Landsat 8 Lake Water Clarity Empirical Algorithms: Large-Scale Calibration and Validation Using Government and Citizen Science Data from across Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. In Situ Data
2.3. Image Processing
- Same Day: image reflectance within a one-day time window of the in situ sample date for each sample station regressed against the in situ sample.
- Same Week: median (from scene overlap if applicable) image reflectance within a seven-day time window of the in situ sample date for each sample station. This was regressed against the in situ sample per sample date.
- Same Month: median image reflectance within a 30-day time window of the in situ sample date for each sample station. This was regressed against the median of the in situ samples within the same 30-day time window for a given sample station.
- Same Year: the median image reflectance within the same summer the in situ sample was taken for each sample station. This was regressed against the median of the in situ samples within the same summer window for a given sample station.
- All Years: median satellite band ratio of all available images through the Landsat record (2013–2019) regressed against the median of all repeat in situ samples of a single sample station over that same time period (2013–2019).
2.4. SDD Algorithm Calibration
2.5. SDD Algorithm Validation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Li, Y.; Li, L.; Lu, H. Absorption characteristics of optically complex inland waters: Implications for water optical classification. Biogeosciences 2013, 118, 860–874. [Google Scholar] [CrossRef]
- Dekker, A.G.; Vos, R.J.; Peters, S.W. Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. Int. J. Remote Sens. 2002, 23, 15–35. [Google Scholar] [CrossRef]
- Chacon-Torres, A.; Ross, L.G.; Beveridge, M.C.M.; Watson, A.I. The application of SPOT multipsectral imagery for the assessment of water quality in Lake Patzcuaro, Mexico. Int. J. Remote Sens. 1992, 13, 587–603. [Google Scholar] [CrossRef]
- Bonansea, M.; Ledesma, M.; Rodriguez, C.; Pinotti, L. Using new remote sensing satellites for assessing water quality in a reservoir. Hydrol. Sci. J. 2019, 64, 34–44. [Google Scholar] [CrossRef]
- Xu, X.; Huang, X.; Zhang, Y.; Yu, D. Long-Term Changes in Water Clarity in Lake Liangzi Determined by Remote Sensing. Remote Sens. 2018, 10, 1441. [Google Scholar] [CrossRef] [Green Version]
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens. Environ. 2002, 82, 38–47. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Geospatial and Temporal Analysis of a 20-Year Record of Landsat-Based Water Clarity in M innesota’s 10,000 Lakes. J. Am. Water Resour. Assoc. 2014, 50, 748–761. [Google Scholar] [CrossRef]
- Lehmann, M.K.; Nguyen, U.; Muraoka, K.; Allan, M.G. Regional trends in remotely sensed water clarity over 18 years in the Rotorua Lakes, New Zealand. N. Z. J. Mar. Freshw. Res. 2019, 53, 513–535. [Google Scholar] [CrossRef]
- Kuhn, C.; de Matos Valerio, A.D.M.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Richey, J.; Stadler, P.; Crawford, J.; Striegl, R.; et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Page, B.P.; Olmanson, L.G.; Mishra, D.R. A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems. Remote Sens. Environ. 2019, 231, 111284. [Google Scholar] [CrossRef]
- Wicaksono, P.; Lazuardi, W. Assessment of PlanetScope images for benthic habitat and seagrass species mapping in a complex optically shallow water environment. Int. J. Remote Sens. 2018, 39, 5739–5765. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L.; Gege, P. Physics-based Bathymetry and Water Quality Retrieval Using PlanetScope Imagery: Impacts of 2020 COVID-19 Lockdown and 2019 Extreme Flood in the Venice Lagoon. Remote Sens. 2020, 12, 2381. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Daily metre-scale mapping of water turbidity using CubeSat imagery. Opt. Express 2019, 27, A1372–A1399. [Google Scholar] [CrossRef] [PubMed]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Uudeberg, K.; Aavaste, A.; Kõks, K.L.; Ansper, A.; Uusõue, M.; Kangro, K.; Ansko, I.; Ligi, M.; Toming, K.; Reinart, A. Optical Water Type Guided Approach to Estimate Optical Water Quality Parameters. Remote Sens. 2020, 12, 931. [Google Scholar] [CrossRef] [Green Version]
- Lymburner, L.; Botha, E.; Hestir, E.; Anstee, J.; Sagar, S.; Dekker, A.; Malthus, T. Landsat 8: Providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens. Environ. 2016, 185, 108–118. [Google Scholar] [CrossRef]
- Song, K.; Liu, G.; Wang, Q.; Wen, Z.; Lyu, L.; Du, Y.; Sha, L.; Fang, C. Quantification of lake clarity in China using Landsat OLI imagery data. Remote Sens. Environ. 2020, 243, 111800. [Google Scholar] [CrossRef]
- Brezonik, P.; Menken, K.D.; Bauer, M. Landsat-based Remote Sensing of Lake Water Quality Characteristics, Including Chlorophyll and Colored Dissolved Organic Matter (CDOM). Lake Reserv. Manag. 2005, 21, 373–382. [Google Scholar] [CrossRef]
- McCullough, I.M.; Loftin, C.S.; Sader, S.A. Landsat imagery reveals declining clarity of Maine’s lakes during 1995–2010. Freshw. Sci. 2013, 32, 741–752. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4086–4097. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Finlay, J.C.; Bauer, M.E. Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sens. Environ. 2016, 185, 119–128. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhang, B.; Lee, Z.; Spyrakos, E.; Feng, L.; Liu, C.; Zhao, H.; Wu, Y.; Zhu, L.; et al. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS. Remote Sens. Environ. 2020, 247, 111949. [Google Scholar] [CrossRef]
- Guan, Q.; Feng, L.; Hou, X.; Schurgers, G.; Zheng, Y.; Tang, J. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sens. Environ. 2020, 246, 111890. [Google Scholar] [CrossRef]
- Kontopoulou, E.; Kolokoussis, P.; Karantzalos, K. Water quality estimation in Greek lakes from Landsat 8 multispectral satellite data. Eur. Water 2017, 58, 191–196. [Google Scholar]
- Wang, S.; Li, J.; Zhang, B.; Spyrakos, E.; Tyler, A.N.; Shen, Q.; Zhang, F.; Kuster, T.; Lehmann, M.K.; Wu, Y.; et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sens. Environ. 2018, 217, 444–460. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, E.S.; Alameddine, I.; El-fadel, M. Monitoring water quality in a hypereutrophic reservoir using Landsat ETM + and OLI sensors: How transferable are the water quality algorithms? Environ. Monit. Assess. 2018, 190, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Noges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Markogianni, V.; Dimitriou, E.; Karaouzas, I. Water quality monitoring and assessment of an urban Mediterranean lake facilitated by remote sensing applications. Environ. Monit. Assess. 2014, 186, 5009–5026. [Google Scholar] [CrossRef] [PubMed]
- Al-Fahdawi, A.A.H.; Rabee, A.M.; Al-Hirmizy, S.M. Water quality monitoring in Al-Habbaniyah Lake using remote sensing and in situ measurements. Environ. Monit. Assess. 2015, 187, 367. [Google Scholar] [CrossRef]
- McCullough, I.M.; Loftin, C.S.; Sader, S.A. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity. Remote Sens. Environ. 2012, 123, 109–115. [Google Scholar] [CrossRef]
- Bonansea, M.; Rodriguez, M.C.; Pinotti, L.; Ferrero, S. Using multi-temporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens. Environ. 2015, 158, 28–41. [Google Scholar] [CrossRef]
- Deutsch, E.S.; Alameddine, I. Hindcasting eutrophication and changes in temperature and storage volume in a semi-arid reservoir: A multi-decadal Landsat-based assessment. Environ. Monit. Assess. 2019, 191, 41. [Google Scholar] [CrossRef]
- Hicks, B.J.; Stichbury, G.A.; Brabyn, L.K.; Allan, M.G.; Ashraf, S. Hindcasting water clarity from Landsat satellite images of unmonitored shallow lakes in the Waikato region, New Zealand. Environ. Monit. Assess. 2013, 185, 7245–7261. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef] [Green Version]
- Gupta, G. Algorithm for image processing using improved median filter and comparison of mean, median and improved median filter. Int. J. Soft Comput. Eng. 2011, 1, 304–311. [Google Scholar]
- Chen, T.; Ma, K.-K.; Chen, L.-H. Tri-state median filter for image denoising. IEEE Trans. Image Process. 1999, 8, 1834–1838. [Google Scholar] [CrossRef] [Green Version]
- Lottig, N.R.; Wagner, T.; Henry, E.N.; Cheruvelil, K.S.; Webster, K.E.; Downing, J.A.; Stow, C.A. Long-Term Citizen-Collected Data Reveal Geographical Patterns and Temporal Trends in Lake Water Clarity. PLoS ONE 2014, 9, e95769. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef]
- Huot, Y.; Brown, C.A.; Potvin, G.; Antoniades, D.; Baulch, H.M.; Beisner, B.E.; Bélanger, S.; Brazeau, S.; Cabana, H.; Cardille, J.A.; et al. The NSERC Canadian Lake Pulse Network: A national assessment of lake health providing science for water management in a changing climate. Sci. Total Environ. 2019, 695, 133668. [Google Scholar] [CrossRef] [PubMed]
- Preisendorfer, R.W. Secchi disk science: Visual optics of natural waters. Limnol. Oceanogr. 1986, 31, 909–926. [Google Scholar] [CrossRef] [Green Version]
- Fee, E.J.; Hecky, R.E.; Kasian, S.E.M.; Cruikshank, D.R. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnol. Oceanogr. 1996, 41, 912–920. [Google Scholar] [CrossRef]
- Carlson, R.E. A trophic state index for lakes. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Carlson, R.E.; Havens, K.E. Graphical Methods for the Interpretation of Relationships Between Trophic State Variables. Lake Reserv. Manag. 2005, 21, 107–118. [Google Scholar] [CrossRef]
- Keeler, B.L.; Polasky, S.; Brauman, K.A.; Johnson, K.A.; Finlay, J.C.; O’Neill, A.; Kovacs, K.; Dalzell, B. Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc. Natl. Acad. Sci. USA 2012, 109, 18619–18624. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; De Leeuw, J.; Liu, Y. Understanding Seasonal Water Clarity Dynamics of Lake Dahuchi from In Situ and Remote Sensing Data. Water Resour. Manag. 2009, 23, 1849–1861. [Google Scholar] [CrossRef]
- Lathrop, R.C.; Carpenter, S.R.; Robertson, D.M. Summer water clarity responses to phosphorus, Daphnia grazing, and internal mixing in Lake Mendota. Limnol. Oceanogr. 1999, 44, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Carper, G.L.; Bachmann, R.W. Wind Resuspension of Sediments in a Prairie Lake. Can. J. Fish. Aquat. Sci. 1984, 41, 1763–1767. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Olmanson, L.G.; Page, B.P.; Finlay, J.C.; Brezonik, P.L.; Bauer, M.E.; Griffin, C.G.; Hozalski, R.M. Regional measurements and spatial/temporal analysis of CDOM in 10,000+ optically variable Minnesota lakes using Landsat 8 imagery. Sci. Total Environ. 2020, 724, 138141. [Google Scholar] [CrossRef] [PubMed]
- Doxani, G.; Vermote, E.; Roger, J.-C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; et al. Atmospheric Correction Inter-Comparison Exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.; Carlin, B.P.; Gelfand, A.E. Heirarchical Modeling and Analysis for Spatial Data; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Sayler, K.; Zanter, K. Landsat 8 Collection 1 (C1) Landsat Surface Reflectance Code (LaSRC) Product Guide; Department of Interior U.S. Geological Survey: Sioux Falls, SD, USA, 2020. [Google Scholar]
- Lee, Z.; Zaneveld, J.R.V.; Maritorena, S.; Loisel, H.; Doerffer, R.; Lyon, P.; Boss, E.; Carder, K.L.; Devred, E.; Arnone, R. Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications. In Reports of the Internationsl Ocean-Colour Coordinating Group; Lee, Z., Ed.; International Ocean-Colour Coordinating Group: Dartmouth, NS, Canada, 2006; p. 89. [Google Scholar]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Ocean. 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments. Water Resour. Res. 2011, 47, W09515. [Google Scholar] [CrossRef] [Green Version]
- Nelson, S.A.C.; Soranno, P.A.; Cheruvelil, K.S.; Batzli, S.A.; Skole, D.L. Regional assessment of lake water clarity using satellite remote sensing. J. Limnol. 2003, 62, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Hamner, B.; Frasco, M.; LeDell, E. Metrics: Evaluation Metrics for Machine Learning; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. In R Foundations for Statistical Computing; R Foundations for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Maindonald, J.; Braun, W.J. DAAG: Data Analysis and Graphics Data and Functions; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Tibshirani, R.; Leisch, F. Package “Bootstrap”; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Duan, H.; Ma, R.; Zhang, Y.; Zhang, B. Remote-sensing assessment of regional inland lake water clarity in northeast China. Limnology 2009, 10, 135–141. [Google Scholar] [CrossRef]
- Cao, Z.; Ma, R.; Duan, H.; Pahlevan, N.; Melack, J.; Shen, M.; Xue, K. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes. Remote Sens. Environ. 2020, 248, 111974. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. Novel Spectra-Derived Featuers for Emperical Retrieval of Water Quality Parameters: Demonstrations for OLI, MSI, and OLCI Sensors. IEEE Trans. Geosci. Remote Sens. 2019, 57, 10285–10300. [Google Scholar] [CrossRef]
- Maheux, H.M. Trends and Drivers of Water Clarity in Shallow, Prairie Lakes of Southern Alberta. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2012. [Google Scholar]
- Jackson, L.J.; Moquin, P.A. Turbidity of shallow prairie lakes. Lakeline 2011, 31, 36–40. [Google Scholar]
- Wang, D.; Ma, R.; Xue, K.; Loiselle, S.A. The Assessment of Landsat-8 OLI Atmospheric Correction Algorithms for Inland Waters. Remote Sens. 2019, 11, 169. [Google Scholar] [CrossRef] [Green Version]
- Cardille, J.A.; Leguet, J.-B.; del Giorgio, P.A. Remote sensing of lake CDOM using noncontemporaneous field data. Can. J. Remote Sens. 2013, 39, 118–126. [Google Scholar] [CrossRef]
- Jiang, H.; Feng, M.; Zhu, Y.; Lu, N.; Huang, J.; Xiao, T. An Automated Method for Extracting Rivers and Lakes from Landsat Imagery. Remote Sens. 2014, 6, 5067–5089. [Google Scholar] [CrossRef] [Green Version]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Patole, S.M.; Torlak, M.; Wang, D.; Ali, M. Automotive radars: A review of signal processing techniques. IEEE Signal Process. Mag. 2017, 34, 22–35. [Google Scholar] [CrossRef]
- Satija, U.; Ramkumar, B.; Manikandan, M.S. A Review of Signal Processing Techniques for Electrocardiogram Signal Quality Assessment. IEEE Rev. Biomed. Eng. 2018, 11, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-C. Digital Signal Processing Techniques and Applications in Radar Image Processing; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 91. [Google Scholar]
Ecozone | Lake Origin | Lake Characteristics | Lake Productivity |
---|---|---|---|
Pacific Maritime and Montane Cordilleran | Mainly glacial scouring. Some tectonic processes. | Sparser density, but varied characteristics. | Mostly unproductive |
Boreal Plain and Prairie | Glacial deposition of till. | Softer sedimentary rock. Formed in a thick overburden of clay, till and soil. Shallow with rapid sedimentation rates. Sometimes ephemeral | Productive |
Boreal Shield | Glacial scouring. | Thin soils and highly weather-resistant rock. Low sedimentation rates. Large density of lakes. | Unproductive |
Mixed Wood Plain | Glacial deposition. | Formed in sedimentary rock and thick overburdens of glacial deposits. Heavily influenced by human settlement. | Often productive |
Atlantic Maritime | Glacial scouring. | Many lakes underlain by hard igneous and metamorphosed rock. | Mostly unproductive |
Ecozone | Intercept | Coefficient | df | RMSE | R2 |
---|---|---|---|---|---|
Using 1-Day Window | |||||
Pacific Maritime and Montane Cordilleran | 0.670 | 1.709 | 35 | 3.23 | 0.477 |
Boreal Plain and Prairies | 0.302 | 1.634 | 43 | 1.12 | 0.523 |
Boreal Shield | 0.8169 | 1.092 | 203 | 1.70 | 0.263 |
Mixed Wood Plains | 0.673 | 1.479 | 54 | 1.44 | 0.549 |
Atlantic Maritime | 1.007 | 0.879 | 27 | 2.21 | 0.116 |
Using 7-Day Window | |||||
Pacific Maritime and Montane Cordilleran | 0.9033 | 1.3489 | 144 | 3.07 | 0.402 |
Boreal Plain and Prairies | 0.2501 | 1.5999 | 243 | 0.93 | 0.420 |
Boreal Shield | 0.8734 | 0.9436 | 761 | 1.71 | 0.200 |
Mixed Wood Plains | 0.7612 | 1.3258 | 248 | 1.37 | 0.444 |
Atlantic Maritime | 0.6722 | 1.5796 | 109 | 1.72 | 0.384 |
Equation Form | df | BIAS | RMSE | R2 | Adjusted R2 |
---|---|---|---|---|---|
Ln(SDD) = Ln(Blue/Red) | 1511 | 0.361 | 1.87 | 0.467 | 0.467 |
Ln(SDD) = Ln(Blue/Red) + Blue | 1510 | 0.354 | 1.87 | 0.477 | 0.477 |
Ln(SDD) = Ln(Blue/Red) + Green | 1510 | 0.349 | 1.85 | 0.505 | 0.504 |
Ln(SDD) = Ln(Blue/Red) + Red | 1510 | 0.357 | 1.86 | 0.487 | 0.486 |
Ln(SDD) = Ln(Blue/Red) + NIR | 1510 | 0.362 | 1.86 | 0.468 | 0.468 |
Ln(SDD) = Ln(Blue/Red) + (Ln(Blue/Red))2 | 1510 | 0.387 | 1.85 | 0.478 | 0.470 |
Ln(SDD) = Ln(Blue/Red) + (Ln(Blue/Red))2 + (Ln(Blue/Red))3 | 1509 | 0.386 | 1.85 | 0.478 | 0.477 |
Ln(SDD) = Ln(Blue/Red) + (Ln(Blue/Red))2 + (Ln(Blue/Red))3 + (Ln(Blue/Red))4 | 1508 | 0.387 | 1.85 | 0.479 | 0.478 |
Temporal Window | Sample Size | Intercept | Coefficient | RMSE | Bias | R2 | Cross-Validated R2 |
---|---|---|---|---|---|---|---|
Same Day | 403 | 0.6834 | 1.4320 | 2.65 | 0.413 | 0.421 | 0.420 |
Median of Same Week | 1513 | 0.5877 | 1.5620 | 1.87 | 0.361 | 0.467 | 0.465 |
Median of Same Month | 2139 | 0.5237 | 1.7205 | 1.80 | 0.319 | 0.509 | 0.508 |
Median of Same Year | 1879 | 0.5500 | 1.7040 | 1.65 | 0.287 | 0.512 | 0.511 |
Median of All Years | 977 | 0.3729 | 2.1452 | 1.75 | 0.261 | 0.645 | 0.643 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deutsch, E.S.; Cardille, J.A.; Koll-Egyed, T.; Fortin, M.-J. Landsat 8 Lake Water Clarity Empirical Algorithms: Large-Scale Calibration and Validation Using Government and Citizen Science Data from across Canada. Remote Sens. 2021, 13, 1257. https://doi.org/10.3390/rs13071257
Deutsch ES, Cardille JA, Koll-Egyed T, Fortin M-J. Landsat 8 Lake Water Clarity Empirical Algorithms: Large-Scale Calibration and Validation Using Government and Citizen Science Data from across Canada. Remote Sensing. 2021; 13(7):1257. https://doi.org/10.3390/rs13071257
Chicago/Turabian StyleDeutsch, Eliza S., Jeffrey A. Cardille, Talia Koll-Egyed, and Marie-Josée Fortin. 2021. "Landsat 8 Lake Water Clarity Empirical Algorithms: Large-Scale Calibration and Validation Using Government and Citizen Science Data from across Canada" Remote Sensing 13, no. 7: 1257. https://doi.org/10.3390/rs13071257
APA StyleDeutsch, E. S., Cardille, J. A., Koll-Egyed, T., & Fortin, M. -J. (2021). Landsat 8 Lake Water Clarity Empirical Algorithms: Large-Scale Calibration and Validation Using Government and Citizen Science Data from across Canada. Remote Sensing, 13(7), 1257. https://doi.org/10.3390/rs13071257