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Abstract: Woody species encroachment on grassland ecosystems is occurring worldwide with both
negative and positive consequences for biodiversity conservation and ecosystem services. Remote
sensing and image analysis represent useful tools for the monitoring of this process. In this paper, we
aimed at evaluating quantitatively the potential of using high-resolution UAV imagery to monitor the
encroachment process during its early development and at comparing the performance of manual
and semi-automatic classification methods. The RGB images of an abandoned subalpine grassland
on the Western Italian Alps were acquired by drone and then classified through manual photo-
interpretation, with both pixel- and object-based semi-automatic models, using machine-learning
algorithms. The classification techniques were applied at different resolution levels and tested for
their accuracy against reference data including measurements of tree dimensions collected in the
field. Results showed that the most accurate method was the photo-interpretation (≈99%), followed
by the pixel-based approach (≈86%) that was faster than the manual technique and more accurate
than the object-based one (≈78%). The dimensional threshold for juvenile tree detection was lower
for the photo-interpretation but comparable to the pixel-based one. Therefore, for the encroachment
mapping at its early stages, the pixel-based approach proved to be a promising and pragmatic choice.

Keywords: Alps; drone; image analysis; land cover change; larch; OBIA; photo-interpretation;
pixel-based classification

1. Introduction

Land-use and climate change are the main processes predicted to have major effects on
biodiversity and the functioning of terrestrial ecosystems [1,2]. In montane and subalpine
grasslands, below the treeline, land abandonment is the main driver of shrub and tree colo-
nization [3]. In Europe, semi-natural grasslands, mainly used for foraging purposes, have
been prevalent on south-facing slopes and managed to prevent tree establishment [4–6]. In
the last few decades, socio-economic transformations in the Alps have led, in some areas,
to the decline of livestock farming and agriculture and consequently to land abandon-
ment [7,8]. This process opened the way to woody shrub and tree encroachment, which, in
turn, has the potential to modify the ecosystem structure and function, with both negative
and positive consequences for ecosystem services [9–11] and biodiversity [12,13]. Generally,
the woody encroachment of grasslands causes an alteration of microclimatic conditions and
a reduction of herbaceous cover, which contribute to the consequent decrease of species
richness in the long-term, e.g., [12–14]. Nevertheless, this observation depends on the
encroachment stage and the relative woody cover. In fact, many studies observed a peak in
plant species diversity at intermediate levels of woody cover, especially during the so-called
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“shrub islands stage”, characterized by an increase in species richness and a decrease in
the cover of dominant native grasses [15–17]. Furthermore, a long-term reduction in the
number of species was also observed for insects, birds and small mammals, e.g., [18–20].
Similar to what we observed for the ecosystem structure, the woody encroachment effects
on ecosystem services depend on the stage of the chronosequence process. Indeed, at the
turn of the initial and intermediate stages, when woody and herbaceous species coexist
in a heterogeneous mosaic, CO2 fixation increases [21] as a consequence of the increase
in biomass production and the decrease in decomposition rate [22]. Moreover, woody
encroachment is also associated with changes in soil properties, in particular with the
increasing of soil C:N ratio and/or the reduction of N, P or K contents [23]. Although there
is evidence of common trends in the consequences of woody encroachment, it is important
to bear in mind that the effects of this process depend on several ecological aspects which
characterize the study area, such as climate, soil properties, plant community structure,
site history and many others.

The main species involved in tree encroachment of the subalpine belt are Picea abies
(L.) H. Karst, Larix decidua Mill., Pinus cembra L., Pinus uncinata Ramond ex DC., and
Alnus alnobetula (Ehrh.) K. Koch [8], and their establishment in abandoned grasslands is
often preceded by the invasion of the shrub species coming from the surrounding forest
undergrowth. The onset, rate and extent of shrub and tree encroachment in grasslands
may depend not only on land use but also on species dispersal, topographic gradients and
biotic processes (i.e., competition and facilitation) [5,24–27]. Moreover, climatic variations
have also been associated with pulses of the encroachment rate, making the disentangling
of all these effects very complex.

The development of new methods for vegetation monitoring, which are faster and
easier compared to field surveys, represents a necessary step forward for the investigation
of encroachment dynamics and its consequences on ecosystem structure and functioning.
In fact, studying this ecological process generally requires a huge amount of data, widely
distributed across a large geographical area, and frequently repeated over time, which
can be hardly obtained by “standard” systematic approaches in the field (i.e., vegetation
surveys). So far, encroachment monitoring at a local scale has mostly been conducted in
the field by measuring variables in permanent plots, such as trunk diameter, tree height,
percentage of canopy cover, number of trees, tree and shrub species. These methods
are well-developed and allow researchers to collect good data but, at the same time, can
be very time-consuming and logistically challenging in remote areas. For these reasons,
ground-based surveys are not carried out at the frequency required to statistically detect
fast processes or inter-annual changes [28].

In this context, remote sensing represents a useful tool for the monitoring of the
encroachment process within grasslands, being a suitable source of data for vegetation
classification. Mapping and monitoring shrub and tree encroachment through remote
sensing may contribute to a more thorough understanding of the mechanisms involved in
this process, its spatial patterns and temporal rates, and the consequences on ecosystem
structure and functioning. Remote sensing generated a growing interest in the last few
decades for its applications in ecological research and management purposes, counting
among the essential approaches for data acquisition on vegetation [29–33]. In this context,
remote sensing can be put forward as a fundamental approach for mapping and moni-
toring essential biodiversity variables on both a global and local scale [34–37]. Regarding
vegetation mapping, the most common approach to classifying land-cover types and moni-
toring vegetation dynamics is currently satellite-based remote sensing [28,38–41], followed
by piloted aircraft imagery [4,42,43]. However, the pixel size range (e.g., 5 to 30 m) of
high-resolution satellite data (e.g., Pleiades, Sentinel, Landsat) hinders the detection of
small-scale changes or the differentiation between similar land-cover types. On the other
hand, high-resolution satellite images (e.g., QuickBird, IKONOS) are expensive and might
not always be accessible due to financial constraints or the overall complexity of data
acquisition [28,39].
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So far, most of the studies that tried to replace fieldwork in the investigation of land
cover change due to encroachment resorted to the analysis of satellite images [40,41]. How-
ever, using satellite imagery can produce large errors when applied to highly-heterogeneous
vegetation on a fine scale, mainly due to pixel-mixing occurring when the pixel size is not
small enough to avoid a combination of different species inside it. Due to resolution limits
of satellite imagery, only long-term dynamics at landscape- to basin scale of shrub and tree
cover can be accurately detected through commonly available remote sensing products
without excessive costs. For all these reasons, there is still a lack of knowledge regarding the
early stages of the encroachment occurring at small scale, particularly regarding the rate of
the process onset and the spatial and temporal distribution of the invasive woody species
from the beginning of the process. Indeed, during the first stages of the encroachment,
the shrub and tree individuals colonizing the abandoned area are quite small and almost
impossible to detect using satellite or airborne data.

In this context, Unmanned Aerial Vehicles (UAVs), which can achieve a very high
and flexible spatial resolution, represent a great opportunity to monitor the early stages of
the encroachment process and to replace laborious and time-consuming fieldwork. The
use of UAVs can be a useful tool for cost-effective land-cover monitoring due to several
advantages and in particular extremely high spatial resolution, with a pixel size of a
few centimeters, and a potentially high-resolution time-series imagery, thanks to lower
deployment and acquisition issues compared to high-resolution satellite imagery. Few
studies have used UAV-acquired images to classify vegetation and monitor its dynamics at
the community level [44–50]. However, most of these studies focused on the identification
of wide tree canopies or on the detection of invasive alien species [47,48,51–53], and only a
small number investigated juvenile trees and shrubs and herbaceous plant species at small
scale [50,54]. Finally, to the best of our knowledge, none of these studies were conducted in
the Alps.

However, image resolution is not the only issue when the analysis focuses on small-
grain landscapes. Areas showing small-scale heterogeneity due to the mosaic pattern
of shrub and herbaceous formations, which are typical of grasslands under recent en-
croachment, make the elaboration of accurate vegetation maps more challenging. Indeed,
abandoned grasslands evolving into shrublands exhibit high spatial and temporal dy-
namics, resulting in heterogeneous landscape patterns [41,55]. Furthermore, shrublands
are usually composed of various vegetation types, including different shrubs, trees or
herbs, where shrubs can be the persistent dominating vegetation type or only a transitional
vegetation formation depending on elevation and slope [41,56].

Accurate classification of high-resolution imagery may allow detecting the onset of
the encroachment process and the establishment of the first small woody individuals.
Since the manual classification of high-resolution drone imagery tends to be laborious
and prone to the subjectivity of interpretation, several quantitative approaches have been
developed to automate and speed up vegetation classification. Classification accuracy
can be affected by the properties and quality of the spectral information [57] but also by
the classification approach. If processing very high-resolution data, classifications based
on the object-based approach [53,58,59] tend to provide better results than the traditional
pixel-based approach [57,60].

Moreover, the UAV approach not only has the potential to substitute laborious ground
surveys, but it may also allow collecting frequent time-series data in an easier way. The
temporal aspect is very important for encroachment investigation because the analysis
of image time-series may help to investigate the temporal patterns of the process and
its rate fluctuations. Indeed, there still are unanswered questions about the time frame
needed to detect shrub and tree establishment in abandoned semi-natural grasslands and
about the effects of climatic fluctuations on the encroachment rate, because of the lack of
knowledge regarding the early stages of this ecological process in different climate and
vegetation types.
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In order to evaluate quantitatively the potential and the advantages of using high-
resolution UAV data to monitor the encroachment process during the early stages of its
development in a subalpine grassland, in this paper, our aim was to answer the following
questions: (1) What is the accuracy of manual photo-interpretation during the early phases
of the encroachment? (2) Can pixel- and/or object-based semi-automatic classification
methods efficiently replace manual photo-interpretation? (3) What is the size of the smallest
tree colonizing the grassland that can be detected by different classification methods?
(4) Is it possible to detect a short-term (i.e., less than 10 years) temporal pattern of the
encroachment through manual and semi-automatic classification?

2. Materials and Methods
2.1. Study Area and Vegetation Characteristics

The study was carried out in a subalpine grassland in the north-western Italian Alps.
The site is an abandoned pasture that was extensively grazed until 2007 and is located in
the Aosta Valley region, at a short distance from the village of Torgnon, at an elevation
of 2160 m asl (Figure 1). The terrain is characterized by an average slope of 4◦, which is
south facing (195◦), and the soil is classified as Cambisol (FAO/ISRIC/ISS). Furthermore,
the site is characterized by an intra-alpine semi-continental climate, with a mean annual
temperature of 3.1 ◦C and a mean annual precipitation of 880 mm. On average, from the
end of October to late May, the site is covered by a thick snow cover (90 to 120 cm) which
limits the growing period to about 5 months during the year [61].
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Figure 1. Study area: (a) ESRI physical map of Italy with the red dot highlighting the location of the study area in the Aosta
Valley region (yellow); (b) ESRI satellite image of the grassland with surrounding larch forest; (c) portion of the area covered
by drone that was used for classification (coordinate system: EPSG:4326–WGS84).

The study area is occupied by a species-rich Nardus grassland, a priority habitat (6230)
listed in the Habitat Directive (92/43/CEE). The dominant vegetation of the area consists
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of Nardus stricta L., Festuca nigrescens All., Arnica montana L., Carex sempervirens Vill., Geum
montanum L., Anthoxanthum alpinum L., Potentilla aurea L. and Trifolium alpinum L. This
habitat occurs in almost all the EU member states, except for Estonia, Malta and Cyprus,
and more than 40% of its area is located within the Alpine bioregion (Alps, Pyrenees and
the Carpathian region), with 23% occurring in Italy [62]. As a consequence of land aban-
donment, in the last few decades, large areas of mountainous Nardus grasslands evolved
into heath or shrub communities or were colonized by forests as secondary succession (i.e.,
woody plant encroachment) [62]. A simulation study conducted in a French subalpine
grassland [27] predicted that abandoned grasslands could turn into woody communities
within a few decades, with juveniles of Larix decidua Mill. appearing outside the initial
population source after 20 years, and mature trees about 50 years after the land-use change.

Within the study area, the shrub species involved in the encroachment process are
mainly Calluna vulgaris (L.) Hull, Juniperus communis L., Vaccinium myrtillus L. and V.
uliginousm L. To a lesser extent, there are also individuals of Rhododendron ferrugineum L.,
Vaccinium vitis-idaea L. and Arcostaphylos uva-ursi (L.) Spreng. Regarding tree species, the
area is being colonized only by Larix decidua dispersing from the surrounding forest. In
this study, herbaceous and woody species were divided into four vegetation classes that
were captured using high-resolution drone imagery: (1) larch trees, (2) brownish and (3)
greenish shrubs, and (4) the area dominated by the herbaceous species characterizing the
grassland community (Figure 2).
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brownish shrubs (b), greenish shrubs (c) and grassland (d). Portions of the drone images acquired in
October 2018.

2.2. Image Acquisition

RGB images were acquired in mid-October 2012 and 2018 because the senescent phase,
which began in October and lasted for at least four weeks, was considered the best moment
to achieve a good classification quality, according to the vegetation phenology. Indeed,
at the onset of the growing season in May, the area was mainly grayish and brownish,
except for evergreen species such as J. communis, whereas during most of the vegetation
growth the whole area appeared green (Figure 3a). On the contrary, in October, during
senescence, the highest rate of species differentiation occurred because larches became
yellow, C. vulgaris and Vaccinium sp. were brownish, and J. communis remained a green
and herbaceous species of the grassland, dominated by N. stricta, which appeared grayish
(Figures 2 and 3b).

Flight was carried out with a DJI™ Phantom 4 Pro equipped with a compact camera
FC6310 (20 Mpixel; CMOS 1” sensor, FOV 84◦ and focal length 8.8 mm/24 mm–35 mm
format equivalent). The aspect ratio was kept at 3:2 (5472 × 3648 pixels). The images
were captured on 4 October, between 1:30 and 1:45 PM. Flight planning was designed
with 75% forward overlap and 70% side overlap at ground level. The photogrammetric
block consisted of 12 strips (211 images), flown at about 30 m above ground level and at
an average speed of 3 m/s, with a GSD of about 1.0 cm. Flight lines were oriented along
the North-South direction. Each point in the whole area was covered by >9 images. For
external orientation and bundle block adjustment, nine ground control points (GCPs) were
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marked and measured by using Geomax Z35 Pro GNSS antennas in RTK base-rover mode;
the base station was installed on a fixed and known point near the site.
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Figure 3. Same portion of the study area extracted from the images that were acquired by drone
during two different phenological phases, in mid-August (a) and mid-October (b) 2018.

2.3. Photogrammetric Data Processing

All the photogrammetric process was performed in PhotoScan Agisoft software (LLC
Company, St. Petersburg, FL, USA), and high-resolution/high-accuracy outputs (DSM
and RGB orthomosaic) were achieved. To investigate the image classification accuracy
at different resolution levels, the original orthomosaic exported at high spatial resolution
(1 cm; HR = high resolution) in 2018, was resized with nearest-neighbor interpolation from
its original size (10,109 × 14,952) to medium (2022 × 2990) and low (505 × 748) scale,
with a spatial resolution of 5 (MR = medium resolution) and 20 cm (LR = low resolution),
respectively (Figure 4). Regarding the 2012, only an LR original orthomosaic was available.
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Figure 4. Same portion of the study area at different spatial resolutions: 1 cm (a), 5 cm (b) and 20 cm
(c); the original image (a) was acquired by drone in October 2018, and it was then resized to obtain
two more resolution levels.

2.4. Ground Truth

To carry out a quantitative comparison between the “ground truth” and the data
obtained through different classification methods, we collected data representing ground
truth by performing a detailed vegetation survey in mid-October 2018, at the same time
as image acquisition. We installed 47 transects 100-m long in the field. Transects were
arranged every 3 m from the eastern to the western side of the study area that was located
in a Cartesian coordinate system, where y- and x-axis were respectively orthogonal and
parallel to the transect direction (Figure 5a). Moving from the axis origin along the x-
direction, we recorded the species and length of all the shrub individuals growing below
each transect. At the same time, we geo-located all the larches growing on the right side
of each transect, using Geomax Z35 Pro GNSS antennas in RTK base-rover mode, and for
each individual, we measured trunk diameter at ground level and maximum height and
mean canopy width. Therefore, at the end of the survey, we obtained a list including all the
larches growing within the study area with their dimensions and all the shrubs intersecting
transects with information about their species and length. This data was used, firstly, to
estimate a dimensional threshold for larch identification through different methods and,
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secondly, to compare the linear percentage cover of shrub species obtained using transects,
with their area percentage cover obtained by photo-interpretation.
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2.5. Reference Data: Sampling and Response Design

To obtain high-quality reference data for classification accuracy assessment, other
types of surveys were carried out in the field at the same time as image acquisition. In these
cases, sample locations were identified using a stratified random sampling. The study area
was divided into two discrete strata: grassland and shrubland, respectively dominated
by herbaceous and woody plant species. The sample size for reference data was set to
n = 120, after calculation through the following formula proposed by [63], which returned
the minimum number of reference samples that are requested to achieve a specific overall
accuracy (Equation (1)):
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Ô
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where N is the number of units in the map data, Ô is the standard error of the estimated
overall accuracy that we would like to achieve, Wi is the mapped proportion of the area
of class i, and Si is the standard deviation of stratum i. Because N is typically a very large
number, the second term in the denominator of Equation (1) can be ignored. The standard
error of the estimated overall accuracy was set to 0.01, according to the values for target
standard error suggested by [64]. The user’s accuracy was set to 0.98 for both shrubland
and grassland stable strata. Sample allocation was carried out taking into account the
mapped proportion of each stratum and their heterogeneity, so that 40 and 80 samples were
randomly located, respectively, within the grassland and shrubland stratum. A minimum
distance of 10 m was maintained among all the samples. We used pixels as the spatial unit
of the sampling data. The minimum mapping unit (MMU) of the reference data was set
to 100 cm2. Regarding the collection of reference data, we labelled the 120 sample plots,
assigning to each sample one of the four vegetation classes used in this study (Figure 2)
by means of observation in the field. Furthermore, we geo-located the sample plots using
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Geomax Z35 Pro GNSS antennas in RTK base-rover mode to obtain high-quality spatial
locations of the reference data (Figure 5b).

2.6. Image Classification

Image analysis was carried out using two different approaches: (i) visual photo-
interpretation by a user expert on the study area and (ii) semi-automatic classification.

Photo-interpretation (PI) was manually carried out in QGIS 3.10.1 (QGIS Development
Team, 2019) [65] by an operator interpreting the images according to their knowledge of
the vegetation in the area. The operator created a one-point vector layer for larches (i.e.,
one point for each larch location) and one polygon vector layer for larch crowns and shrubs
(Figure 6b). The number of classes was set to four, according to the number of classes
detected by the PI: (1) larches, (2) brownish shrubs, mainly represented by C. vulgaris, V.
uliginosum and V. myrtillus, (3) greenish shrubs, including the evergreen species J. communis
and R. ferrugineum, and (4) grassland. In order to estimate the size threshold for larch
identification, the operator matched the locations of the photo-interpreted larches with
field data. Furthermore, the PI was carried out on LR and HR images, to assess the effect of
pixel dimension on classification accuracy.
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Semi-automatic classification was performed in the QGIS 3.10.1 environment, using
a machine learning approach and making use of the algorithms available in OTB 7.1.0
(Orfeo ToolBox) and SCP 6.4.6 (Semi-automatic Classification) plugins. We carried out
pixel-based (PBC) and object-based (OBIA) classifications (Figure 6c,d) of HR, MR and LR
images. To perform PBC and OBIA, we used Random Forest (RF) [66] classification models,
based on several studies that highlighted the efficiency and power of RF approaches in the
classification of remote sensing imagery, e.g., [67,68]. In general, RF classifiers were used
with satisfactory results in several mapping applications for different vegetation types,
such as bog communities [69], invasive plant species [70] and, especially, for heterogeneous
categories such as shrublands [71] and grasslands [46], which are the most difficult to
classify. Moreover, RF classifiers were compared to other classifiers, such as support vector
machine (SVM) and AdaBoost, which in some cases showed similar or even a higher
classification accuracy [72–75]; RF classifiers are more user-friendly, and the algorithms are
faster to train and more stable. We set model parameters as follows: maximum depth of
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the tree = 5; minimum number of samples in each node = 10; cluster possible values of a
categorical variable into K = 4; maximum number of trees in the forest = 500; sufficient
accuracy (OOB error) = 0.01; training and validation ratio = 0.8. RF models, were trained
with five training regions per class. To obtain random training regions, random points
were generated across the whole area, avoiding the overlap with the 120 plots constituting
the reference data (see Section 2.5), and were manually labelled, according to the four
vegetation classes described above. Afterwards, the training regions (hereafter ROI) were
manually drawn around five points per class, randomly selected among all the manually
labelled points.

Six RF models were trained (3 × 2), one for each resolution level and one for each of
the two different types of image: (1) original and (2) smoothed. We obtained the second
type of image by running an iterative edge-preserving image smoothing algorithm, which,
for any given pixel of the input image, returned a filtered value corresponding to the
average spectral signature of the neighborhood pixels, that are both close in space and
spectral signatures. More precisely, neighborhood pixels are those pixels spatially closer
than the spatial radius parameter (spatialr), that in this study was set to 5, 20 or 100,
respectively for low-, medium- and high-resolution images, and with spectral signature
having Euclidean distance to the input pixel lower than the range radius (ranger) that
was set to 15. Regarding OBIA, an additional step to obtain image objects was carried
out, producing a segmentation for both original and smoothed images. Segmentation
was performed in the Monteverdi module of Orfeo ToolBox repository and consisted
of three steps: (i) smoothing (LSMSSegmentation), with the same parameters described
above, (ii) small region merging (LSMSSmallRegionMerging), with a threshold value of 1,
16 and 400 pixels, respectively, for low-, medium- and high-resolution images, and (iii)
vectorization (LSMSVectorization) to obtain mean and standard deviation values of the
three bands for each image object. The threshold values for the region merging were set
up according to the image resolution, in order to create objects with a fixed minimum
surface area of 400 cm2, which corresponds to the pixel area of the image at the lowest
resolution (i.e., 20 cm). All these steps were made starting from HR, MR and LR images,
which were then classified by means of an RF model, trained with five ROIs per class, as
mentioned before.

The accuracy assessment was carried out in two steps on both “raw” and “cleaned”
classification maps. A first accuracy assessment was preceded immediately by the classifica-
tion process performed through the PBC and OBIA. Afterwards, all the classification maps
obtained through PBC were post-processed to “clean” the classification output and try to
improve the classification accuracy, which was assessed again thanks to a second accuracy
assessment. Post-processing included raster filtering of PBC maps with a threshold value
of 1, 16 and 400 pixels respectively for LR, MR and HR images. This step of the analyses
aimed at reducing the potential salt and pepper effect (i.e., noise consisting in a scattered
occurring of black and white pixels due to transmission errors) or the presence of noise
due to small shadows in the raw classification maps, and at quantifying the effect of the
filtering algorithm on the classification accuracy. The filtering step was not performed on
OBIA classification maps where the same thresholds were already applied through the
small-region-merging step. The whole workflow of image classification through the three
methods described above was outlined in Figure 7.

Once we obtained the classification maps and performed the accuracy assessment, we
compared, firstly the accuracy metrics of the three classification methods (i.e., PI, PBC and
OBIA) and, secondly, the accuracy metrics obtained at different resolution levels. Moreover,
to answer our question about the opportunity for using semi-automatic classification
for the detection of encroachment advance over time, the three classification methods
described above were also applied on the LR image of the study area acquired by drone in
October 2012. The image was photo-interpreted by the same operator as before and then
classified using the two most accurate models identified among PBC and OBIA models
trained on LR images. Afterwards, the classification maps of 2012, obtained through the
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three different methods, were compared with the classification maps obtained through
the same three methods applied on LR images of 2018 and a map of land cover change
was generated for each classification method (see Figures S2–S7 for land cover change and
classification maps).

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 24 
 

 

filtering step was not performed on OBIA classification maps where the same thresholds 
were already applied through the small-region-merging step. The whole workflow of 
image classification through the three methods described above was outlined in Figure 7. 

 
Figure 7. Workflow of the three image classification methods analyzed in this study. 

Once we obtained the classification maps and performed the accuracy assessment, 
we compared, firstly the accuracy metrics of the three classification methods (i.e., PI, PBC 
and OBIA) and, secondly, the accuracy metrics obtained at different resolution levels. 
Moreover, to answer our question about the opportunity for using semi-automatic 
classification for the detection of encroachment advance over time, the three classification 
methods described above were also applied on the LR image of the study area acquired 
by drone in October 2012. The image was photo-interpreted by the same operator as 
before and then classified using the two most accurate models identified among PBC and 
OBIA models trained on LR images. Afterwards, the classification maps of 2012, obtained 
through the three different methods, were compared with the classification maps obtained 
through the same three methods applied on LR images of 2018 and a map of land cover 
change was generated for each classification method (see Figures S2–S7 for land cover 
change and classification maps). 

  

Figure 7. Workflow of the three image classification methods analyzed in this study.

2.7. Analyses

The accuracy of each map classification, obtained through photo-interpretation and
semi-automatic classification methods, was assessed with the algorithms available in SCP
6.4.6 (Semi-automatic Classification) plugin, which were used to derive three accuracy
parameters from an area-based error matrix: (1) the Overall Accuracy (OA), indicating the
proportion of the reference plots that was correctly mapped; (2) the Producer’s Accuracy
(PA), that is, the proportion of the area of reference class j that was mapped as class j; and
(3) the User’s Accuracy (UA), that is, the proportion of the area mapped as class i that
had reference class i. Assuming that, in the error matrix, pij represents the proportion of
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area that has map class i and reference class j, for an error matrix of q classes, the overall
accuracy is

OA =
q

∑
j=1

pjj (2)

whereas producer’s accuracy of class j and user’s accuracy of class i are respectively
calculated with Equations (3) and (4):

Pj = pjj/p•j (3)

Ui = pii/pi• (4)

Finally, we performed the non-parametric Mann–Whitney’s test (95% CI) to inves-
tigate the differences between the dimensions of the larches surveyed in the field and
correctly classified or misclassified through the different methods. All the analyses, maps
and graphs were produced in R 3.5.1 and QGIS 3.10.1. In particular, accuracy assessment
was performed using the algorithms available in SCP 6.4.2 (Semi-automatic Classifica-
tion Plugin).

3. Results
3.1. Photo-Interpretation

The photo-interpretation (PI) of the low-resolution (LR) image, acquired in mid-
October 2018, allowed us to detect and correctly classify 135 larches (CC-larches), cor-
responding to 25.4% of the 531 ground-surveyed larches (GS-larches), identified and
measured in the field). The dimension of the CC-larches significantly differed from the
GS-larches, in terms of trunk diameter, maximum height and mean canopy width. More
precisely, the population of CC-larches showed higher trunk diameter (p < 0.001), maxi-
mum height (p < 0.001) and mean canopy width (p < 0.001) compared to the GS-larches
(Table 1).

Table 1. Descriptive statistics of the trunk diameter, maximum height and mean canopy width
of the ground-surveyed larches (GS), and of the larches correctly classified (CC) and misclassified
(MC) through the photo-interpretation of the low-(20 cm; LR) and high-resolution (1 cm; HR)
images acquired by drone in mid-October 2018 in an abandoned subalpine grassland subjected to
recent encroachment.

Parameter Statistics GS
LR HR

CC MC CC MC

(n = 531) (n = 135) (n = 335) (n = 320) (n = 134)

Trunk diameter
(cm)

min 0.1 0.9 0.1 0.2 0.1
median 1.1 2.1 0.6 1.5 0.3
mean 1.4 2.6 0.8 1.8 0.4
max 9.1 9.1 5.8 9.1 2.3

Height max
(cm)

min 1.0 7.0 1.0 6.0 1.0
median 26.0 60.0 14.0 39.5 7.0
mean 36.8 75.1 19.8 48.8 8.3
max 260.0 260.0 140.0 260.0 40.0

Mean crown width
(cm)

min 5.0 30.0 5.0 11.0 5.0
median 34.0 65.0 21.0 45.0 14.0
mean 42.7 79.8 25.8 54.8 14.8
max 250.0 250.0 200.0 250.0 36.0

The undetected larches were sorted into two groups according to their position rela-
tive to the other larches: isolated and grouped larches. This classification allowed us to
discriminate between larches that were not detected because of their small size and larches
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that were undetectable since they were part of a group, where distinguishing the individual
canopy borders was not possible from the image. This latter type of larches was excluded
from the analyses that we performed to define the PI resolution threshold. Among the
396 larches that were not detected through the photo-interpretation, 84.6% (n = 335) were
isolated and not detectable due to their dimensions and were consequently misclassified
(hereafter MC-larches). These MC-larches were used to define the PI resolution threshold.
The MC-larches, as a subset of the GS-larches including the smallest individuals, were
significantly smaller compared to all the GS-larches, in terms of trunk diameter (p < 0.001),
maximum height (p < 0.001), and mean canopy width (p < 0.001) (Table 1). The intersection
between the density curves of CC- and MC-larches was used to define the threshold of the
PI efficiency or, in other words, the size limit between detectable and undetectable larches.
According to this approach, the threshold was set at 1.8 cm of trunk diameter, 45.7 cm
of maximum height and 52.1 cm of mean canopy width (Figure 8a–c), meaning that the
photo-interpretation of low-resolution (20 cm) images cannot guarantee the detection of
larches smaller than this size.
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Figure 8. Density curve of the trunk diameter (a,d), maximum height (b,e) and mean canopy width (c,f) of the ground-
surveyed larches (GS; solid black line), larches correctly classified (CC; solid orange line) and larches that were not
detected and so misclassified (MC; solid grey line) through the photo-interpretation. Density plots are reported for both
low-resolution (a–c) and high-resolution (d–f) images acquired by drone in an abandoned subalpine grassland during
mid-October 2018. The dashed red line marks the intersection between CC- and MC-larches density curves, whose x-value
was set as the size threshold of photo-interpretation efficiency.

Regarding the high-resolution (HR) image, 320 larches (60.3% of the GS-larches) were
manually detected during the photo-interpretation. Similar to what we observed for the
LR image, the dimension of the CC-larches differed significantly from the dimension of the
GS-larches, in terms of trunk diameter, maximum height and mean canopy width. More
precisely, the population of CC-larches showed higher trunk diameter (p < 0.001), maximum
height (p < 0.001), and mean canopy width (p < 0.001) compared to the GS-larches (Table 1
and Figure S1a–c).

On the other hand, 39.7% (n = 229) of the GS-larches were not detected through PI.
As seen above for the LR image, we selected the 134 isolated larches (58.5% of all the
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not-detected larches) that were not detected due to their small size and thus misclassified
(MC-larches) and used them for further analyses. The MC-larches, as a subset of the GS-
larches including the smallest individuals, were significantly smaller than the GS-larches,
in terms of trunk diameter (p < 0.001), maximum height (p < 0.001) and mean canopy width
(p < 0.001) (Table 1 and Figure S1a–c). For the HR image, the PI threshold was set at 0.9 cm
of diameter, 20.3 cm of maximum height and 26.5 cm of mean canopy width (Figure 8d–f),
meaning that the PI of HR images cannot guarantee the detection of larches smaller than
this size, that was much lower than the PI threshold of the LR image.

Regarding shrub species, since discriminating the species of the shrubs with similar
color was nearly impossible without the support of a “ground truth”, especially on the LR
image, the shrubs that were included in the two classes distinguishable by color were: (i)
brownish shrubs, including C. vulgaris + Vaccinium ssp., and (ii) greenish shrubs, including
J. communis + R. ferrugineum, which correspond respectively to “Class 2” and “Class 3” of
the classification categories.

The area of the polygons created around the detected shrubs was calculated to estimate
the percentage cover of each class, which was then compared to the linear percentage cover
obtained through the vegetation survey. We observed that the percentage cover of the two
shrub classes within the study area was greatly similar to the linear percentage cover along
transects. More specifically, brownish shrubs showed a linear percentage cover of 5.6%
and a surface area of 5.4% or 8.1% obtained through the PI of, respectively, the LR and
HR image, whereas greenish shrubs showed a linear percentage cover of 4.2% and 4.0% or
4.4% obtained through the PI of, respectively, the LR and HR image. Moreover, “Class 1”
including larches and “Class 4” including areas dominated by herbaceous species showed
a percentage cover of, respectively, 0.6% and 90.0% as resulted from the PI of the LR image
and a percentage cover of, respectively, 0.7% and 86.8% as resulted from the PI of the HR
image (Table S3).

Finally, the accuracy assessment of the PI against reference data showed an Overall
Accuracy (OA) of 88.5% and 99.3%, respectively, for the PI of the LR and HR image. All the
other accuracy metrics are reported in Table 2.

Table 2. Results of the accuracy assessment of the image classification performed through photo-interpretation (PI); the
accuracy metrics are reported for the PI of the high-resolution (1 cm; HR) and low-resolution (20 cm; LR) images and
included the overall accuracy (OA), the producer’s (PA) and user’s accuracy (UA) of each classification class (1: larches; 2:
brownish shrubs; 3: greenish shrubs; 4: grassland).

Method Resolution OA [%]
PA [%] UA [%]

1 2 3 4 1 2 3 4

PI HR 99.3 49.1 100 100 100 100 99.6 100 99.3
PI LR 88.5 14.1 45.6 100 100 100 93.5 95.6 85.5

3.2. Semi-Automatic Classification Methods

The PBC method was more accurate than the OBIA approach for the classification
of the images at all the resolution levels and for both the original and smoothed images.
Moreover, the highest accuracy was observed for the PBC followed by the filtering of the
classification maps. We found that the filtering step was able to increase the classification
accuracy of all the PBC models by 3% to 15%. In particular the most accurate classification
was the one performed through the PBC method followed by filtering on the HR smoothed
image, which showed an overall accuracy of 86.3%. On the other hand, the highest accuracy
reached by OBIA models was 77.7% (Figure 9 and Table S2).
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Generally, the effect of the image smoothing on the performance of the PBC models
was positive for the classification of the HR image and negative for the LR image, respec-
tively increasing and decreasing the overall accuracy of the classification of 2% to 5%. OBIA
models did not show any positive effects of the smoothing process and showed higher
values of overall accuracy when applied to the original images (Figure 9 and Table S2).

Regarding single classes, in general, “Class 1”, including larches, showed the lowest
values of the producer’s accuracy (PA) and the highest values of the user’s accuracy (UA),
in both PBC and OBIA classification maps. As shown by the area-based error matrices of
the three-best-performing PBC models (highlighted in grey in Table S2), the most common
error was the misclassification of the larches (“Class 1”) as grassland (“Class 4”). This
observation was confirmed also for the OBIA classification maps that additionally showed
a recurring misclassification between brownish (“Class 2”) and greenish (“Class 3”) shrubs.

According to Table S3, the percentage covers of each class obtained by the best per-
forming PBC model were 0.4% for larches (“Class 1”); 12.8% and 1.5%, respectively, for
brownish and greenish shrubs (“Class 2” and “Class 3”) and 85.3% for the herbaceous
cover of the grassland (“Class 3”) (Table S2). Regarding larches, we found that only 28.8%
of the GS-larches showed greater dimensions (Figure S1d–f) and were correctly classified
by the PBC. We then compared the dimensional parameters of correctly classified and
misclassified larches, and we extrapolated the classification threshold, as done before for
photo-interpretation. The results of this analysis highlighted that PBC was not able to
correctly classify larches smaller than 1.9 cm of diameter, 48.8 cm of maximum height and
55.5 cm of mean canopy width (Figure 10a–c). On the other hand, the percentage covers
of each class, obtained by the best performing OBIA model according to Table S3, were
4.1% for larches (“Class 1”); 4.2% and 8.3%, respectively, for brownish and greenish shrubs
(“Class 2” and “Class 3”) and 83.4% for the herbaceous cover of the grassland (“Class 3”).
Regarding larches, we found that only 33.0% of the GS-larches showed greater dimensions
(Figure S1g–i) and were correctly classified by OBIA, and that this method was not able to
correctly classify larches smaller than 1.9 cm of diameter, 50.0 cm of maximum height and
56.1 cm of mean canopy width (Figure 10d–f).

3.3. Land Cover Change

The map of land cover change obtained by the PI of the LR images acquired in 2012 and
2018 showed an increase of the shrubland cover on the grassland area of 6.5%, whereas 6.7%
of the shrubland cover already observed in 2012 remained constant (Table 3). Considering
the area that changed from shrubland to grassland cover, mainly due to the limits of the
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classification method, these results led to a general increase in the shrubland cover of 4.3%,
from 8.9% in 2012 to 13.2% in 2018, while grassland cover decreased from 91.1% to 86.8%
(Table 3). The most accurate pixel-based classification model was not able to detect this
trend of change and, on the contrary, showed a substantially unvaried land cover, with
24.6% of shrubland cover in 2012 and 23.6% in 2018 (Table 3). Similar results were observed
for the most accurate object-based classification model that even showed an increase of
grassland cover, from 79% to 83.3%, and a consequent decrease of shrubland cover, from
21% to 16.6% (Table 3).

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 10. Density curve of the trunk diameter (a,d), maximum height (b,e) and mean canopy width (c,f) of the ground-
surveyed larches (GS; solid black line), larches correctly classified (CC; solid orange line) and larches that were not detected 
and so misclassified (MC; solid grey line) through the semi-automatic classification methods. Density plots are reported 
for the most accurate pixel-based (a–c) and object-based (d–f) classification maps of the images acquired by drone in an 
abandoned subalpine grassland during mid-October 2018. The dashed red line marks the intersection between CC- and 
MC-larches density curves, whose x-value was set as the size threshold of the semi-automatic classification efficiency. 

3.3. Land Cover Change 
The map of land cover change obtained by the PI of the LR images acquired in 2012 

and 2018 showed an increase of the shrubland cover on the grassland area of 6.5%, 
whereas 6.7% of the shrubland cover already observed in 2012 remained constant (Table 
3). Considering the area that changed from shrubland to grassland cover, mainly due to 
the limits of the classification method, these results led to a general increase in the 
shrubland cover of 4.3%, from 8.9% in 2012 to 13.2% in 2018, while grassland cover 
decreased from 91.1% to 86.8% (Table 3). The most accurate pixel-based classification 
model was not able to detect this trend of change and, on the contrary, showed a 
substantially unvaried land cover, with 24.6% of shrubland cover in 2012 and 23.6% in 
2018 (Table 3). Similar results were observed for the most accurate object-based 
classification model that even showed an increase of grassland cover, from 79% to 83.3%, 
and a consequent decrease of shrubland cover, from 21% to 16.6% (Table 3). 

Table 3. Land cover changes occurred in the study area from 2012 to 2018 as observed by the 
photo-interpretation (PI) of the LR images and by the most accurate pixel-based (PBC) and object-
based (OBIA) classifications. Land cover change was determined through the identification of four 
cover classes: constant grassland (G) and constant shrubland (S), representing the area that 
maintained the same classification label (i.e., grassland or shrubland) from 2012 to 2018, and two 
more classes, describing the changes from grassland cover to shrubland (G→S) and vice versa 
(S→G). 

Method G G→S S→G S 
PI 84.6% 6.5% 2.2% 6.7% 

PBC 63.1% 12.3% 13.3% 11.3% 
OBIA 70.8% 8.2% 12.5% 8.4% 

Figure 10. Density curve of the trunk diameter (a,d), maximum height (b,e) and mean canopy width (c,f) of the ground-
surveyed larches (GS; solid black line), larches correctly classified (CC; solid orange line) and larches that were not detected
and so misclassified (MC; solid grey line) through the semi-automatic classification methods. Density plots are reported
for the most accurate pixel-based (a–c) and object-based (d–f) classification maps of the images acquired by drone in an
abandoned subalpine grassland during mid-October 2018. The dashed red line marks the intersection between CC- and
MC-larches density curves, whose x-value was set as the size threshold of the semi-automatic classification efficiency.

Table 3. Land cover changes occurred in the study area from 2012 to 2018 as observed by the photo-
interpretation (PI) of the LR images and by the most accurate pixel-based (PBC) and object-based
(OBIA) classifications. Land cover change was determined through the identification of four cover
classes: constant grassland (G) and constant shrubland (S), representing the area that maintained
the same classification label (i.e., grassland or shrubland) from 2012 to 2018, and two more classes,
describing the changes from grassland cover to shrubland (G→S) and vice versa (S→G).

Method G G→S S→G S

PI 84.6% 6.5% 2.2% 6.7%
PBC 63.1% 12.3% 13.3% 11.3%

OBIA 70.8% 8.2% 12.5% 8.4%

4. Discussion

This study described the application of UAV-acquired imagery to the monitoring of
the early stages of shrub and tree colonization (i.e., woody encroachment) of an abandoned
subalpine grassland that was previously grazed by cattle, keeping the area “clean” from
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woody plant species. In particular, we achieved the goal of describing a straightforward
workflow for an accurate, cost-effective and readily accessible image classification approach
based, with manual or semi-automatic techniques, which were applied at a very fine scale
(<10 cm). The results showed that RGB images acquired at the resolution of 1 to 20 cm
are adequate for mapping vegetation, at least at the life-form level (i.e., tree, shrub and
herbaceous species), without the support of any other information concerning spectral
resolution or object texture. Indeed, we reached good automated classification performance,
with the most accurate model showing an overall accuracy of ~86%.

Among the three classification methods evaluated in this study, i.e., manual photo-
interpretation, pixel- and object-based semi-automatic classifications, the former showed
the best performance at both high (1 cm) and low (20 cm) resolution, with an overall accu-
racy of 99.3% and 88.5%, respectively. Thus, the accuracy level of the photo-interpretation
was high and increased by more than 10%, moving from a resolution of 20 cm to 1 cm. On
the contrary, we observed that the overall accuracy of the raw (i.e., not filtered) pixel-based
classifications generally increased with decreasing image resolution, from a minimum of
69.2% (high resolution) to a maximum of 82.5% (low resolution). Despite the high-quality
classification, this observation confirmed that pixel-based classification methods may run
into several constraints when they are applied to very high spatial resolution imagery, for
the occurrence of noise due to a salt-and-pepper effect or to the presence of small shadows,
e.g., [52], as we observed in our study. Generally, our pixel-based classification models mis-
classified shadows projected by larches and other smaller shadows within the herbaceous
cover as brownish or greenish shrubs (“Class 2” and “Class 3”). This misclassification
led to an overestimation of the corresponding classes and generally of the shrub cover,
as found also by Poznanovic et al. [76], who observed an overestimation of the western
juniper cover in their study area, when performing pixel-based classification. The effects
of the misclassification in the high-resolution image were limited by the application of
a simple filtering algorithm that increased the accuracy of the high-resolution classifica-
tion map from 71.3% to 86.3%. The overall accuracy values achieved in our study (i.e.,
>80%) were consistent with recent studies focused on pixel-based classification of satellite
images to determine the vegetation cover of herbaceous-dominated areas under woody
encroachment [77,78]. Moreover, to the best of our knowledge, only one recent study used
very-high-resolution UAV imagery (2.4 cm) and pixel-based classification methods to in-
vestigate shrub encroachment directly, in a watershed dominated by perennial grasses [79].
Similar to our study, Durfee et al. [79] used data collected in the field to assess the overall
accuracy of their classification, which was 76.6% for the RGB imagery. These results are not
only in accordance with our study but helped us to demonstrate that high resolution UAV
imagery can be a successful tool for reaching high levels of accuracy, even with simple
RGB images.

According to the literature, some of the limitations of pixel-based classification meth-
ods can be overcome using an object-based approach, whose minimum processing unit is
an object (or segment) instead of a pixel. Several studies demonstrated that object-based
classification models can successfully classify very high spatial resolution imagery [52,80],
but the choice between pixel- or object-based approaches does not follow rigid rules and
depends on the aims of the study and on several characteristics of the available data and the
study area, such as vegetation type and phenology, land cover heterogeneity and imagery
features [52,81–83]. For instance, in their study on grassland colonization by Juniperus
virginiana in Nebraska, Filippelli et al. [84] showed that the object-based approach had the
lowest error when the cover of the target vegetation was less than 10% and maintained a
low number of errors, up to cover levels of 30%. On the other hand, alternative pixel-based
methods, which are less dependent on the object-background contrast, performed better
in areas with a high vegetation cover (>60%) [76]. According to these observations, the
object-based approach was less suitable than the pixel-based approach for the classification
of our study area, characterized by a target vegetation cover of nearly 100%. Indeed, the
highest overall accuracy reached by this method was 77.7% in our study. This outcome was
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consistent with the results of the study performed by Ma et al. [82]. In their meta-analysis,
they showed that land-cover type and heterogeneity had a significant effect on object-based
classification accuracy, with vegetation and forest showing lower accuracy than other
categories, such as agriculture and wetland study areas, and with more homogeneous
areas showing higher accuracy than heterogeneous ones. Similar to what we observed for
pixel-based classifications, the overall accuracy of object-based classifications decreased
with increasing image resolution. Moreover, we found that the images that underwent
a smoothing step were classified with higher accuracy than the original images by the
pixel-based classification models, whereas the opposite trend was observed for the object-
based classification models. All these observations can be explained considering that image
smoothing and resizing likely helped the pixel-based models in reducing error-rates gener-
ated by salt-and-pepper noise and small shadows. On the other hand, image smoothing
flattened the spectral differences among the pixels and consequently hampered the image
segmentation and the object creation.

A notable aspect of our study is that the testing of different image classification meth-
ods was not exclusively focused on the categorical aspects of the classification, like it is
in most of the available literature about remote sensing applications for encroachment
monitoring [40,41,85]. Instead, we used the field measurements of the larch dimensions
(i.e., trunk diameter, maximum height and mean crown width) to evaluate a quantitative
threshold of tree detection. In other words, by knowing the dimension of all the larches
occurring within the grassland, we were able to determine not only the percentage of
detected larches but also the smallest larch size that could be detected by each method.
Among the three-dimensional variables that we measured in the field, the mean crown
width was undoubtedly the most important parameter, having a crucial role in larch detec-
tion. Similar to what we observed in the classification accuracy, the photo-interpretation of
the high-resolution image showed the best performance, being able to detect very small
larches to a threshold of 0.9 cm of diameter, 20.3 cm of maximum height and 26.5 cm of
mean canopy width. The minimum dimensions of detectable larches sharply increased for
the photo-interpretation of the low-resolution image, which showed a threshold value of
about twice as high as the one reported above, of 1.8 cm of diameter, 45.7 cm of maximum
height and 52.1 cm of mean canopy width. This implies that, by moving from a resolution
of 1 cm to a resolution of 20 cm, the photo-interpretation efficiency in tree detection was at
least halved. In general, the cut off size of tree detection in our study was lower than the
size of all the studies we were able to find in literature, e.g., [76,81,83,86], where the canopy
area of non-detected shrubs and/or trees ranged from 1 to 1.6 m2. Interestingly, we found
that the threshold values of the most accurate semi-automatic models were very close
to the values observed for the photo-interpretation of the low-resolution image, which
means that the performance of the semi-automatic classification models in larch detection
was comparable to the classification carried out by the operator on the low-resolution
image. In fact, the photo-interpretation of the low-resolution image was able to detect
25.4% of the field-surveyed larches, whereas the best performing pixel- and object-based
classification models detected, respectively, 28.8% and 33.0% of all the larches occurring in
the study area.

However, although the percentage of the larches detected by the semi-automatic
classification was similar or even higher than the percentage of the larches detected by the
photo-interpretation, the former method underestimated the tree cover by 0.4% when the
pixel-based classification was applied and overestimated by 4.1% the same class in the case
of the object-based classification when compared to the photo-interpretation (0.7%). A simi-
lar trend was observed for the shrub species, whose percentage cover was overestimated by
5.3% and 3.5%, respectively, by the pixel- and the object-based classification. Considering
the percentage cover of all the woody plant species (i.e., larch + brownish shrubs + greenish
shrubs) and taking the 9.7% of cover detected by the high-resolution photo-interpretation
as a reference value, we observed that the overestimation increased from 13.2% of the
low-resolution photo-interpretation to 14.7% and 16.6% of the pixel- and the object-based
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classification, respectively. This overestimation of the larch and shrub cover was the most
likely reason why both the semi-automatic classification methods were not able to detect the
land cover change occurring in the last six years, from 2012 to 2018. This can be explained
by the fact that, even if the overall accuracy of the semi-automatic classifications was quite
high, the omission error of the models was still higher than the percentage of the land
cover change in terms of tree and shrub cover percentage. Furthermore, the differences
between 2012 and 2018 in image acquisition and features likely increased the error in the
estimation of the land cover change. Unfortunately, a high-resolution image of 2012 was
not available and neither was a simultaneous vegetation survey, so that we could not prop-
erly investigate the accuracy of the photo-interpretation in the detection of the land cover
change. For these reasons, we recommend further studies on the efficiency of different
image analysis methods in the detection of the early stages of land cover change, due to
encroachment. Nevertheless, according to the overall accuracy of the photo-interpretation,
we suggest using this method rather than semi-automatic classification when investigating
short-term (<10 years) or slow-rate changes of the land cover (1–10%) or generally when
the expected land cover change to be smaller than the omission error of the semi-automatic
classification models to be applied. Finally, according to the results of photo-interpretation,
the encroachment rate in the study area from 2012 to 2018 was ~1% per year, in terms of
tree and shrub cover expansion. This result is consistent with other studies which found
that the increase of woody species cover due to the encroachment process ranged from
0.9% to 2.3% per year [10,84,87].

Therefore, we demonstrated that RGB images acquired by drone at a resolution of
1 to 20 cm can be readily and accurately (overall accuracy > 80%) classified through a
pixel-based approach, in order to investigate the vegetation cover of a subalpine grassland
under recent encroachment. This method outperformed the object-based classification
under the circumstances of our study, requiring a very fine scale classification. Although it
was not an objective of this study, we hypothesized that the accuracy of the object-based
classification could be improved by setting a smaller spatial radius for segmentation, in
other words, by creating smaller objects. However, in that case, the time requested by the
image analysis would significantly increase and, thus, further analyses would be needed to
understand if it might be worth it in terms of overall accuracy. Moreover, the pixel-based
classification was shown to have several advantages compared to the field observations
and the photo-interpretation: It is faster and less laborious; it can be easily applied to wider
areas and removes the set of problems linked to the subjectivity of manual classification.
Nevertheless, we observed that, for a low percentage of land cover changes, the semi-
automatic classification methods were not as efficient as photo-interpretation, at least
when only RGB bands are considered. Therefore, in light of the above results, we suggest
using a semi-automatic classification of RGB images when the main aim of the study is to
describe the vegetation cover of several areas or long-term land cover changes. For instance,
Malatesta et al. [87] successfully detected 27 years (1988–2015) of land cover change of a
pastoral landscape in the central Apennines in Italy through a supervised object-based
classification of satellite imagery. On the other hand, we suggest preferring more accurate
methods, such as visual photo-interpretation, when the objective is to describe short-term
land cover changes on a small scale.

Regardless of the classification method, the opportunity to substitute fieldwork with
high-resolution image analysis in the study of vegetation dynamics has important advan-
tages for the monitoring of land cover change under encroachment and, consequently, for
management decisions and biodiversity conservation assessment [88]. Indeed, scientific
knowledge may lead management decisions regarding the optimal land-use practice to
control woody encroachment in terms of grazing or fire features, such as timing, intensity
and frequency. Moreover, monitoring vegetation at high-resolution may help to identify not
only the encroachment stage at which biodiversity is maximized but also the areas needing
an urgent management intervention due to their critical conditions. The method developed
in this study has the potential to help the environmental diagnostic and drive management
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decisions, thanks to its high flexibility, spatial and temporal resolution, objectivity and
reproducibility. In fact, the UAV imagery analysis approach allows detailed information
to be collected across a wide geographical area and with a high temporal resolution. For
instance, Suess et al. [41] obtained a reliable annual time series of shrub cover changes,
from high-resolution satellite imagery available for 32 years, but the resolution level they
worked with would not be enough to investigate small shrub and tree individuals at the
species level. The access to annual data on a small scale is essential for the study of the
encroachment consequences on the structure and functioning of ecosystems. Indeed, moni-
toring the encroachment process frequently and on a small scale facilitates the detection of
its onset and the investigation of the colonization pattern of the woody species in its early
stages, which are still quite unknown. At the same time, the annual structural changes of
the plant community may be correlated with the available annual data on the functioning
of the ecosystems. Several instruments and methods for the monitoring of terrestrial
ecosystem functioning became very common in the last few decades (e.g., eddy covariance
towers, litterbag approach for decomposition, respiration chambers, NDVI sensors and
phenocams). The integration of the functional data provided by these methods with the
information on the structural changes may help to explain and predict the encroachment
effects on the ecosystem processes and services. Furthermore, another advantage of having
annual data from several areas is the opportunity to investigate the relationship between
structural changes in the plant community and environmental factors, such as fire [78],
land-use change [83] and climate change [85,89]. There is still a lack of knowledge on the
effects of climate on the encroachment rate, and having a time series of structural and
climatic data may help to explain this relationship and, consequently, to disentangle the
effects of climate and land cover change on ecosystem functioning and services.

In this study, the acquisition schedule was set in order to successfully exploit the
unique phenological characteristics of the vegetation growing in the study area. In fact,
the RGB images were acquired in mid-October because the senescent phase immediately
before snow cover establishment was characterized by the highest species diversification:
larches became yellow, C. vulgaris and Vaccinium sp. were brownish, J. communis remained
green, and the herbaceous species of the grassland, dominated by N. stricta, appeared
grayish. Therefore, the accuracy level that we reached was strictly dependent on the timing
of the image acquisition, confirming that, regardless of spectral resolution or classification
method, phenology is a key issue for vegetation classification, especially when using RGB
images, as already suggested by other studies, e.g., [47,52,79].

Finally, all the software used in the study is free, which represents a plus point for
their employment in nature conservation or land management. In fact, image analysis
is often performed using paid software, such as ArcGIS [78,79], eCognition [81,83] and
MATLAB [77], whereas we carried out all the analyses using the free software R and QGIS.
Regarding sensors, multispectral or hyperspectral UAV sensors would probably improve
the resulting classification accuracy, but they would make the methodology much more
expensive and complex [90]. Furthermore, thanks to its plasticity, the method developed
in this study might be applied to map and monitor not only subalpine grasslands under
encroachment but also several other worldwide areas characterized by different processes
of vegetation dynamics, such as invasion of alien species, bush encroachment in the
savannahs, algal blooms in aquatic ecosystems, or the upward treeline shift.

5. Conclusions

This study showed that it is possible to efficiently replace, or at least significantly
reduce, fieldwork and visual photo-interpretation of images by combining high-resolution
remote sensing offered by drones with a simple and accurate pixel-based classification work-
flow, in order to map the vegetation of a subalpine grassland under recent encroachment,
at least at the level of life-form (i.e., tree, shrub and herbaceous species). We developed
a straightforward workflow that can be carried out through cost-effective methods and
free software, without requiring professional skills in programming and image analysis.
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Moreover, we were able not only to compare the accuracy of three different classification
methods (i.e., photo-interpretation, pixel- and object-based semi-automatic classification)
but also to describe their quantitative limits in juvenile tree detection, by analyzing the
dimensions of the detected and undetected trees thanks to a very detailed dataset col-
lected in the field. In light of our results, pixel-based classification of the high-resolution
image can be highly recommended for the study of the encroachment process, especially
in long-term studies or in the case of several and widely distributed areas. However, we
suggest avoiding semi-automatic classification methods for the investigation of short-term
land cover change, at least when the omission error is higher than the percentage of land
cover change, in which case we recommend using visual photo-interpretation. To conclude,
encroachment is a widely distributed ecological process, with important consequences on
ecosystem structure and functioning, and to our knowledge, this study was the first attempt
to describe its early effects on vegetation structure at a very fine scale and exclusively using
the RGB bands.
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