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Abstract: Mangroves play an important role in many aspects of ecosystem services. Mangroves
should be accurately extracted from remote sensing imagery to dynamically map and monitor the
mangrove distribution area. However, popular mangrove extraction methods, such as the object-
oriented method, still have some defects for remote sensing imagery, such as being low-intelligence,
time-consuming, and laborious. A pixel classification model inspired by deep learning technology
was proposed to solve these problems. Three modules in the proposed model were designed to
improve the model performance. A multiscale context embedding module was designed to extract
multiscale context information. Location information was restored by the global attention module,
and the boundary of the feature map was optimized by the boundary fitting unit. Remote sensing
imagery and mangrove distribution ground truth labels obtained through visual interpretation were
applied to build the dataset. Then, the dataset was used to train deep convolutional neural network
(CNN) for extracting the mangrove. Finally, comparative experiments were conducted to prove the
potential for mangrove extraction. We selected the Sentinel-2A remote sensing data acquired on
13 April 2018 in Hainan Dongzhaigang National Nature Reserve in China to conduct a group of
experiments. After processing, the data exhibited 2093 × 2214 pixels, and a mangrove extraction
dataset was generated. The dataset was made from Sentinel-2A satellite, which includes five original
bands, namely R, G, B, NIR, and SWIR-1, and six multispectral indices, namely normalization
difference vegetation index (NDVI), modified normalized difference water index (MNDWI), forest
discrimination index (FDI), wetland forest index (WFI), mangrove discrimination index (MDI), and
the first principal component (PCA1). The dataset has a total of 6400 images. Experimental results
based on datasets show that the overall accuracy of the trained mangrove extraction network reaches
97.48%. Our method benefits from CNN and achieves a more accurate intersection and union ratio
than other machine learning and pixel classification methods by analysis. The designed model
global attention module, multiscale context embedding, and boundary fitting unit are helpful for
mangrove extraction.

Keywords: mangrove extraction; deep learning; pixels classification; boundary fitting;
attention mechanism

1. Introduction

Mangrove is a salt-tolerant evergreen woody plant, which is distributed in intertidal
zones of tropical and subtropical areas [1]. Mangroves provide breeding and nursing places
for marine and pelagic species and play an important role in wind prevention, coastal
stability, carbon sequestration, and some other applications [2]. In the past 50–60 years,
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China’s mangrove forest has decreased from 420 km2 in 1950 to 220 km2 in 2000 due to
agricultural land reclamation, urban development, industrialization, and aquaculture [3].
With the continuous attention of the Chinese government in environmental protection,
determining the changes in mangrove distribution range and providing distribution data
for mangrove planning are important. However, obtaining mangrove distribution data
for extensive field measurement and sampling is difficult because mangroves are dense
and located in intertidal zones and often submerged by periodic sea water. With the rapid
development of remote sensing technology, remote sensing imagery has been widely used
in environmental protection and has provided a possibility for mangrove extraction [4–7].

Traditional manual extraction methods, such as visual interpretation, mainly use
researchers’ remote sensing expertise and experience to identify mangroves in accordance
with their image characteristics. This method has high precision but is time-consuming and
laborious [8]; it also contains many operator errors [9]. Recently, researchers have proposed
various mangrove extraction methods, which can be divided into pixel-based and object-
oriented classification methods in accordance with the type of basic classification unit.
However, the method based on pixel classification can only obtain spectral characteristics
of pixels in different wavebands and cannot use texture information. “Salt and pepper
noise” is easily produced [10,11]. The object-oriented method combines homogeneous and
adjacent pixels, and the image is divided into many objects with great difference; the object
is regarded as the basic unit for classification [12,13]. The method can not only use the
spectral characteristics of mangroves but also consider the shape, texture, and structure
of mangrove patches; it can reduce the interference of similar types [14] and avoid the
generation of “salt and pepper noise”. However, this method has some shortcomings,
namely unreasonably segmenting the classified objects and insufficient intelligence.

Semantic segmentation has been developed to automatically and intelligently extract
objects from images, which is treated as object extraction from images at the pixel level.
With the latest development in convolutional neural networks (CNN) [15,16], the perfor-
mance of semantic segmentation has been significantly improved [17–19] because deep
CNN extracts image feature information through downsampling. Accordingly, a large
number of small objects are difficult to classify. In semantic segmentation, a high-stage
feature map is overlapped with a low-stage feature map by channel or directly added by
pixel. Feature information was fused by a convolution layer, and the classification and
location information of pixel points, such as the feature pyramid network [20], U-Net [21],
pyramid scene parsing network (PSPNet) [22], and DeepLab [23], are recovered. Inspired
by the attention mechanism of human vision, the attention mechanism was gradually
applied to neural networks, especially in natural language processing and computer vi-
sion, where it has achieved remarkable results [24–26]. Some special modules have been
designed, such as squeeze-and-excitation network, to extract more details of the global in-
formation of objects [27]. Such modules use global average pooling (GAP) and feature map
multiplication to realize attention mechanism and automatically obtain the importance of
each feature channel. Pyramid Attention Network (PAN) [28] and Discriminative Feature
Network (DFN) [29] performe global pooling through global attention up-sample (GAU)
module and channel attention block (CAB) module, respectively, to obtain global context
information.

The excellent performance of semantic segmentation in image processing [18,23,24,30–32]
shows that deep neural networks can be used to extract mangroves from remote sens-
ing imagery. The multispectral feature of remote sensing imagery allows it to contain
rich ground feature information. For example, the near-infrared band is very sensitive
to vegetation and water. However, mangroves belong to a type of vegetation, and they
have the same spectral, structural, and textural characteristics as other vegetation in the
background. Accordingly, some vegetation is misclassified as mangroves. In addition, the
spectrum, texture, and shape of mature forest area, larval expansion forest area, natural
forest, and artificial forest are relatively different. Mature and natural forests are distributed
as dense blocks, and larval expansion and artificial forests are mostly scattered. Thus, not
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all mangrove areas are detected. Mangrove extraction is difficult because of the complexity
of the spectral and spatial features.

Extracting mangroves from remote sensing imagery can be regarded as the pixel
classification, which can be solved by a semantic segmentation network. The semantic seg-
mentation network structure often cannot accurately detect the boundary of the object and
lacks the ability to remove “salt and pepper noise” because of the principle of convolution
computing [18]. In the postprocessing stage, boundary alignment attempts to improve
prediction to slightly adjust the results of semantic segmentation. An improved pixel
classification network based on ResNet [33] was designed to solve the above-mentioned
problems in extracting mangroves. The proposed neural network contained an attention
module, a multiscale context embedding (MCE) module, and a boundary fitting unit (BFU).
The ResNet network overcame the problem of gradient vanishing, and the training was
simple and could effectively extract feature information. To successfully obtain all the
information, the proposed global attention module (GAM) provided classification guidance
for the low-stage feature map through learning high-stage feature map information to
improve the classification accuracy. Moreover, we propose the MCE module, which extracts
the multiscale context information through the convolution of different scales and solves
the intraclass consistency issue. A BFU was also designed to integrate the object position
inconsistency and feature map aliasing effect. This module optimized the boundary of
mangrove distribution and eliminated some “salt and pepper noise”. This work aims to
design a new mangrove extraction method based on deep learning.

The main contribution of this study is to develop a pixel classification model for
extracting mangrove from remote sensing imagery by pixel classification. This work does
not focus on scientifically examining the full capability of Sentinel 2 data to perform
the mangrove extraction. What this study does do is show the success of the proposed
GAM, MCE, and BFU approaches to the mangrove extraction issue and how the approach
is repeatable at other sites when similarly implemented. Moreover, we want to assess
the performance of different learning approaches for mangrove extraction, especially to
demonstrate the capability of our new deep convolutional neural network for mangrove
extraction. We aim to solve the problem in mangrove extraction, including the boundary
of mangrove distribution, some “salt and pepper noise”, and more high-stage feature
map information extraction. Hence, this work designed a model that exploited attention
mechanism and global context information to improve the ability of remote sensing imagery
feature learning. The experimental results show that the proposed network structure can
effectively extract mangrove from remote sensing imagery.

2. Materials and Methods

A pixel classification model is proposed to extract mangroves from remote sensing im-
agery. We preprocessed the original remote sensing imagery to prepare datasets as follows.
(1) A radiometric correction of Sentinel-2 spectral data was conducted. (2) Multispectral
indices of the image are required for mangrove extraction. Given that the band selection
is not our research focus, six multispectral indices were used in this study based on the
vegetation index commonly used in remote sensing images and the existing research results
in mangrove extraction research [34–37]. According to previous experiments and research
results [35,38], the red-edge bands from Sentinel-2 and the SAR data from sentinel-1 are
also useful for differentiating different vegetation types. The R, G, and B are the common
spectra for object extraction. Accordingly, five original bands, including R, G, B, NIR,
and SWIR-1, were selected for the experiments. The mangroves are a type of vegetation,
and they always live around the water. Here, normalization difference vegetation index
(NDVI) and modified normalized difference water index (MNDWI) were introduced. Since
mangroves are a kind of forest, the forest discrimination index (FDI), wetland forest in-
dex (WFI), and mangrove discrimination index (MDI) were also used in the experiment
to improve the extraction accuracy. The first principal component (PCA1), a common
method for enhancing information, was used as a multispectral index. (3) To prepare the
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datasets for training the mangrove extraction model, all the remote sensing images and
the corresponding ground truth labels were clipped with a fixed size sliding window, and
the datasets were expanded by data augmentation. Each data sample has five original
bands (R, G, B, NIR, and SWIR-1), and six multispectral indices (NDVI, MNDWI, FDI, WFI,
MDI, and PCA1), the data sample, and the corresponding ground truth were treated as the
input of the proposed deep neural network for training the mangrove extraction network
(ME-Net). The output of the deep neural network is a binary grey-scale image, where 0
represents the pixel, which is measured as a non-mangrove forest, and 1 represents the
mangrove forest. An overview of the proposed framework is shown in Figure 1.
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2.1. Study Area

The study area is located in the northeast of Hainan Island, including Dongzhaigang
National Nature Reserve (DNNR) and its surrounding area of approximately 5 km (Figure 2).
DNNR is the first National Nature Reserve for mangroves in China. Dongzhaigang
mangrove is the largest coastal beach forest in China, with a total length of 28 km. It is
the most well-preserved, most concentrated, continuous, and mature mangrove forest.
DNNR is the most resource-rich area of all mangrove types. It is a typical mangrove
wetland composed of major mangrove species in southern China and is becoming a major
area for mangrove classification research [35]. There are five families and eight genera
of mangroves in DNNR. These mangroves contain eleven species, including Bruguiera
gymnorhiza Lamk, Bruguiera sexangular Poir, Bruguiera sexangular rhynchopetala, Ceriops tagal,
Kandelia candel, Rhizophora stylosa Griff, Sonneratia apetala Buch, Sonneratia cylindria Engler,
Aegiceras corniculatum Blanco, Acanthus ilicifolius, and Derris trifoliata. Figure 2 shows that
some mangroves are located in intertidal wetlands, such as estuaries, coasts, and islands.
Therefore, the integration of water and vegetation characteristics has important guiding
significance for the distinction between land vegetation and mangrove vegetation. The
MNDWI was closely related to the characteristics of the water body, and it was introduced
for extracting the mangroves in this study.
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2.2. Remote Sensing Data and Preprocessing

The data characteristics of Sentinel-2A MSI (S2) images are shown in Table 1, in-
cluding basic information, such as wavelength range and spatial resolution of 13 bands.
S2 satellite images (Level-1C) were downloaded from the Sentinel Scientific Data Hub
(https://scihub.copernicus.eu/dhus/#/home accessed date: 1 March 2020) of the European
Space Agency. These images are atmospheric apparent reflectance products after or-
thophoto correction and subpixel geometric precision correction; thus, the images are not
geometrically corrected. The authors used sen2cor to correct the atmosphere of the Level-
1C image and obtain the processed bottom-of-atmosphere Level-2A products. The sen2cor
atmospheric correlated processor software (version 2.8.0) is a built-in algorithm within
software SNAP (Sentinel’s Application Platform) version v6.0. Sentinel-2 data cannot be
directly opened with ENVI 5.3.1. To ensure that all the data products had the same pixel
size for deep learning for mangrove extraction, we read the Level-C 2A image through
SNAP, resampled the band needed by the image to 10 m pixel size, and converted it to a
format that could be used by ENVI to facilitate subsequent data processing in ENVI.

Table 1. The characteristics of Sentinel-2 imagery.

Band Band Name Central (nm) Wave Width (nm) Spatial
Resolution (m)

B1 Aerosols 442.3 45 60
B2 Blue 492.1 98 10
B3 Green 559 46 10
B4 Red 665 39 10
B5 Vegetation red-edge 703.8 20 20
B6 Vegetation red-edge 739.1 18 20
B7 Vegetation red-edge 779.7 28 20
B8 Near infrared 833 133 10
B8a Vegetation red-edge 864 32 20
B9 Water-vapor 943.2 27 60
B10 Cirrus 1376.9 76 60

B11 Shortwave-infrared reflectance
(SWIR-1) 1610.4 141 20

B12 Shortwave-infrared reflectance
(SWIR-2) 2185.7 238 20

https://scihub.copernicus.eu/dhus/#/home
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According to previous experiments and previous research results [35,38], the red-edge
bands from Sentinel-2 and the SAR data from Sentinel-1 are also useful for differentiat-
ing different vegetation types. However, many redundant and even noise data [39] are
observed for only mangrove extraction using deep learning after our preliminary research.
Therefore, five original bands, namely R, G, B, NIR, and SWIR-1, were selected for the
experiments to improve the accuracy of mangrove extraction. In addition, five multispec-
tral indices were obtained by band calculation for mangrove extraction, and their detailed
calculation process is shown in Table 2. The PCA1 [11] was computed by the six original
bands (including R, G, B, NIR, SWIR-1, and SWIR-2) as the sixth multispectral index. A
series of experiments was conducted in Section 3.5, which starts with the five spectral bands.
Then, additional data were incorporated to improve the performance of the mechanism in
proving the effectiveness of each index.

Table 2. Calculation method of multispectral indices.

Multispectral Indices Calculation Method Calculation Details in Sentinel-2

NDVI NDVI = (NIR − R)/(NIR + R) (B8 − B4)/(B8 + B4)
MNDWI MNDWI = (Green − SWIR-1)/(Green + SWIR-1) (B3 − B11)/(B3 + B11)

FDI FDI = NIR − (Red + Green) B8 − (B4 + B3)
WFI WFI = (NIR − Red)/SWIR-2 (B8 − B4)/B12
MDI MDI = (NIR − SWIR-2)/SWIR-2 (B8 − B12)/B12

2.3. Deep CNN Structure

The designed architecture is named ME-Net. Inspired by the performance of the fully
convolutional networks (FCN) structure in pixel classification, ME-Net is designed with
two parts (Figure 3). The first part (top of Figure 3) uses ResNet-101 to extract features,
whose kernel is arithmetic mean; the second part (bottom of Figure 3) aims to extract
multiscale information and context information in different stages and generate a binary
classification map to obtain good mangrove extraction performance.
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In accordance with the size of the feature map, the ResNet-101 network is divided into
six stages, namely {Stage 0, Stage 1, . . . , Stage 5}. We refer to the stage with a larger feature
size as the low stage and the stage with a smaller feature size as the high stage. According
to our observation, different stages have varying recognition abilities. In the lower stage,
the network encodes detailed spatial information. Thus, the low-stage feature map has
accurate location information. However, the semantic consistency is poor due to its small
receptive field and insufficient spatial context information guidance. At a higher stage,
the map has strong semantic consistency because of its large receptive field; however, the
location information is relatively inaccurate.

In summary, the lower stage provides more accurate spatial prediction, and the higher
stage offers more accurate semantic prediction. On the basis of this observation, we
propose a GAM, which guides the lower stage by the context information of the higher
stage. In addition, we propose an MCE module and a BFU. The former extracts the
multiscale information of mangroves in remote sensing imagery, and the latter combines
the boundary of features in the feature map to eliminate some “salt and pepper noise” and
“grid artifacts” [40]. These models are introduced in the following sections.

2.3.1. GAM Module

GAM (Figure 4) performs GAP to provide global context information to guide in the
low-stage feature map. Global context information provides strong location consistency
constraints for feature map in low-stage maps to correct the offset and dislocation of
feature location. The structure integrates position consistency guidance information from
high-stage feature maps and detailed information from low-stage feature maps. GAM
has two branches, namely the global attention information weighting branch and the
upsampling branch.
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Obtaining sufficient information to extract the relationship between channels is diffi-
cult because convolution only operates in a local space. To encode the entire spatial feature
on a channel as a global feature, GAP is exploited to address the problem, as follows:

yk =
1

H × W

H

∑
i=1

W

∑
j=1

xi,j , k ∈ {1, 2, . . . , C}, (1)

where xi,j is the value of each feature pixel in channel k, and k ∈ {1, 2, . . . , C}; H is the
height; W is the width; and C is the number of channels.

On the weighted branch of the global attention information, we performed GAP on
the feature map in the higher stage to generate global context information and conducted a
nonlinear 1× 1 convolution and batch normalization [41]. The nonlinear 1× 1 convolution
is activated by a rectified linear unit (ReLU) or softmax function. The calculation process is
shown as follows:

wk =
ezk

∑C
k=1 ezk

, k ∈ C, (2)

where wk is the prediction probability of each channel and zk is the output of each channel.
Finally, the result calculated by softmax is multiplied by each pixel in the low-stage

feature map, and the high-stage feature map information is used to guide the low-stage
feature map channel to provide context information guidance. The calculation process is
shown in Formula (3), as follows:

Sout = W.F =

 w1
. . .
wc

.
[

f1(i, j) . . . fc(i, j)
]
, i ∈ H, j ∈W, (3)

where Sout is a 3D matrix of H ×W × C, W is a column vector of 1 × C, F is the feature
map, wc is the weight of the channel c, and fc (i, j) is any pixel value in the feature map of
channel c.

In the upsampling branch, the high-stage feature map uses complex encoder blocks,
which cost considerable computing resources. In the sampling process from the high-stage
feature map to low-stage feature map, 1× 1 convolution is performed to reduce the channel
from the high-stage feature map and integrate the channel information to increase the
nonlinear features of decoding layer and reduce the computing load. This module can
effectively deal with the feature map of different scales and use a simple method to allow
the high-stage feature map to provide consistent constraint information for the low-stage
feature map.

2.3.2. MCE Module

Inspired by the inception architecture in GoogleNet [42–44] and atrous spatial pyramid
pooling (ASPP) module in DeepLab [23], we propose an MCE module (Figure 5). This
module extracts multiscale context information by four convolution kernels of different
sizes and compresses the number of channels to reduce the computational load.

The designed MCE combines the feature maps of context information with the global
information of the high-stage feature map in the GAM. We used 1 × 1, 3 × 3, 5 × 5, and
7 × 7 convolution in MCE to effectively extract context information from feature maps at
different stages, where 1 × 1 convolution is used to reduce the dimension of the feature
map. The 1 × k + k × 1 and k × 1 + 1 × k convolutions were combined in MCE instead
of k × k to avoid a large convolution kernel or global convolution. After splicing the
multiscale information in accordance with the channel, 3 × 3 convolution was used to
roughly integrate the multiscale information and adjust the number of channels.
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2.3.3. BFU Module

Inspired by the mask regions with CNN (R-CNN [45]), BFU (Figure 6) is designed to
correct the boundary position of the features by two continuous 3 × 3 convolution kernels.
On the one hand, the BFU eliminates the “grid artifacts” caused by the context embedding
of the feature maps in different stages. On the other hand, BFU solves the aliasing effect
caused by the convolution and pooling operations. In addition, a skipped connection is
added to supervise the semantic of the feature map after boundary modification. This
approach speeds up the flow of information in the network and optimizes the performance
of boundary fitting.

The proposed BFU can be understood as a 1 × 1 convolution and a residual module.
In the BFU, 1 × 1 convolution is used to learn the information of different channels while
reducing the number of channels of the original feature map to reduce the computation
amount. The residual module is used to smoothen the feature map and eliminate “grid
artifacts” and aliasing effects.
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represents the feature mapping.

2.4. Loss Function Optimization

Mangrove extraction is a binary classification problem; thus, binary cross-entropy loss
LBCE and Dice loss function value LDC at each pixel are used, as follows:

LBCE = BinaryCrossEntropy
(

Pm; Pgt
)
, (4)

LDC = DiceCoe f f icient
(

Pm; Pgt
)
, (5)

Loss1 = LBCE − ln(1− LDC), (6)

where Pgt represents the set of pixel ground truth labels, and Pm denotes the set of pixel
prediction results.

The strategy of deep supervision was applied in the training of the ME-Net model. A
supervision function was added to the hidden layer to reduce the effects of the gradient
disappearance and improve the speed of model convergence. As shown in Figure 7, we
upsampled the output of the third stage feature map of the ME-Net to resize it to its original
image size. A binary cross-entropy loss function Loss2 was added as the supervision of
the middle hidden layer to optimize the learning process. Loss1 was used to optimize the
overall network. We also increased the weight to balance the two loss functions.
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3. Results and Discussion
3.1. Preprocessing of Experimental Data

In combination with field sampling and visual interpretation of Google Earth satellite
images, we manually marked the original remote sensing imagery by ArcGIS 10.2 to obtain
the ground truth labels. These training samples were labeled under the supervision of
several experts, who are professionals in mapping mangrove extent and species, to ensure
that these marked samples are correct. We resampled all the bands to the same size to
perform band calculations by ENVI 5.3 software to calculate the multispectral indices.
The spatial resolution of Sentinel-2 remote sensing imagery used in the experiments is
10 m. This work labeled the remote sensing images by consensus of several experts to
ensure correct classification of mangroves. We selected the sentinel-2A remote sensing
data acquired on 13 April 2018, in Hainan Dongzhaigang National Nature Reserve in
China. The data comprised 2093 × 2214 pixels after preprocessing, such as cropping.
The remote sensing imagery was clipped by a 256 × 256 sliding window with a 32-pixel
step. We used random left and right flips and up and down flips and increased “salt and
pepper noise” for some datasets to increase the size of the datasets and avoid filling null
values. Furthermore, we randomly rotated the clipped samples by 90◦, 180◦, and 270◦ and
randomly scaled the sample data in five scales. The dataset had 5120 original images with
256 × 256, where 20% (1024 images) were used as test sets for validating the proposed
model, and 80% (4096 images) together with 1280 augmented images were utilized as the
training sets for training the proposed model. During the training, 85% of the training sets
were used to train the ME-Net model, and 15% of the training sets were utilized to validate
the ME-Net model.

3.2. Implementation Details
3.2.1. Input Data

All the prepared sample data, including five original bands, namely, R, G, B, NIR,
and SWIR-1; six multispectral indices, namely NDVI, MNDWI, FDI, WFI, MDI, and PCA1;
and the corresponding ground truth labels were used as inputs to the ME-Net model. The
input data used by the deep neural network are shown in Figure 8.

3.2.2. Set of Hyperparameters

During the training of the ME-Net model, transfer learning was used to improve the
generalization ability of the model. The ME-Net was designed on the basis of Res-Net,
which was trained before it was inserted into the whole model. Moreover, minibatch
stochastic gradient descent (SGD) [29] was used to minimize the loss function and update
the weight parameters in backpropagation. In the experiment, the batch size was 8, the
momentum was 0.9, and the weight decay was 0.0001. The SGD optimization function is
greatly affected by the initial learning rate. Thus, the learning rate of the ME-Net model
was set to 0.01 to obtain better performance and speed up the processing. We used the

“poly” learning rate strategy, in which the initial rate was multiplied by
(

1− iter
max_iter

)power
.

The number of training epochs was 100, the number of iterations in each epoch was 200,
and 32 samples were used in each iteration.

3.3. Experimental Results

The proposed ME-Net model was implemented using the open-source Tensorflow
and Keras framework provided by Google in Python. The code of the pixel classification
model was executed on Windows 10 platform with four NVIDIA GTX 1080Ti GPUs (12 GB
RAM per GPU). After 100 epochs, the ME-Net model achieved state-of-the-art results on
the datasets (Figure 9).
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We used pixel Intersection over Union (IoU) as the accuracy measure to quantitatively
evaluate the performance of the ME-Net model in extracting mangroves from remote
sensing images. IoU is defined as:

IoUPm, Pgt =

∣∣Pm ∩ Pgt
∣∣∣∣Pm ∪ Pgt
∣∣ , (7)
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where Pgt represents the set of pixel ground truth labels; Pm represents the set of pixel
prediction results; “∩” and “∪” represent the calculation operation of intersection and
union, respectively; and | • | represents the number of pixels in the calculation set.
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epochs on the training datasets. The validating accuracy (c) and loss (d) change with the epochs on the validating datasets.

The overall accuracy of the trained ME-Net reached 97.49%, and the F1 score reached
96.56% (Table 3), which proved that the proposed model was excellent in extracting man-
groves from remote sensing imagery. To prove that the method is universal, we used some
data from roadside areas, estuaries, bays, shoals, and islands to verify the method. In the
ablation study, we successively added GAM, MCE, and BFU to explore the impact of each
module on the experimental results (Figure 10).

Table 3. The metrics of our best model, including precision, recall, F1 score and IoU value for
mangrove extraction from remote sensing imagery.

Class Precision (%) Recall (%) F1 (%) IoU (%)

Mangrove 96.88 98.30 96.56 97.49
Clutter 99.72 99.13 99.43 98.86
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Figure 10. Results of mangrove extraction in different environments by different modules in ME-Net.
The original images (a), the corresponding ground truth (b) and predictions (c–e) are presented.
Green, red, blue, and black represent true positive (TP), false positive (FP), false negative (FN), and
true negative (TN) respectively.

In various experimental scenarios, we compared the results (Figure 10) to explore
the impact of different modules in the ME-Net model on the performance of mangrove
extraction. Although most mangroves in the remote sensing imagery can be accurately
extracted by using the GAM, the blue area is greatly reduced after the MCE is added.
The multiscale information is beneficial to improve the accuracy of mangrove extraction.
However, the prediction results of the fourth row of mangroves show that many problems,
such as “salt and pepper noise”, blurred boundaries, and misclassified or missed pixels,
still exist. To solve these problems, BFU was introduced into the model. In addition, the
red and blue areas were reduced at different scales. This finding fully showed that the
BFU made further constraints on the pixel classification information of mangroves, and the
predicted results were further optimized.

3.4. Evaluating the Model by a New Dataset

The overall accuracy and F1 score reached over 96.56% in the dataset of DNNR. We
have made a new dataset to prove that the designed model has the generality to extract
mangroves from remote sensing imagery. This dataset is based on the study area of
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He’anpian Mangrove Nature Reserve in Southeast Zhanjiang City, Guangdong Province.
The geographical coordinates of the study area are 110◦17′49”–110◦27′40” E and 20◦34′11”–
20◦43′48” N. The mangroves labeled by experts in the remote sensing images were treated
as the ground truth. The precision of the trained ME-Net for the new dataset reached
96.00%, and the F1 score reached 95.55% (Table 4).

Table 4. The performance for the trained model on a new dataset.

Class Precision(%) Recall(%) F1(%) IoU(%)

Mangrove 96.00 95.09 95.55 91.47
Clutter 99.94 99.96 99.95 99.90

A series of experiments was implemented to qualitatively prove that our model has
the generality for a new dataset (Figure 11). When trained models were applied to the
new dataset, the red and blue areas were greatly reduced by using the GAM, MCE, and
BFU. The experimental results of mangrove extraction by different modules in ME-Net
showed that the proposed method can effectively extract mangroves, and it has good
generalization ability.
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Figure 11. Results of mangrove extraction in a new mangroves region by different modules in
ME-Net. The original images (a), the corresponding ground truth (b), and predictions (c–e) are
presented. Green, red, blue, and black represent true positive (TP), false positive (FP), false negative
(FN), and true negative (TN) respectively.
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3.5. Effects of Sample Data on the Results

The Sentinel-2 remote sensing imagery can extract the mangrove area on the ground
through the false-color image composed of SWIR, G, and B bands. However, the phenom-
ena of “same object with different spectra” and “different objects with the same spectra”
are observed because of the different living environments and distributions of mangroves.
Accordingly, the mangroves in some areas are missing or misclassified. We need to fully
use the multiband information of remote sensing information and mine the multispectral
indices to improve the accuracy of mangrove classification, which is beneficial to the ex-
traction of mangroves. In this research, five original bands were selected from the sample
data, namely, B, G, R, NIR, and SWIR-1. In addition, six multispectral indices (NDVI,
MNDWI, FDI, WFI, MDI, and PCA1) were computed to mine the spectral, textural, and
shape information between mangrove and non-mangrove features. We used the pretrained
ResNet-101 weight on the ImageNet datasets as the initial weight of our basic feature
extraction network and upsampled the output in accordance with the structure of the FCN
referred to as ResNet-based FCN. Under the ResNet-based FCN structure, we obtained the
actual color images of the B, G, and R bands as the initial input data of the experiment and
constantly added new input data to the experiment (Table 5). Adding some original band
information and multispectral indices can effectively improve the results of mangrove
prediction. The performance of network classification increased from 86.64% to 92.13%.

Table 5. Effect of original band and multispectral index to the classification result of mangrove under
the ResNet-based FCN structure.

Sample Data IoU (%) Gains (%)

RGB 86.64 -
RGB + NIR 86.91 0.27

RGB + NIR + SWIR-1 87.33 0.42
RGB + NIR + SWIR-1 + NDVI 88.25 0.92

RGB + NIR + SWIR-1 + NDVI + MNDWI 89.49 1.24
RGB + NIR + SWIR-1 + NDVI + MNDWI + FDI 89.94 0.35

RGB + NIR + SWIR-1 + NDVI + MNDWI + FDI + WFI 90.52 0.68
RGB + NIR + SWIR-1 + NDVI + MNDWI + FDI + WFI + MDI 91.57 1.05

RGB + NIR + SWIR-1 + NDVI + MNDWI + FDI + WFI + MDI + PCA1 92.13 0.56

Table 5 shows that the IoU increased by 0.69% with the addition of NIR and SWIR-1.
After adding the six multispectral indices, IoU increased by 4.80%. Moreover, the effects
of NDVI, MNDWI, and MDI had a remarkable effect on the results. The controlling
variable method was used to analyze the effect of each multispectral index for exploring
the performance impact of these multispectral indices on the mangrove extraction results
(Table 6).

Table 6. Effect of normalization difference vegetation index (NDVI), modified normalized differ-
ence water index (MNDWI), and mangrove discrimination index (MDI) on the result of mangrove
extraction under the ResNet-based FCN.

Sample Data IoU (%)

all 92.13
without NDVI 91.32

without MNDWI 90.93
without MDI 90.76

Only RGB 86.64

Table 6 shows that when NDVI, MNDWI, and MDI were excluded, their IoU indi-
cators were reduced by 0.81%, 1.2%, and 1.37%, respectively. When only the RGB bands
were used as inputs, IoU was reduced by 5.49%. The experimental data showed that the
MNDWI and MDI can significantly improve the performance of mangrove extraction. The
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MNDWI was closely related to the characteristics of the water body, and mangroves were
located in intertidal wetlands, such as estuaries, coasts, and islands, which coincides with
the difference between Figure 12e,c. Therefore, the integration of water and vegetation
characteristics has important guiding significance for the distinction between land veg-
etation and mangrove vegetation. In addition, the comparative analysis of the spectral
characteristics showed that the spectral reflectance of mangroves in SWIR-2 is lower than
that of terrestrial vegetation, which also confirmed the potential reason why MDI could
significantly improve the classification results. Figure 12 shows that in remote sensing
imagery, some land vegetation distributed near shallow land surface areas, such as lakes
and wetlands, can be further distinguished from mangroves by MDI.
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Figure 12. Effect of some sample data on the result of mangrove exaction under the ME-Net model.
The first column (a) shows the actual color of the remote sensing imagery; the second column (b)
shows the corresponding ground truth; the third column (c) shows the prediction result of the
model after adding only three bands of RGB; the fourth column (d) shows the prediction result after
adding MDI; the fifth column (e) shows the prediction result after adding five original bands and six
multispectral indices. Green, red, blue, and black represent the TP, FP, FN, and TN, respectively.

In different experimental scenarios, we compared the results (Figure 12) to explore
the impact of adding different sample data to the ME-Net model on the performance of
mangrove extraction (the IoUs for data are shown in Table 7). The experiment results
showed that some FP pixels would appear in the prediction results of the model when
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only three bands, R, G, and B, were used. The actual color of the remote sensing imagery
indicated that it is a classical phenomenon of “different objects with the same spectra”.
Most features represented by these FP pixels were wetlands on the land surface or dense
woodland growing in shallow water areas, with similar spectral characteristics in mangrove
areas, thereby resulting in a large number of categorical misjudgments. The experimental
results showed that red and blue regions decrease in varying degrees, characterized by a
more significant reduction in the red areas. The results showed that rich multiband data
and multispectral indices were conducive to a more detailed pixel-level classification of
mangroves. The prediction results with and without the MDI index are shown in the fourth
and fifth columns of Figure 12, respectively. The comparative results of these columns
clearly show that the classification of marginal areas was greatly improved after the MDI
index was added, such as the river and forest edge of the mangrove area. This finding
indicated that the MDI index contains the structural and textural information required for
mangrove classification.

Table 7. The IoU for data in Figure 12 from rows 1 to 5.

Only RGB Without MDI All

Row1 0.9712 0.9853 0.9901
Row2 0.7667 0.8017 0.8717
Row3 0.8607 0.8723 0.8824
Row4 0.9353 0.9606 0.9720
Row5 0.9549 0.9598 0.9646

3.6. Influence of Network Structure and Training Skills

In the pixel classification of remote sensing imagery, we need to simultaneously
complete the classification and location of mangroves. However, the classification and
location in the deep learning algorithm are contradictory. The high-stage feature map
of CNN is excellent at solving the classification problem. However, reconstructing the
prediction result of binarization of the original resolution is difficult because convolution
and downsampling lose a large amount of location information. Therefore, we proposed
GAM and used the classification information learned by the high-stage feature map as
a weight to guide the location reconstruction of the low-stage feature map. Prior to the
reconstruction of location information by GAM, MCE was used to extract features from the
low-stage feature maps, and the multiscale information was fused. Subsequently, BFU was
used to eliminate problems, such as aliasing and “grid artifacts” in the convolution process
and pooling operation and “salt and pepper noise” in image classification. We used the
controlling variable method to analyze the influences of each element to explore the effects
of GAM, MCE, and BFU on the mangrove extraction results (Table 8).

In Table 8, DS represents deep supervision. DA represents data augmentation method,
including adding noise and left and right flip and rotation deformation. C1 and C3
represent the size of the convolution kernel on the decoding branch of GAM. GAP and
GMP represent GAP and global max pooling, respectively. C1355 indicates that the sizes of
the convolution kernel of the four branches of MCE are 1 × 1, 1 × 1 + 3 × 3, 1 × 1 + 1 × 5 +
5 × 1, and 1 × 1 + 5 × 1 + 1 × 5. C1357 indicates that the sizes of the convolution kernel of
the four branches of MCE are 1 × 1, 1 × 1 + 3 × 3, 1 × 1 + 5 × 5, and 1 × 1 + 7 × 1 + 1 × 7.

The experimental data in Table 8 showed that GAM can effectively extract global
contextual attention information and significantly improve the performance of mangrove
extraction from 92.13% to 95.55% compared with ResNet-based FCN. Different global
pooling methods lead to varying results. GAP improved the performance of the model by
0.17% compared with GMP. Therefore, GAP was used in the final model. Moreover, the
performance of ME-Net improved by adding the MCE module, and the IoU of mangrove
classification increased from 95.71% to 96.16%. The results of C1355 and C1357 showed
that different sizes of convolution kernels can extract diverse scale information, and the
information of various scales improved the classification of mangroves. When we used BFU
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instead of MCE in the experiment, IoU increased from 95.71% to 95.89%. On the basis of
MCE, IoU increased by 0.73% when BFU is added to the network. This finding showed that
BFU is beneficial to mangrove classification, and that the combination of MCE can enable
GAM to obtain more accurate and rich global mangrove information. We conducted a series
of comparative experiments to more intuitively show the effect of BFU on the mangrove
classification results. The results (Figure 10) clearly showed that the BFU module can
simultaneously improve the boundary of pixel classification and eliminate some noise. Two
training skills were also used to improve network performance, namely data augmentation,
and deep supervision. Some comparative experiments were conducted to explore the
influence of these training skills on the results of pixel classification. The results (the last
three rows in Table 8) showed that both approaches improve the model performance.

Table 8. Effects of GAM, MCE and BFU on the extraction results of mangroves.

Methods IoU (%)

ResNet-based FCN 92.13
ResNet-101 + GAM (C1) + GMP 95.55
ResNet-101 + GAM (C1) + GAP 95.62
ResNet-101 + GAM (C3) + GAP 95.71

ResNet-101 + GAM (C3) + GAP + MCE (C1355) 96.16
ResNet-101 + GAM (C3) + GAP + MCE C1357) 96.24

ResNet-101 + GAM (C3) + GAP + BFU 95.89
ResNet-101 + GAM (C3) + GAP + MCE (C1357) + BFU 96.97

ResNet-101 + GAM (C3) + GAP + MCE (C1357) + BFU + DS 97.22
ResNet-101 + GAM (C3) + GAP + MCE (C1357) + BFU + DA 97.09

ResNet-101 + GAM (C3) + GAP + MCE (C1357) + BFU + DS + DA 97.48

We added a final loss function at the end of the main branch of ME-Net and a second
loss function at the end of the ResNet-101 network to solve the difficult problems of the
deep neural network optimization. The first loss function optimized the pixel classification
performance of the entire network. Meanwhile, the second function optimized the feature
extraction process of ResNet-101. We added a balance weight a to the second loss function.
We used five different values of 0, 0.25, 0.5, 0.75, and 1 to approximately determine the
value of a and further analyze the effect of deep supervision on the network performance
improvement. In Figure 13, under the same conditions, the effect of the optimization
model was the best, and the accuracy was 97.22% when the balance weight was equal
to 0.25. Finally, the experiment using various methods and techniques indicated that the
performance of the ME-Net model was improved to 97.48%.
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3.7. Model Analysis

This work was compared with some new methods, including FCN [31], SegNet [30],
DilatedNet [46], U-Net [21], PSPNet [22], DeepLab series [23,24,47], and Mask R-CNN [48],
to evaluate the effectiveness of the proposed ME-Net model in mangrove extraction from
remote sensing imagery. All methods were trained, validated, and tested on the same
datasets for an objective and impartial finding. The comparative test results are shown in
Table 9.

Table 9. Experimental results of ME-Net and other methods.

Methods IoU (%)

SegNet 81.39
FCN 84.62

DilatedNet 86.91
DeepLabv1 87.76

U-Net 89.04
DeepLabv2 90.06

PSPNet 91.82
MaskRCNN 93.16
DeepLabv3 94.53

Ours 96.97

Table 9 indicates that our proposed ME-Net model effectively performed in the man-
grove extraction tasks. We have achieved the highest IoU (96.97%) without using the
methods of data augmentation and deep supervision. We selected samples to more intu-
itively show the impact of different methods on mangrove extraction performance, the
classification results of which are difficult to predict. In addition, the prediction results of
ResNet-based FCN, DeepLab v3, and ME-Net model were compared (Figure 14).

Some scenes, which were difficult to classify, such as nonblock, sporadic scattered, and
coastal strip edges, were used in the experiments to increase the contrast of the classification
results. The object-oriented model failed to extract mangrove compared with the deep
learning methods (Figure 14 and Table 10). The classification results of different methods
were compared in detail. The result showed that the blue area in the prediction results of
the ResNet-based FCN model was significantly more than that of the other methods. The
existence of a large number of FP pixels showed that some pixels that should belong to
mangroves were been detected by the model, and the model has an under-fitting problem.
The under-fitting of the model indicated that a large amount of classification information
was not learned by the model. The data in the third and fourth columns in Figure 14
indicate that the blue area in the prediction result of DeepLab v3 was much less than the
other areas (the IoU for data are shown in Table 10). This finding indicated that the data
fitting ability of the DeepLab v3 model was stronger than that of the ResNet-based FCN.
The analysis of the network structure of DeepLab v3 model showed that the model using
dilated convolution and ASPP can effectively capture multiscale information and improve
the performance of mangrove extraction. Finally, we found that the blue region was greatly
reduced compared with the proposed ME-Net model; however, the red region was partially
increased. This finding shows that the ME-Net model has strong data fitting ability and
can be effective for pixel classification. However, part of the boundary was over-fitted and
overcompensated to the prediction results due to the role of the BFU, and some pixels that
belong to nonmangroves were misjudged as mangroves. Although some over-fitting cases
were found, the overall performance of ME-Net model in mangrove extraction was still
much better than that of the other pixel classification models. In addition, the noise in the
remote sensing imagery will decrease the accuracy of ME-Net, and the denoising method
will be exploited to address this problem in the future [48,49].
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Figure 14. Performance of different pixel classification models in mangrove extraction. The first column (a) shows the actual
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FCN model; the fifth column (e) shows the prediction result of DeepLab v3 model; the sixth column (f) shows the prediction
result of the ME-Net model. Green, red, blue, and black represent the TP, FP, FN, and TN, respectively.

Table 10. The IoU for data in Figure 14 from rows 1 to 5.

Object-Oriented ResNet-Based FCN DeepLab v3 ME-Net

Row1 0.7966 0.9776 0.9878 0.9882
Row2 0.8394 0.9883 0.9885 0.9886
Row3 0.8355 0.9868 0.9877 0.9877
Row4 0.7952 0.9736 0.9738 0.9748
Row5 0.8069 0.9751 0.9782 0.9805

4. Conclusions

Accurate extraction of mangroves from remote sensing imagery is important to dy-
namically map and monitor the distribution area of mangroves. However, mangroves
have different geometric appearances and spectral and textural features. Accordingly,
accurate extraction of mangroves faces great challenges. Datasets for mangrove extrac-
tion are developed, and a new pixel classification framework, ME-Net, is proposed. The
ME-Net is trained and tested to explore the impact of different sample data and feature
learning modules on the extraction of mangrove results. In this research, the controlling
variable method is used to experiment on each band and multispectral index. The results
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show that the selection of multiband data and the multispectral indices are beneficial to the
extraction of mangroves. In the network model, GAM is proposed to provide global context
information to guide in the low-stage feature map, and an MCE module is proposed to
extract multiscale information. BFU is applied to optimize the classification results. In the
data preprocessing, multiband remote sensing imagery and manually created multispectral
indices are used to improve the performance of mangrove pixel classification. The results
of the experiments on multiple remote sensing imagery indicate that the ME-Net model can
effectively integrate a large number of sample data, which can effectively solve the problem
of data redundancy and mine abstract semantic information and location information in
remote sensing imagery. The proposed approach can successfully extract mangroves in
each scene. The results show that the framework is effective and feasible in improving the
classification performance of mangroves in different coastal areas.

This work aims to show the success of the proposed GAM, MCE, and BFU approaches
to the mangrove extraction issue. We demonstrated the capability of our new deep learning
model for mangrove extraction. This study focuses on our new deep learning model
(ME-Net). We successfully demonstrated that deep learning methods can be exploited
to extract mangroves. We conducted many groups of experiments to demonstrate that
our new deep convolutional neural network for extracting mangrove (ME-Net) has the
capability to automatically extract mangrove, and it performs better than other typical
deep learning methods.

An effective method is provided to improve the classification performance of re-
mote sensing imagery. However, the model still has some unsolved problems. Future
work will focus on the following aspects: an end-to-end pixel classification model should
be implemented through residual module and convolution to achieve better results in
boundary-fitting tasks instead of dense-CRF to a certain extent and develop a simple
training process of the model. However, this model exhibits some shortcomings compared
with dense-CRF; that is, it cannot effectively combine input data similar to dense-CRF to
obtain pixels with similar colors and adjacent positions for a more consistent classification.
Additionally, the spatial computational intensity grid [50] is exploited to improve the
parallel performance of ME-Net in the next work.

Geophysical setting has an extremely important influence on the distribution of
mangrove areas, especially some naturally growing mangrove areas. The mangrove
wetland is located in the intertidal zone and is closely related to the characteristics of the
water body. Hence, we will consider using remote sensing imagery of different time series
to extract natural mangrove regions in future research. Moreover, the intelligent system
indicated that the right bands and indices are important for mapping mangroves. Next, we
will research how to use the knowledge graph methods to find the right bands and indices.
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