrumentation for Astronomy VI; Holland, W.S., Ed.; International Society for Optics and Photonics, SPIE:
Amsterdam, The Netherlands, 2012; Volume 8452, pp. 805–810. [CrossRef]

13. Liu, J.; Kang, X.; Dong, C.; Zhang, F. Simulation of Real-Time Path Planning for Large-Scale Transportation Network Using
Parallel Computation. Intell. Autom. Soft Comput. 2019, 25, 65–77. [CrossRef]

14. M.Jamel, A.; Akay, B. A Survey and Systematic Categorization of Parallel K-means and Fuzzy-c-Means Algorithms.
Comput. Syst. Sci. Eng. 2019, 34, 24.

15. M.Jamel, A.; Akay, B. Human Activity Recognition Based on Parallel Approximation Kernel K-Means Algorithm.
Comput. Syst. Sci. Eng. 2020, 35. [CrossRef]

16. Guo, Y.; Cui, Z.; Yang, Z.; Wu, X.; Madani, S. Non-local DWI Image Super-resolution with Joint Information Based on GPU
Implementation. Comput. Mater. Contin. 2019, 61, 1205–1215. [CrossRef]

17. Al-Tawil, K.; Moritz, C.A. Performance Modeling and Evaluation of MPI. J. Parallel Distrib. Comput. 2001, 61, 202–223. [CrossRef]
18. Lambeck, K. Methods and geophysical applications of satellite geodesy. Rep. Prog. Phys. 1979, 42, 547–628.

doi:10.1088/0034-4885/42/4/001. [CrossRef]
19. Zheng, W.; Zhang, X.; Shu, F. CVN Harddisk System and Software Correlator in e-VLBI Experiments. Prog. Astron.

2005, 23, 272–286.
20. Deller, A.T.; Tingay, S.J.; Bailes, M.; West, C. DiFX: A Software Correlator for Very Long Baseline Interferometry Using

Multiprocessor Computing Environments. Publ. Astron. Soc. Pac. 2007, 119, 318–336. [CrossRef]
21. Liu, Y.; Zhou, Y.; Zhou, Y.; Ma, L.; Wang, B.; Zhang, F. Accelerating SAR Image Registration Using Swarm-Intelligent GPU

Parallelization. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5694–5703. [CrossRef]
22. Zhang, F.; Hu, C.; Li, W.; Hu, W.; Li, H.C. Accelerating time-domain SAR raw data simulation for large areas using multi-GPUs.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3956–3966. [CrossRef]
23. Hobiger, T.; Kimura, M.; Takefuji, H.; Oyama, T.; Koyama, Y.; Kondo, T.; Gotoh, T.; Amagai, J. GPU Based Software Correlators—

Perspectives for VLBI2010. In Proceedings of the Sixth International VLBI Service for Geodesy and Astronomy, Hobart, Australia,
7–13 February 2010; pp. 40–44.

24. Broekema, P.C.; Mol, J.D.; Nijboer, R.; Van Amesfoort, A.S.; Brentjens, M.A.; Loose, G.M.; Klijn, W.F.A.; Romein, J.W. Cobalt: A
GPU-based correlator and beamformer for LOFAR. Astron. Comput. 2018, 23, 180–192. [CrossRef]

25. Yin, Q.; Wu, Y.; Zhang, F.; Zhou, Y. GPU-Based Soil Parameter Parallel Inversion for PolSAR Data. Remote Sens. 2020, 12, 415.
[CrossRef]

http://doi.org/10.1016/S0160-9327(97)80228-1
http://dx.doi.org/10.2514/1.15222
http://dx.doi.org/10.1029/2002RS002820
http://dx.doi.org/10.1142/S2251171716410063
http://dx.doi.org/10.1109/36.843021
http://dx.doi.org/10.1117/12.925124.
http://dx.doi.org/10.31209/2018.100000013
http://dx.doi.org/10.32604/csse.2020.35.441
http://dx.doi.org/10.32604/cmc.2019.06029
http://dx.doi.org/10.1006/jpdc.2000.1677
http://dx.doi.org/10.1088/0034-4885/42/4/001
http://dx.doi.org/10.1086/513572
http://dx.doi.org/10.1109/JSTARS.2020.3024899
http://dx.doi.org/10.1109/JSTARS.2014.2330333
http://dx.doi.org/10.1016/j.ascom.2018.04.006
http://dx.doi.org/10.3390/rs12030415


Remote Sens. 2021, 13, 1226 19 of 19

26. Zhang, F.; Yao, X.; Tang, H.; Yin, Q.; Hu, Y.; Lei, B. Multiple mode SAR raw data simulation and parallel acceleration for Gaofen-3
mission. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2115–2126. [CrossRef]

27. Zhang, F.; Li, G.; Li, W.; Hu, W.; Hu, Y. Accelerating spaceborne SAR imaging using multiple CPU/GPU deep collaborative
computing. Sensors 2016, 16, 494. [CrossRef]

28. Li, Z.; Su, D.; Zhu, H.; Li, W.; Zhang, F.; Li, R. A Fast Synthetic Aperture Radar Raw Data Simulation Using Cloud Computing.
Sensors 2017, 17, 113. [CrossRef] [PubMed]

29. Wang, Z.; Hou, Z.; Zhang, Y. Improvement of the Long-Term Orbit Prediction for LEO Navigation Satellites Using the Inner
Formation Method. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2532–2542. [CrossRef]

30. Li, Y.-H.; Gao, Y.-L. Satellite orbit prediction based on two-stage filter. In Proceedings of the 2011 3rd International Conference on
Advanced Computer Control, Harbin, China, 18–20 January 2011; pp. 44–47. [CrossRef]

31. Khan, D.; Ali, G.; Khan, A.; Chu, Y.; Nisar, K. A New Idea of Fractal-fractional Derivative with Power Law Kernel for
Free Convection Heat Transfer in a Channel Flow between Two Static Upright Parallel Plates. Comput. Mater. Contin.
2020, 65, 1237–1251. [CrossRef]

32. DeviRangaLakshmi, A.; Inabithini, S.R.; Venkataramana, P. Realization of signal processing algorithms using Intel integrated
performance primitives (IPP). In Proceedings of the 2017 International Conference on Innovations in Information, Embedded and
Communication Systems (ICIIECS), Coimbatore, India, 17–18 March 2017; pp. 1–4.

33. Swaroop, K.V.S.; Rao, K.R. Performance analysis and comparison of JM 15.1 and Intel IPP H.264 encoder and decoder. In
Proceedings of the 2010 42nd Southeastern Symposium on System Theory (SSST), Tyler, TX, USA, 7–9 March 2010; pp. 371–375.

http://dx.doi.org/10.1109/JSTARS.2017.2787728
http://dx.doi.org/10.3390/s16040494
http://dx.doi.org/10.3390/s17010113
http://www.ncbi.nlm.nih.gov/pubmed/28075343
http://dx.doi.org/10.1109/TAES.2019.2891158
http://dx.doi.org/10.1109/ICACC.2011.6016363
http://dx.doi.org/10.32604/cmc.2020.011492

	Introduction
	Methodology
	The Principle of VLBI
	The Physical Process of the VLBI
	The Signal Model of VLBI Correlator

	The Implementation of VLBI Correlator
	Rough Delay Calculation
	Delay Compensation
	Signal Correlation
	Angular Position Calculation

	The Analysis of Algorithm Complexity

	Proposed Method
	The Parallel Optimization Strategies
	The CPU-GPU Data Transfer Optimization
	The Solution of the Uncoalescing Problem
	The Thread Task Allocation
	The Cuda Stream

	The Overall Approach of Gpu Parallel VLBI

	Results
	Experimental Configuration
	Efficiency Analysis
	The Analysis of the Optimization Strategies
	The Comparison with Serial Version and Multi-CPU Version
	The Comparison of Data Processing Rate

	Accuracy Analysis

	Conclusions
	References

