Snow Depth Fusion Based on Machine Learning Methods for the Northern Hemisphere
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Remote Sensing Snow Depth Datasets
- (1)
- AMSR-E Snow Depth Dataset
- (2)
- GlobSnow Snow Depth Dataset
- (3)
- NHSD Snow Depth Dataset
2.1.2. Reanalysis Snow Depth Datasets
- (1)
- ERA-Interim Snow Depth Dataset
- (2)
- MERRA-2 Snow Depth Dataset
2.1.3. Ground-Based Measurement
2.1.4. Auxiliary Data
- (1)
- Reclassification of Land Cover Data
- (2)
- Topographic Data
2.2. Methodology and Experimental Design
2.2.1. Machine Learning Methods
2.2.2. Experimental Design
3. Results
3.1. Comparison among the Fused Snow Depth from Three Machine Learning Methods
3.2. Comparison between the Fused Dataset and Five Other Snow Depth Datasets Based on Observations
3.3. Accuracy Assessment of the Fused Snow Depth Dataset at Five Independent In Situ Snow Observation Sites
3.4. The Spatial Distribution of the Fused Snow Depth Dataset Based on Random Forest Regression
4. Discussion
4.1. The Effect of Seasons on the Fused Snow Depth Dataset
4.2. Improvement between the Current Study and Previous Work
4.3. Determining the Input Parameters of the RFR Model
4.4. Limitations of the Current Study
5. Conclusions
- (1)
- Comparing the performance of the SVR, ANN, and RFR algorithms in 36 models, the RFR algorithm has a higher R2, smaller RMSE and MAE.
- (2)
- The fused dataset based on the RFR model performed better in winter and spring than autumn because there were more training samples in winter and spring; the average snow depth values in winter and spring were deeper than in autumn.
- (3)
- Comparing AMSR-E, NHSD, GlobSnow, MERRA-2, ERA-Interim, and the new fused snow depth datasets with in situ observation snow depths, the result shows that the original five snow-depth datasets have weak correlations with the observed snow depth. The best coefficient of determination between the five original snow depth products and the observations was 0.15 (i.e., the coefficient of determination between GlobSnow and in situ observations), while the value of the fused snow depth increased to 0.91. The spatial pattern of BIAS between fused dataset and observations indicates that the fused dataset performs very well. The comparison of the fused snow depth product with five independent in situ snow observation sites shows that it is the most accurate. However, in some complex situations with deeper snow depths (>200 cm), like in alpine regions and mixed pixel areas, the fused snow depth also does not perform well.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Value | Original Class | Reclassification Type |
---|---|---|
11 | Post-flooding or irrigated croplands (or aquatic) | Bare-Land |
14 | Rainfed croplands | Bare-Land |
20 | Mosaic cropland (50–70%)/vegetation (grassland/shrubland/forest) (20–50%) | Bare-Land |
30 | Mosaic vegetation (grassland/shrubland/forest) (50–70%)/cropland (20–50%) | Shrub |
40 | Closed to open (>15%) broadleaf evergreen or semi-deciduous forest (>5 nm) | Forest |
50 | Closed (>40%) broadleaf deciduous forest (>5 m) | Forest |
60 | Open (15–40%) broadleaf deciduous forest/woodland (> 5 m) | Forest |
70 | Closed (>40%) needleleaf evergreen forest (>5 m) | Forest |
90 | Open (15–40%) needleleaf deciduous or evergreen forest (>5 m) | Forest |
100 | Closed to open (>15%) mixed broadleaf and needleleaf forest (>5 m) | Forest |
110 | Mosaic forest or shrubland (50–70%)/grassland (20–50%) | Shrub |
120 | Mosaic grassland (50–70%)/forest or shrubland (20–50%) | Grassland (Prairie) |
130 | Closed to open (>15%) (broadleaf or needleleaf, evergreen or deciduous) shrubland (<5 m) | Shrub |
140 | Closed to open (>15%) herbaceous vegetation (grassland, savannas or lichens/mosses) | Grassland (Prairie) |
150 | Sparse (<15%) vegetation | Bare-Land |
160 | Closed to open (>15%) broadleaf forest regularly flooded (semi-permanently or temporarily)—Fresh or brackish water | Forest |
170 | Closed (>40%) broadleaf forest or shrubland permanently flooded—Saline or brackish water | Forest |
180 | Closed to open (>15%) grassland or woody vegetation on regularly flooded or waterlogged soil—Fresh, brackish or saline water | Grassland (Prairie) |
190 | Artificial surfaces and associated areas (Urban areas > 50%) | Bare-Land |
200 | Bare areas | Bare-Land |
210 | Water bodies | Water |
220 | Permanent snow and ice | Bare-Land |
230 | No data (burnt areas, clouds…) | Unclassified |
Site | Short Name | Latitude (°) | Longitude (°) | Elevation (m) | Data Provider | Vegetation Type | Reference Paper |
---|---|---|---|---|---|---|---|
Sodankylä | SOD | 67.416 | 26.59 | 179 | Finnish Meteorological Institute, Finland | Clearing (short heather and lichen) in coniferous forest | [55] |
Old Aspen | OAS | 54.05 | −106.333 | 600 | Environment and Climate Change Canada, Canada | 21 m high aspen forest. Thick understory of 2 m high hazelnut. Winter stem area ∼ 1, summer 3.7–5.2 | [56] |
Reynolds Mountain East | RME | 43.186 | −116.783 | 2060 | USDA Agricultural Research Service, USA | Clearing (short grass) in an alpine/fir grove | [57] |
Swamp Angel Study Plot(SASP) | SWA | 37.907 | −107.711 | 3371 | Center for Snow and Avalanche Studies, USA | Clearing (short grass) in subalpine forest | [58] |
Weissfluhjoch | WFJ | 46.827 | 9.807 | 2536 | WSL Institute for Snow and Avalanche Research, Switzerland | Barren | [59] |
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Bormann, K.J.; Brown, R.D.; Derksen, C.; Painter, T.H. Estimating snow-cover trends from space. Nat. Clim. Chang. 2018, 8, 924–928. [Google Scholar] [CrossRef]
- Brown, R.D.; Mote, P.W. The Response of Northern Hemisphere Snow Cover to a Changing Climate. J. Clim. 2009, 22, 2124–2145. [Google Scholar] [CrossRef]
- Dressler, K.A.; Leavesley, G.H.; Bales, R.C.; Fassnacht, S.R. Evaluation of gridded snow water equivalent and satellite snow cover products for mountain basins in a hydrologic model. Hydrol. Process. 2006, 20, 673–688. [Google Scholar] [CrossRef]
- Lievens, H.; Demuzere, M.; Marshall, H.-P.; Reichle, R.H.; Brucker, L.; Brangers, I.; Rosnay, P.d.; Dumont, M.; Girotto, M.; Immerzeel, W.W.; et al. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.; Marks, D.; Chandler, D.G.; Seyfried, M. Long-term snow, climate, and streamflow trends at the Reynolds Creek Experimental Watershed, Owyhee Mountains, Idaho, United States. Water Resour. Res. 2010, 46, W06519. [Google Scholar] [CrossRef]
- Takala, M.; Luojus, K.; Pulliainen, J.; Derksen, C.; Lemmetyinen, J.; Kärnä, J.P.; Koskinen, J.; Bojkov, B. Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens. Environ. 2011, 115, 3517–3529. [Google Scholar] [CrossRef]
- Snauffer, A.M.; Hsieh, W.W.; Cannon, A.J.; Schnorbus, M.A. Improving gridded snow water equivalent products in British Columbia, Canada: Multi-source data fusion by neural network models. Cryosphere 2018, 12, 891–905. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Che, T.; Dai, L. Evaluation of Remote Sensing and Reanalysis Snow Depth Datasets over the Northern Hemisphere during 1980–2016. Remote Sens. 2020, 12, 3253. [Google Scholar] [CrossRef]
- Mortimer, C.; Mudryk, L.; Derksen, C.; Luojus, K.; Brown, R.; Kelly, R.; Tedesco, M. Evaluation of long term Northern Hemisphere snow water equivalent products. Cryosphere 2020, 12, 1579–1594. [Google Scholar] [CrossRef]
- Mudryk, L.; Derksen, C.; Kushner, P.J.; Brown, R. Characterization of Northern Hemisphere Snow Water Equivalent Datasets, 1981–2010. J. Clim. 2015, 28, 8037–8051. [Google Scholar] [CrossRef] [Green Version]
- Pulliainen, J.; Luojus, K.; Derksen, C.; Mudryk, L.; Lemmetyinen, J.; Salminen, M.; Ikonen, J.; Takala, M.; Cohen, J.; Smolander, T.; et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature 2020, 581, 294–298. [Google Scholar] [CrossRef]
- Broxton, P.D.; Leeuwen, W.J.D.v.; Biederman, J.A. Improving Snow Water Equivalent Maps With Machine Learning of Snow Survey and Lidar Measurements. Water Resour. Res. 2019, 55, 3739–3757. [Google Scholar] [CrossRef]
- Che, T.; Dai, L.; Zheng, X.; Li, X.; Zhao, K. Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China. Remote Sens. Environ. 2016, 183, 334–349. [Google Scholar] [CrossRef]
- Cho, E.; Tuttle, S.E.; Jacobs, J.M. Evaluating Consistency of Snow Water Equivalent Retrievals from Passive Microwave Sensors over the North Central U. S.: SSM/I vs. SSMIS and AMSR-E vs. AMSR2. Remote Sens. 2017, 9, 465. [Google Scholar]
- Larue, F.; Royer, A.; Sève, D.D.; Langlois, A.; Roy, A.; Brucker, L. Validation of GlobSnow-2 snow water equivalent over Eastern Canada. Remote Sens. Environ. 2017, 194, 264–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snauffer, A.M.; Hsieh, W.W.; Cannon, A.J. Comparison of gridded snow water equivalent products with in situ measurements in British Columbia, Canada. J. Hydrol. 2016, 541, 714–726. [Google Scholar] [CrossRef]
- Tedesco, M.; Narvekar, P.S. Assessment of the NASA AMSR-E SWE product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 141–159. [Google Scholar] [CrossRef]
- Dozier, J.; Bair, E.H.; Davis, R.E. Estimating the spatial distribution of snow water equivalent in the world’s mountains. Wiley Interdiscip. Rev. Water 2016, 3, 461–474. [Google Scholar] [CrossRef]
- Evora, N.D.; Tapsoba, D.; Sève, D.D. Combining Artificial Neural Network Models, Geostatistics, and Passive Microwave Data for Snow Water Equivalent Retrieval and Mapping. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1925–1939. [Google Scholar] [CrossRef]
- Viviroli, D.; Du¨rr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world—Water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, W07447. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Li, Q.; Yang, T.; Zhang, F.; Qi, Z.; Li, L. Snow depth reconstruction over last century: Trend and distribution in the Tianshan Mountains, China. Glob. Planet. Chang. 2019, 173, 73–82. [Google Scholar] [CrossRef]
- Parker, W.S. Reanalyses and Observations: What’s the Difference? Bull. Am. Meteorol. Soc. 2016, 97, 1565–1572. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, X.; Wang, J.; Zhou, M.; Liang, T. AMSR2 snow depth downscaling algorithm based on a multifactor approach over the Tibetan Plateau, China. Remote Sens. Environ. 2019, 231, 111268. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.; Wang, J.; Tian, W.; Liu, Q.; Ma, G.; Kan, X.; Chu, Y. Downscaling Snow Depth Mapping by Fusion of Microwave and Optical Remote-Sensing Data Based on Deep Learning. Remote Sens. 2021, 13, 584. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J.; et al. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111176. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, Z.; Peng, D.; Benediktsson, J.A.; Liu, B.; Zou, L.; Li, J.; Plaza, A. Remotely Sensed Big Data: Evolution in Model Development for Information Extraction. Proc. IEEE. 2019, 107, 2294–2301. [Google Scholar] [CrossRef]
- Tedesco, M.; Pulliainen, J.; Takala, M.; Hallikainen, M.; Pampaloni, P. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sens. Environ. 2004, 90, 76–85. [Google Scholar] [CrossRef]
- Aschbacher, J. Land Surface Studies and Atmospheric Effects by Satellite Microwave Radiometry. Ph.D. Thesis, University of Innsbruck, Innsbruck, Austria, 1989. [Google Scholar]
- Chang, A.T.C.; Foster, J.L.; Hall, D.K. Nimbus-7 SMMR Derived Global Snowcover Parameters. Ann. Glaciol. 1987, 9, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Yang, X.; Zhu, X. Retrieval snow depth by artificial neural network methodology from integrated AMSR-E and in-situ data—A case study in Qinghai-Tibet Plateau. Chinese Geograph. Sci. 2008, 18, 356–360. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Luojus, K.; Pan, J.; Lemmetyinen, J.; Takala, M.; Wu, S. Snow depth estimation and historical data reconstruction over China based on a random forest machine learning approach. Cryosphere 2020, 14, 1763–1778. [Google Scholar] [CrossRef]
- Liang, J.; Liu, X.; Huang, K.; Li, X.; Shi, X.; Chen, Y.; Li, J. Improved snow depth retrieval by integrating microwave brightness temperature and visible/infrared reflectance. Remote Sens. Environ. 2015, 156, 500–509. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, T.; Zhong, X.; Li, X. Spatiotemporal Variation of Snow Depth in the Northern Hemisphere from 1992 to 2016. Remote Sens. 2020, 12, 2728. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, T.; Zhong, X.; Shao, W.; Li, X. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data. Remote Sens. Environ. 2018, 210, 48–64. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T. Snow depth derived from passive microwave remote-sensing data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar] [CrossRef] [Green Version]
- King, F.; Erler, A.R.; Frey, S.K.; Fletcher, C.G. Application of machine learning techniques for regional bias correction of snow water equivalent estimates in Ontario, Canada. Hydrol. Earth Syst. Sci. 2020, 24, 4887–4902. [Google Scholar] [CrossRef]
- Wrzesien, M.L.; Durand, M.T.; Pavelsky, T.M.; Kapnick, S.B.; Zhang, Y.; Guo, J.; Shum, C.K. A New Estimate of North American Mountain Snow Accumulation From Regional Climate Model Simulations. Geophys. Res. Lett. 2018, 45, 1423–1432. [Google Scholar] [CrossRef]
- Kelly, R. The AMSR-E snow depth algorithm: Description and initial results. J. Remote Sens. Soc. Jpn. 2009, 29, 307–317. [Google Scholar]
- Dai, L.; Che, T.; Ding, Y. Inter-Calibrating SMMR, SSM/I and SSMI/S Data to Improve the Consistency of Snow-Depth Products in China. Remote Sens. 2015, 7, 7212–7230. [Google Scholar] [CrossRef] [Green Version]
- Gelaro, R.; McCarty, W.; Su’arez, M.J.; Molod, A.; Takacs, L.; Randles, C.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; Wargan, K.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); US Geological Survey: Reston, VA, USA, 2011. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Wang, W.; Li, J. An LM-BP neural network approach to estimate monthly-mean daily global solar radiation using MODIS atmospheric products. Energies 2018, 11, 3150. [Google Scholar] [CrossRef] [Green Version]
- Feng, P.; Wang, B.; Liu, D.L.; Yu, Q. Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in South-Eastern Australia. Agric. Syst. 2019, 2019, 303–316. [Google Scholar] [CrossRef]
- Gregorio, L.D.; Callegari, M.; Marin, C.; Zebisch, M.; Bruzzone, L.; Demir, B.; Strasser, U.; Marke, T.; Günther, D.; Nadalet, R.; et al. A novel data fusion technique for snow cover retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2862–2877. [Google Scholar] [CrossRef] [Green Version]
- Mateo-Pérez, V.; Corral-Bobadilla, M.; Ortega-Fernández, F.; Vergara-González, E.P. Port Bathymetry Mapping Using Support Vector Machine Technique and Sentinel-2 Satellite Imagery. Remote Sens. 2020, 12, 2069. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Dra˘gut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Qu, Y.; Zhu, Z.; Chai, L.; Liu, S.; Montzka, C.; Liu, J.; Yang, X.; Lu, Z.; Jin, R.; Li, X.; et al. Rebuilding a Microwave Soil Moisture Product Using Random Forest Adopting AMSR-E/AMSR2 Brightness Temperature and SMAP over the Qinghai–Tibet Plateau, China. Remote Sens. 2019, 11, 683. [Google Scholar] [CrossRef] [Green Version]
- Zhong, X.; Zhang, T.; Kang, S.; Wang, K.; Zheng, L.; Hu, Y.; Wang, H. Spatiotemporal variability of snow depth across the Eurasian continent from 1966 to 2012. Cryosphere 2018, 12, 227–245. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Guan, K.; Lobell, D.; Potgieter, A.B.; Wang, S.; Peng, J.; Xu, T.; Asseng, S.; Zhang, Y.; You, L.; et al. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agric. For. Meteorol. 2019, 274, 144–159. [Google Scholar] [CrossRef]
- Essery, R.; Kontu, A.; Lemmetyinen, J.; Dumon, M.; Ménard, C.B. A 7-year dataset for driving and evaluating snow models at an Arctic site (Sodankylä, Finland). Geosci. Instrum. Method. Data Syst. 2016, 5, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Paul, A.B.; Murray, D.M.; Diana, L.V. Modified snow algorithms in the Canadian land surface scheme: Model runs and sensitivity analysis at three boreal forest stands. Atmos. Ocean. 2006, 44, 207–222. [Google Scholar]
- Reba, M.L.; Marks, D.; Seyfried, M.; Winstral, A.; Kumar, M.; Flerchinger, G. A long-term data set for hydrologic modeling in a snow-dominated mountain catchment. Water Resour. Res. 2011, 47, 218–223. [Google Scholar] [CrossRef]
- Landry, C.C.; Buck, K.A.; Raleigh, M.S.; Clark, M.P. Mountain system monitoring at Senator Beck Basin, San Juan Mountains, Colorado: A new integrative data source to develop and evaluate models of snow and hydrologic processes. Water Resour. Res. 2014, 50, 1773–1788. [Google Scholar] [CrossRef]
- Wever, N.; Schmid, L.; Heilig, A.; Eisen, O.; Fierz, C.; Lehning, M. Verification of the multi-layer SNOWPACK model with different water transport schemes. Cryosphere 2015, 9, 2271–2293. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, M.; Jeyaratnam, J. A New Operational Snow Retrieval Algorithm Applied to Historical AMSR-E Brightness Temperatures. Remote Sens. 2016, 8, 1037. [Google Scholar] [CrossRef] [Green Version]
- Ménard, C.B.; Essery, R.; Barr, A.; Bartlett, P.; Wever, N. Meteorological and evaluation datasets for snow modelling at ten reference sites: Description of in situ and bias-corrected reanalysis data. Earth Syst. Sci. Data 2019, 11, 865–880. [Google Scholar] [CrossRef] [Green Version]
Dataset | AMSR-E | NHSD | GlobSnow | ERA-Interim | MERRA-2 |
---|---|---|---|---|---|
Organization | NASA/JAXA | TPDC | ESA | ECMWF | NASA |
Spatial coverage | 0°–90°N | 0°–90°N | 35°–85°N | 0°–90°N | 0°–90°N |
Spatial resolution | 0.25° × 0.25° | 0.25° × 0.25° | 25 km × 25 km | 0.25° × 0.25° | 0.5° × 0.625° |
Projection/Datum | WGS-84 | WGS-84 | EASE-GRID | WGS-84 | WGS-84 |
Time resolution | Daily | Daily | Daily | 6 h | Daily |
Parameter transformation | SD | SD | SWE/ρ | SWE/ρ | SD * × fsc |
Algorithm/Model | Improved Chang algorithm | Improved Chang algorithm | HUT, model assimilation | TESSEL | NSIPP |
(a) Bare-Land | September to November | December to February | March to May | |||||||
(99,706, 99,060) | (106,723, 105,087) | (97,442, 95,219) | ||||||||
R2 | MAE/cm | RMSE/cm | R2 | MAE/cm | RMSE/cm | R2 | MAE/cm | RMSE/cm | ||
ANN | train | 0.61 | 1.4 | 4.1 | 0.73 | 2.4 | 12.5 | 0.72 | 5.3 | 18.7 |
predict | 0.45 | 1.7 | 4.2 | 0.50 | 5.5 | 13.6 | 0.62 | 8.3 | 22.7 | |
SVR | train | 0.73 | 1.0 | 4.2 | 0.56 | 4.0 | 19.3 | 0.53 | 9.2 | 21.7 |
predict | 0.43 | 1.0 | 4.5 | 0.34 | 6.8 | 25.0 | 0.42 | 10.8 | 23.5 | |
RFR | train | 0.93 | 0.7 | 2.8 | 0.95 | 1.9 | 10.0 | 0.95 | 1.1 | 2.7 |
predict | 0.78 | 0.6 | 3.8 | 0.81 | 2.3 | 10.5 | 0.82 | 1.8 | 4.4 | |
(b) Shrub | September to November | December to February | March to May | |||||||
(88,818, 81,100) | (98,666, 94,869) | (109,027, 106,029) | ||||||||
R2 | MAE/cm | RMSE/cm | R2 | MAE/cm | RMSE/cm | R2 | MAE/cm | RMSE/cm | ||
ANN | train | 0.66 | 0.3 | 1.3 | 0.64 | 4.1 | 9.9 | 0.66 | 5.0 | 13.2 |
predict | 0.32 | 0.5 | 1.7 | 0.55 | 7.4 | 17.0 | 0.55 | 6.4 | 17.8 | |
SVR | train | 0.77 | 0.5 | 1.8 | 0.65 | 2.8 | 6.2 | 0.65 | 4.5 | 16.1 |
predict | 0.42 | 0.6 | 2.6 | 0.32 | 7.5 | 8.5 | 0.45 | 6.1 | 20.9 | |
RFR | train | 0.91 | 0.2 | 0.5 | 0.90 | 2.3 | 4.8 | 0.95 | 2.5 | 1.4 |
predict | 0.71 | 0.2 | 1.2 | 0.71 | 4.7 | 6.1 | 0.78 | 4.3 | 3.3 | |
(c) Grassland | September to November | December to February | March to May | |||||||
(61,511, 60,531) | (51,390, 50,487) | (59,627, 59,285) | ||||||||
R2 | MAE/cm | RMSE/cm | R2 | MAE/cm | RMSE/cm | R2 | MAE/cm | RMSE/cm | ||
ANN | train | 0.81 | 1.5 | 2.0 | 0.78 | 5.1 | 9.9 | 0.78 | 6.2 | 12.7 |
predict | 0.56 | 1.8 | 2.7 | 0.52 | 6.5 | 13.1 | 0.59 | 8.5 | 20.1 | |
SVR | train | 0.77 | 0.5 | 1.8 | 0.64 | 5.0 | 13.4 | 0.70 | 7.1 | 18.9 |
predict | 0.42 | 0.8 | 2.6 | 0.48 | 10.1 | 21.3 | 0.56 | 9.6 | 23.7 | |
RFR | train | 0.88 | 0.2 | 1.5 | 0.92 | 2.5 | 1.2 | 0.96 | 1.5 | 3.7 |
predict | 0.71 | 0.2 | 3.2 | 0.81 | 5.1 | 2.6 | 0.85 | 2.8 | 5.1 | |
(d) Forest | September to November | December to February | March to May | |||||||
(159,146, 157,121) | (195,542, 197,884) | (196,501, 193,886) | ||||||||
R2 | MAE/cm | RMSE/cm | R2 | MAE/cm | RMSE/cm | R2 | MAE/cm | RMSE/cm | ||
ANN | train | 0.73 | 0.9 | 2.5 | 0.73 | 16.3 | 22.1 | 0.67 | 18.4 | 31.4 |
predict | 0.43 | 1.0 | 3.3 | 0.67 | 17.5 | 25.6 | 0.57 | 21.7 | 36.4 | |
SVR | train | 0.75 | 0.7 | 3.0 | 0.64 | 14.7 | 26.3 | 0.60 | 20.6 | 40.1 |
predict | 0.33 | 0.9 | 3.4 | 0.42 | 18.7 | 33.1 | 0.47 | 22.8 | 42.6 | |
RFR | train | 0.85 | 0.1 | 0.5 | 0.95 | 1.0 | 2.0 | 0.96 | 1.6 | 3.3 |
predict | 0.66 | 0.5 | 2.1 | 0.80 | 2.0 | 2.8 | 0.80 | 2.4 | 4.7 |
Scheme | Input Variables | Variable Excluded |
---|---|---|
1 | Longitude, Elevation, AMSR-E, NHSD, GlobSnow, ERA-Interim, MERRA-2 | Latitude |
2 | Latitude, Elevation, AMSR-E, NHSD, GlobSnow, ERA-Interim, MERRA-2 | Longitude |
3 | Latitude, Longitude, AMSR-E, NHSD, GlobSnow, ERA-Interim, MERRA-2 | Elevation |
4 | Latitude, Longitude, Elevation, NHSD, GlobSnow, ERA-Interim, MERRA-2 | AMSR-E |
5 | Latitude, Longitude, Elevation, AMSR-E, GlobSnow, ERA-Interim, MERRA-2 | NHSD |
6 | Latitude, Longitude, Elevation, AMSR-E, NHSD, ERA-Interim, MERRA-2 | GlobSnow |
7 | Latitude, Longitude, Elevation, AMSR-E, NHSD, GlobSnow, MERRA-2 | ERA-Interim |
8 | Latitude, Longitude, Elevation, AMSR-E, NHSD, GlobSnow, ERA-Interim | MERRA-2 |
Priori Conditions | Input Variables | R2 | RMSE/cm | MAE/cm |
---|---|---|---|---|
Land cover type | All variables | 0.81 | 10.5 | 2.3 |
Elevation excluded | 0.75 | 12.8 | 3.4 | |
Latitude excluded | 0.78 | 11.2 | 3.0 | |
Bare-land | Longitude excluded | 0.78 | 11.1 | 2.9 |
AMSR-E excluded | 0.79 | 11.0 | 2.7 | |
Seasons | NHSD excluded | 0.79 | 10.9 | 2.8 |
GlobSnow excluded | 0.76 | 12.6 | 3.3 | |
December to February | ERA-Interim excluded | 0.80 | 10.7 | 2.6 |
MERRA-2 excluded | 0.77 | 12.4 | 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Che, T.; Dai, L.; Xiao, L. Snow Depth Fusion Based on Machine Learning Methods for the Northern Hemisphere. Remote Sens. 2021, 13, 1250. https://doi.org/10.3390/rs13071250
Hu Y, Che T, Dai L, Xiao L. Snow Depth Fusion Based on Machine Learning Methods for the Northern Hemisphere. Remote Sensing. 2021; 13(7):1250. https://doi.org/10.3390/rs13071250
Chicago/Turabian StyleHu, Yanxing, Tao Che, Liyun Dai, and Lin Xiao. 2021. "Snow Depth Fusion Based on Machine Learning Methods for the Northern Hemisphere" Remote Sensing 13, no. 7: 1250. https://doi.org/10.3390/rs13071250
APA StyleHu, Y., Che, T., Dai, L., & Xiao, L. (2021). Snow Depth Fusion Based on Machine Learning Methods for the Northern Hemisphere. Remote Sensing, 13(7), 1250. https://doi.org/10.3390/rs13071250