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Abstract: Land development processes are driven by complex interactions between socio-economic
and spatial factors. Acquiring an understanding of such processes and the underlying procedures
helps urban and regional planners, environmental scientists, and policy makers to base their decisions
on valid and profound information. In this work, remote-sensing-derived land-cover data were used
to characterize the patterns of land development from the beginning of 1985 to the beginning of 2015,
in the state of West Virginia (WV), US. We applied spatial pattern analysis, ridge regression, and
Geographically Weighted Ridge Regression (GWRR) to examine the impact of population, energy
resources, existing land developments dynamics, and economic status on land transformation. We
showed that in presence of multicollinearity of explanatory variables, how penalizing regression
models in both local and global levels lead to a better fit and decreases the model’s variance. We
used geographical error analysis of regression models to visualize the difference between the model
estimates and actual values. The findings of this research indicate that because of shifting geography
of opportunities, the patterns and processes of land development in the studied region are unstable.
This leads to fragmented land developments and prevents formation of large communities.

Keywords: land development variables; multicollinearity analysis; Geographically Weighted Ridge
Regression (GWRR)

1. Introduction

In areas with an abundance of natural resources, landscape changes result in immense
costs and irrevocable consequences [1,2]. Investigation of drivers of landscape change is
referred to as the study of the influential processes in the evolutionary trajectory of the
landscape [3]. Such analysis is viable through study of the connections between people
and their environment which helps in understanding the societal demands and economic
situations of regions [3]. Study of land development and its different aspects is one of the
applied methods for investigating the landscape change.

In this study the developed lands are defined as the lands wherein there are some
constructed materials with more than 20% of impervious surface. This definition is from
low/medium/high intensity developed land class of the Anderson Land Cover Classifica-
tion System [4] used in National Land Cover Dataset (NLCD) 2016 [5]. Acquiring an insight
into the drivers of developed land expansion trends helps decision makers to inspect the
patterns and causes of these processes and make decisions for smart land management
towards resilient communities, scenario modeling for disaster management, and predicting
the future of land transformation [6]. To describe the overall data relationships, regression
models, like Ordinary Least Squares (OLS), are widely applied. When those relationships
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are consistent across a study, the global regression model is applicable. However, if the
explanatory variables exhibit non-stationary relationships (regional variation), global mod-
els tend to fall apart, unless robust methods are used to compute regression results [7,8].
Ideally, to capture the regional variation inherent in the dependent variables, there is a
need to identify a full set of explanatory variables. If one cannot identify all of these spatial
variables, however, statistically significant spatial auto-correlation in the model residuals is
observed and/or lower than expected R-squared values [8,9].

Indeed, to deal with regional variation in OLS regression models, multiple approaches
are suggested. These approaches comprise of: including a variable in the model that
explains the regional variation, redefining/reducing the size of the study area so that the
processes within it are all stationary (so they no longer exhibit regional variation), or using
Geographically Weighted Regression (GWR) [8–10]. GWR facilitates researchers with meth-
ods to present the geography of the regression parameters as well as study the statistical test
of the hypothesis [11–13]. However, one major drawback of GWR is that this model is built
on local OLS models, so it is bound by limitations of OLS. Maimaitijiang et al. [11] utilized
OLS and GWR to examine the impact of population change. In their work, the difference
between overall model performance in OLS and GWR is presented. Huang et al. [13]
studied the impact of multiple variables of: urbanization level, urban population, per
capita GDP, per capita fiscal revenue, per unit area fixed assets investment, per unit area
fiscal expenditure, industrialization level, development of service industry, topographic
conditions, ecological constraints on the land development process in 285 geospatial units
in China [13]. They used a coefficient of determination to measure the accuracy of OLS and
GWR models. Aguaya et al. [14] also used a high dimension feature space of more than
50 variables in categories of distance variables, neighboring variables and environmental
variables to study the patterns of land development in Los Angeles, US.

In the presence of multicollinearity between the variables, OLS models tend to over-
fit [15]. Therefore, while studying the impact of multiple characteristics in the land change
processes, it is required to test whether there is a collinearity among the variables or not. If
there is a local or global collinearity among the variables then OLS or GWR are not robust
enough to model the relationships [7,15]. Considering this, we propose a framework in
which the impact of multiple drivers of land development in a large spatio-temporal extent
of a mixed urban-rural region is studied. Heterogeneous characteristics of the study region
and multiplicity of the parameters add to the complexity of our applied models. The sug-
gested method for this research captures the complexity of land development processes by
incorporating multi-source data fusion, inclusion of place-based characteristics, providing
geographical inferences on model performance, and penalizing the regression models.
The focus of this work is on the impacts of population, energy resources, existing land
developments dynamics, and economic status on the formation of new land developments.

The major contributions of this work are as follows: I) design and implementation
of multi-source data acquisition and fusion, II) application of ridge regression and Geo-
graphically Weighted Ridge Regression (GWRR) models in the study of land development
variables with multicollinearity, III) geographic representation of model results and residu-
als, and zonal interpretation of the results. Moreover, this study contributes to acquiring an
insight on the driving forces of landscape change in the Appalachian region. We applied
the methods in this study for the state of West Virginia (WV), US which is located on the
spine of the Appalachian Mountains. Appalachia has an abundance of natural, energy
and anthropogenic resources and landscape changes. Landscape change in such a region
imposes a burden to the local and global communities, and understanding the mechanisms
contributes to preserving natural and cultural values of the region [2]. We further elaborate
on our study area methods in Section 3. We use groups of geographic zones representing
lower rural, rural, transitional and urban areas to represent the zones of development. The
quantity and quality of land transformation in these zones is further discussed. To the best
of our knowledge such a study has not been conducted in this area. By providing a multi-
layered, spatially explicit, and place-based analysis, this study improves the growing body
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of work in understanding the driving variables of land development in mixed urban-rural
area of WV.

2. Background

The purpose of the proposed method is to investigate the impact of multiple drivers
on the land development in a mixed urban-rural region. In this section we explain the
theoretical backgrounds for data fusion, modeling, and model assessment.

2.1. Data Fusion

Data fusion refers to the process of integrating data from multiple sources so that
the constructed dataset is more synthetic, consistent, and informative [16]. To deal with
geographical problems, data fusion creates enormous computational and semantic values.
In the geospatial analysis field, data fusion is often equivalent to data integration, where
information from multiple heterogeneous sources is combined [17]. The data collected from
multiple sources is usually represented as contextually, conceptually, and typographically
different. By fusing such data all the spatio-temporal information is unified and included
in each geographic feature, i.e., point, line, polygon, or cell. Aggregation of large datasets
and integrating the information conveniently facilitates the study of dynamic and complex
process of land cover transformation [16–18]. It is important to consider fusing multi-
source geographic data, including data formatting, geo-referencing, and co-registering of
the data [17,19].

2.2. Assumption Test

Collinearity or multicollinearity is a situation where there are one or more linear corre-
lations between the variables of a regression model and causes an increase in the variance
of the coefficients. In the presence of multicollinearity, OLS regression will be unstable [20].
Hence, multicollinearity analysis of the variables is required. Variance decomposition
proportions (vdp) and Condition Index (CI) are used to detect the collinearity between
the variables [7,21]. The eigenvalues (λ) of each variable i is utilized to find the CI of
each variable (Equation (1)) [21].

CIi =

√
λmax

λi
(1)

where, CIi is the Condition Index of variable i, λmax is the largest eigenvalue in set {λ1, λ2,
λ3 . . . λk} of k variables, λi is the eigenvalue of the ith variable.

Eigenvectors of standardized variables are used in the calculation of the vdp. vdp
delineates the extent of variance inflation by multicollinearity and for each variable there
exist vdp corresponding to their CI. For each variable i in variables set {V1, V2, V3 . . . Vk}
sum of the vdps is always 1. In the presence of multicollinearity among the variables, OLS
based GWR models have the same shortcoming of OLS regression models [7].

2.3. Regression Models

In the assumption test section, we discussed how multicollinearity of the variables
undermine the statistical significance of an independent variable in OLS. Ridge regression
utilizes a slight bias in the estimates of the model for regularization, which reduces the
variance of the coefficients. The shrinking parameter λ introduced in Equation (2) solves
the multicollinearity problem in both global and local regression models [15].

β̂ = argminβ‖y− βX‖2
2 + λ‖β‖2

2 (2)

where, β ∈ Rp and β̂ is the estimation of coefficients. y is the actual z score value,
Equation (3) is the error value, and λ is the tuning parameter for penalizing the loss. So
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estimated β values are multiplied by this constant value which will prevent the estimated
coefficients to get so large, that is why λ is also known as the shrinking parameter [15].

‖y− βX‖2
2 (3)

The value of λ in the ridge regression analysis can be determined using hyperparame-
ter tuning methods. K-fold cross validation is one of the well practiced methods applied
to find λ value. k-fold is a validation technique in which the data sample is split into k
groups. The first group is considered as a validation set, and the regression model with
a λ value of λi is trained on the remaining k− 1 folds [15]. After computing the λ value
for each fold, the error rate on remaining data can be recorded. The lambda value with the
lowest error rate is considered as the model’s λ value.

3. Materials and Methods

We applied global and local regression models to investigate the drivers of land
development and used data of West Virginia (WV), US (Figure 1) as a case study.

Figure 1. West Virginia (WV) State in the US (Data Source [22]).

Figure 2 illustrates the methodology of this research. This framework utilizes local
and global regression coefficient analysis. ArcMap 10.7 and R programming language
were used to implement the models. An integration of place-based and global variables
was deployed in the time period of 1985−2015 with ten-year time-steps. The ten-year
time intervals allow access to corresponding census and economic data and study them in
connection with the landscape change. This section is designed to set forth the methods in
the case study of West Virginia.
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Figure 2. Methodology of the study; The variables comprise of a combination of place specific
variables, (i.e., distance to energy extraction sites), socio-economic variables, distance to other forms
of land development, and distance to Metropolitan Statistical Areas.

3.1. Study Area

The study region of WV (Figure 3), with an area of 62,259 km2 is completely within
the defined extent of the Appalachian Mountains [23]. The terrain and topographic char-
acteristics, and rich natural assets create a unique context for the anthropogenic activities
in this region. WV has abundant physical and environmental assets. Energy extraction
industries play a crucial role in the economy of WV; coal was one of the primary natu-
ral resources of the state. Since early 2000s, shale gas extraction sites have expanded in
WV [24]. The Monongahela National Forest with a land area of over 3719.06 km2 is located
in the south-east of WV [25]. This state is the major water source of large rivers such as the
Potomac and Ohio rivers. This state has a northern and an eastern panhandle. Jefferson
county, one of the 55 counties of this state in the eastern panhandle, is in the Washington
DC Metropolitan Statistical Area (Metropolitan Statistical Areas (MSA) are defined by
the U.S. Office of Management and Budget (OMB) and used by the Census Bureau and
other federal government agencies in the United States (US) for statistical purposes. An
MSA consists of one or more counties that contain a city of 50,000 or more inhabitants, or
contain a Census Bureau-defined urbanized area (UA) and have a total population of at
least 100,000 (75,000 in New England) [26].). The north central WV borders the Pittsburgh,
PA, MSA. Both Pittsburgh and DC MSAs are populated regions with substantial number
of organizations in the industrial and administrative sectors. Energy extraction industries
play a crucial role in the economy of WV, the coal industry was one of the primary natural
resources of the state. Since the early 2000s, a considerable number of shale gas extraction
sites were developed in WV [24]. WV has a unique landscape that, benefits from rich
natural and cultural resources. This led to a cycle of economic boom and bust as the value
and production through these resources grow and shrink [27].

In the variables section, we describe the studied variables and the patterns of historical
land development within the study area.
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Figure 3. West Virginia State (Data Source [22,28]).

3.2. Variables

To study the impact of the generic and site-specific factors [6,29] on the process of land
development we integrated globally admitted variables with the place-based variables.
Place-based factors are the variables that are merely specific to a region [6], global factors
refer to the ones that are demonstrated to play an important role in inducing specific
landscape transformations in any geography [11,30]. Using different sources of data,
the feature class can be constructed. Integrating features from different local, national,
and global data sources is accompanied by data formatting and management difficulties.
Different geographic reference systems, resolutions, data types, standards and definitions
cause such issues. Data fusion methods accommodate dealing with the complexity and
heterogeneity of such data [31].

Multi-source spatial data were applied to study the historical trends of land develop-
ment. Local and federal web-based datasets were used for data acquisition (See Table 1).
The main rationale for studying the importance of these variables in the complex and
dynamic process of land development was to explore the role of local transitions, along
with previously examined variables such as population and economic status [11,30]. On the
other hand, studying the multiple hypothetically interacting variables allowed testing the
multicollinearity of the variables. Upon identifying the linear relationship between these
variables we could examine the application of other models to study the drivers of land
development. Within the context of this study, socio-economic, spatial and policy related
variables of urban and rural land development create a dynamic and complex system of
changes [29,32]. We also used distance to an existing land development as a human made
physical variable. A spatially explicit model was applied, meaning that we used distance,
density, and data interpolation to construct the input data. We used census population
data at the census tract level in each decade. The economic status was represented using
the County Economic Status Index proposed by the Appalachian Research Commission
(ARC) [23]. This index is a linear factor of household poverty rate, per capita income,
and unemployment rate. Economic index is defined and applied by ARC to indicate the
economic status of this region. We used ARC’s method to compute the economic index
(E.I.). In Table 1 the explanatory variables that we used, the input data, and the data source
are listed. We verified that the data was geo-referenced and co-registered.
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Table 1. Studied Variables.

Variable Data Source of Data

Distance to MSA (m) Census Data US Decennial Census Data [26]

Distance to Developed Land (m) Developed Land Historical Trends Obtained from Landsat [33]

Distance to Mining Sites (m) Mining Permits WVU GIS Tech Center [28]

Distance to Oil and Gas Wells (m) Shale Gas Points WVU GIS Tech Center [28]

Population Density (per sq. mile) Census Tract Population US Decennial Census Data [26]

Economic Index (at County Level) Household Poverty Rate (Percentage) US Decennial Census Data and
Per-Capita Income (US $) U.S. Bureau of Labor [26,34]
Unemployment Rate (Percentage)

In Table 2 the summary statistics of the variables are included, this summary statistics
is based on the variables’ values before pre-processing. The variables in this work are
integrated so the information is scaled, geo-referenced, and co-registered, and the data
layers are temporally and spatially synchronized. The pre-processing steps of variables
included scaling and interpolation. Scaling the variables helps in making an explicit
analysis and improving the stability and performance of the regression models. We scaled
the variables by conducting a min-max normalization, where the minimum value of each
feature is subtracted and the result is divided by the range. We used the inverse distance
values; so the closer the features are to active mining sites, shale gas wells, metropolitan
areas, and other forms of development the larger the value of that variable is.

The data of the historical land development in WV is acquired from [35]. Thirty meters
resolution Landsat images were utilized to obtain these images. We used six spectral bands
from red, green, blue, near-infrared, and short wave near infra-red sensors for both TM5
and TM8 satellite images.These images are collected in the ±1-year interval of the target
year. A pairwise analysis from each scene is conducted on the normalized dataset, any
pair is analyzed independently. A total number of 10 scenes cover the entire state of WV,
a hybrid algorithm was used in which data transformation and band differencing were
deployed. Using this algorithm, a new feature class of the Landsat satellite images was
constructed, and an unsupervised machine learning model was applied to group the cells in
the reconstructed feature class. [35] labeled the grouped data of land cover using k-means
algorithm. Historical data of google earth was utilized as the ground truth to validate
the results [35]. The output of this study provides the data of historical trends of land
development for each decade of 1985−1995, 1995−2005, and 2005−2015 (Figure 4).

The data of Figure 4 is applied for hot spot analysis of land development [36]. Hot
spot analysis indicates the dynamics and patterns of land development. This method is
used to identify statistically significant spatial clusters of new land developments [36].
Through this analysis the patterns of the new land developments have been identified.
The hot spots (Figure 5) are the regions wherein there are high clusters-high density
new developments. Cold spots are the region in which the clusters of low density new
developments were formed.
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Table 2. Summary Statistics of the Variables.

1985−1995

Variable Data Type Min. Max Mean Std. Dev

Distance to MSA Raster 0 40,752.16 8661.12 8648.79

Distance to Developed Lands Raster 0 4092.55 379.29 397.15

Distance to Mining Sites Raster 0 157,531 63,558.0 41,038.9

Population Density Vector 1.15 9.57 3.90 2.26

E.I.

Household Poverty Rate Tabular/Vector 11.1% 36.33% 20.97% 0.06

Per-Capita Income Tabular/Vector 9422.50 18,706.00 13,353.41 2158.46

Unemployment Rate Tabular/Vector 2.96% 9.12% 5.25% 0.02

1995−2005

Variable Data Type Min. Max Mean Std. Dev

Distance to MSA Raster 0 65,662.27 15,375.24 11,838.02

Distance to Developed Lands Raster 0 4092.55 377.20 395.75

Distance to Mining Sites Raster 0 42,648.5 8540.92 8097.55

Distance to Oil and Gas Wells Raster 0 167,898.67 54,125.02 30,187.83

Population Density Vector 1.13 9.70 3.90 2.18

E.I.

Household Poverty Rate Tabular/Vector 9% 33.07% 17.28% 0.05

Per-Capita Income Tabular/Vector 15,241.10 31,342.20 20,537.79 3464.27

Unemployment Rate Tabular/Vector 3.14% 12.45% 6.56% 0.02

2005−2015

Variable Data Type Min. Max Mean Std. Dev

Distance to MSA Raster 0 64,963.97 14,732.04 12,163.08

Distance to Developed Lands Raster 0 4069.95 359.53 383.87

Distance to Mining Sites Raster 0 42,648.5 8111.38 7476.66

Distance to Oil and Gas Wells Raster 0 111,511.03 15,148.23 17,683.43

Population Density Vector 1.06 9.62 3.95 2.18

E.I.

Household Poverty Rate Tabular/Vector 10.30% 35.23% 19.19% 0.05

Per-Capita Income Tabular/Vector 19,009.50 44,424.10 30,078.96 4651.86

Unemployment Rate Tabular/Vector 5.18% 13.15% 9.17% 0.02
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Figure 4. Land development trends in the WV: the right magnified region is Morgantown city, home
of West Virginia University and the left on is Charleston, WV’s capital city. These cities are the two
most populated MSAs of WV [35].

Figure 5. Hot Spot analysis of land development per decade.

Spatial auto-correlation is used to test for statistically significant spatial auto-correlation
in the geographic events [8]. To find the distance at which the clusters of new land de-
velopments were more intense a spatial auto-correlation analysis was conducted. Within
this distance, the density of events was compared to a complete random pattern of new
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land developments and the G∗i statistic was computed for each new development event
(Equation (4)). These values represent a z score per feature in the study area [8].

G∗i =
∑n

j=1 wi,jxj − X̄ ∑n
j=1 wi,j

S

√
[n ∑n

j=1 w2
i,j − (∑n

j=1 wi,j)
2]

n− 1

(4)

where, xj is the number of collected events in one km2, wi,j is the spatial weight between
feature j and i, n is the total number of collected event points. We used Inverse Distance
Weighting (IDW) to acquire the wi,j values, IDW computes the weights based on the
assumption that the near features are more related than the distance ones (Tobler’s First
Law of Geography [37]). X̄ and S are formulated in Equations (5) and (6):

X̄ =
∑n

j=1 xj

n
(5)

S =

√
∑n

j=1 x2
j

n
− X̄ (6)

IDW was applied to interpolate the z score of the Gi∗ statistic of each event point to the
cells in the region. This technique provides a good understanding of the new development
patterns by assessing both density and the extent of interaction between the events [38]. The
interpolated values were used as the dependent variables in this study. Figure 5 illustrates
the interpolated z score of the Gi∗ statistic, positive z score values show clustered high-
density new land developments and negative z scores show clusters of low-density new
land developments. High z scores mainly show up around the major cities and low clusters
represent scattered developments in the rural areas.

3.3. Assumption Test and Modeling

As a requirement for the modeling, we performed an assumption test (discussed in
Section 2.2). Through this test we studied the CI (Equation (1)) and vdp values to find out
if there is a multicollinearity among the variables. As suggested by [21] a CI of greater than
10 represents a moderate to severe degree of collinearity. They also imply that researchers
have variety of criteria for a high vdp, however, the most common threshold is a vdp
of 0.50 or greater for two or more variables associated with a high CI [21]. Hence, to
detect the multicollinearity of the variables, tolerance value of 10 for CI and 0.5 for the
vdp were assigned. The decomposition values which are above the threshold and have the
CI of more than 10 represent the multicollinearity. Figure 6 shows the presence of global
multicollinearity in all three studied time-steps. In this figure we can observe that in any of
the global regression models there are multiple variables that present a multicollinearity
with other ones.

We used the same method for multicollinearity diagnostics in the local OLS regressions
(Figure 7). Considering that local regression analysis encompasses multiple OLS models,
in Figure 7 maximum value of vdp for each regression model is represented and the vdp
values that are above the threshold indicate presence of multicollinearity in the model.
This analysis confirms presence of local multicollinearity between the variables in all time-
steps (Figure 7). To avoid the drawbacks of local and global multicollinearity in regression
models (discussed in Section 2.3), ridge regression was utilized. We used a 10-fold cross
validation to compute the value of model hyperparameter in both ridge regression and
GWRR models.

The optimum bandwidth value for the GWRR model was computed using an expo-
nential distance kernel (See Table 3). Our inferences are based on the GWRR coefficients
of each variable and we did not compare the results for each variable with another. The
range of coefficients among the variables is considerably different, this variance is because
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of significance of one variable over another, high dynamics of variables across the region
and over time, and the model fitting process in the GWRR.

Figure 6. Multicollinearity Diagnostics Analysis of the Variables in OLS Regression Model; V0:
Intercept, V1: Distance to MSAs, V2: Inverse distance to developed lands, V3: Inverse distance to
coal mining sites, V4: Inverse distance to shale gas, V5: Population density, V6: Economic index; Top:
1985−1995, Middle: 1995−2005, Lower: 2005−2015. Variables which demonstrate a condition index
of higher than 10 and vdp of greater than 0.5 (threshold line) have multicollinearity.

Figure 7. Multicolleanirity diagnostics analysis of the variables in GWR models.
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Table 3. Model Parameters GWRR.

Model Bandwidth

GWRR 1985−1995 5801 m
GWRR 1995−2005 4337 m
GWRR 2005−1015 4319 m

3.4. Model Evaluation

Coefficient of determination, denoted as R2 (Equation (7)) is widely used for evaluating
regression model performance [15].

R2 = 1− ∑i (yi − fi)
2

∑i (yi − ȳ))2 (7)

where, yi is the actual value of z score per event, ȳ is the mean value of the z scores and fi
is the predicted value of the z score for new developments. Coefficient of Determination is
one of the measures of model accuracy that we used in this study. We used other statistics
to obtain insights on the model performance.

t and p values of each variable are utilized to evaluate the significance of coefficients
in the ridge regression models. In addition, the scaled estimates of each parameter, which
points to its proportional significance, is also computed. In our local analysis of the
variables, each event has its own summary statistics. Therefore, we found pictorializing an
innovative method to analyze and evaluate the local regression models. The difference of
estimated and actual z score values of each event point is depicted to show how the error
of local regression models are distributed in the study area. Moreover, the parameters of
the local regressions are represented in the geographic format. The coefficient values of
each event point were interpolated using IDW operation to generate such raster graphics.

IDW method is used in studying the spatial patterns of land development (see
Section 3.2)), making visual inference on GWRR coefficient results (see Section 4.2), and
on visualizing GWRR coefficient results (see Section 4.2). To validate the IDW results, we
used a 10% random sample and excluded them form the IDW analysis and conducted the
interpolation. Then the interpolated values at the validation subset were compared to the
actual values. The residuals of the IDW were computed using Mean Squared Error (MSE),
we used this method to identify optimum search radius and power of inverse distance
weighting. These values are computed based on the minimum MSE.

In addition, we investigated the geography of the model residuals (Equation (8)).
Through this study the residuals of GWRR models are depicted in the study area.

SqErr = (ŷi − yi)
2 (8)

where, SqErr is the Squared Error value, ŷi is the estimated value for the ith event and yi is
its actual z score value.

Moreover, providing zonal references for an expressive discussion is extremely helpful
to discussing the model output. Therefore, we deployed a visual representation of the zones
of development based on four zones of development of lower rural, rural, transitional
and populated/urbanized zones. We discuss the process of identifying the regions of
development in Section 3.4.1.

3.4.1. Zones of Development

Zones of development are identified according to the density of development and
population in each census tract. The classes of this data are: populated/urbanized, transi-
tional area, rural, and lower rural. Clustering of the tracts is performed using the k-means
method. The urbanized/populated areas point to the regions with higher density of de-
velopment and populated places. The areas denoted as the transition areas, are either the
immediate areas surrounding the urban areas in which the population density was higher
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than the rural area, or some areas that are initial cores for dense population settlements
in the future development. Rural areas and lower rural areas are mainly regions with
scattered developed lands and dispersed population, the level of sparsity varies between
rural areas and lower rural regions. After clustering, we applied Multivariate Analysis of
Variance (MANOVA) to test the significance level of the difference between the groups (See
Table 4). The homogeneity of the variables across the grouped data was then tested, the
results of this test imply that all the clusters are significantly different from each other.

Table 4. Multivariate Analysis of Variance (MANOVA) test for the zones of developments.

Df Pillai’s Trace Approx F num Df den Df Pr (>F) Residuals

Zones of Development 1985 1 0.787 859.05 2 465 <2.2 × 10−16 *** 466
Zones of Development 1995 1 0.76166 768.56 2 481 <2.2 × 10−16 *** 482
Zones of Development 2005 1 0.72351 629.34 2 481 <2.2 × 10−16 *** 482

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Figure 8 illustrates zones of development, according to this analysis, the area of urban
and transitional zones in the three target time periods of the study was less than 15% of
the state. By overlaying the zones of development on top of the hot-spot analysis of new
developments, we can observe that the hot spots are formed in the urban and transitional
regions. We basically use the zones of development to make visual inferences on the results
of geographically weighted regression models.

Figure 8. Zones of Development.

4. Results
4.1. Global Ridge Regression Model

The global ridge regression model of land development at each time-step indicates R2

of 0.61, 0.70 and 0.69 for 1985−1995, 1995−2005, 2005−2015, respectively. The parameters
of variables for the global ridge regression are shown in Table 5. The global regression
models indicate that in 2005−2015 distance to mines do not demonstrate a significant
impact on the land development.

According to a study by the Bureau of Business and Economics in the state of WV [24],
during this period, there was a decrease in jobs and mining production. However, at
this time-step oil and gas industry acts as the substitute to mining in WV. As Table 5
shows, distance to mining sites was an important driving factor for land development
in 1985−1995. In the period of 1995−2005, population density was the most significant
variable in land development in WV. In 1985−1995 this factor is not as important compared
to other factors.

4.2. Geographically Weighted Ridge Regression Model Results and Visual Assessment

A geographical regression model was done and the evaluation of model performance
(See Table 6) shows the R2 value for each model. The value of R2 for the GWRR models is
computed based on Equation (7), where the estimated values are the model prediction for
each weighted regression model.
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An interpolation in the squared error of GWRR models points to the spatial represen-
tation of the model performance (Figure 9). Indeed, this figure indicates the areas where the
regression model fits better to the training points or fails to explain the land transformation
with the presented variables. The value of squared error, in each GWRR model varies, such
that the 1985−1995 GWRR has the smallest range of error rate and 1995−2005 GWRR has
the highest range of error.

The geographic coefficients of each variable in 1985−1995 imply high impact of
the variables on the western and central WV. Charleston (state capital) and Parkersburg
MSAs are located in these regions. Nevertheless, it is noteworthy that hot spots of land
development and the highest error rates are detected in these regions. This shows that our
model is not capable of capturing the local relationships between the variables in these hot
spots that are mainly urban and transitional regions. Changes in the population density
has almost the same impact on the clusters of development in all the regions except for
the east of the state; which is mainly in the vicinity of the Monongahela National Forest
with regulatory restrictions on land development. Moreover, the model result confirms any
change in the population of the mentioned region is accompanied by significant changes in
the clusters of land development (Figure 10). Our dataset indicates no records on active
permits of oil and gas wells, hence we did not investigate this variable in 1985−1995.

Table 5. Summary of Ridge Regression Model Results.

1985−1995

Scaled Estimate Std. Error (scaled) t value (scaled) Pr (> |t|)
Distance to MSA −1.3638 0.01706 79.95 <2 × 10−16 ***
Inverse Distance to Development 0.13904 0.0147 9.462 <2 × 10−16 ***
Inverse Distance to Mining Sites 0.55096 0.01463 37.647 <2 × 10−16 ***
Inverse Distance to Oil and Gas Wells - - - -
Population Density (per sq. mile) 0.16899 0.01475 11.455 <2 × 10−16 ***
Economic Index −0.69773 0.01687 41.358 <2 × 10−16 ***

Ridge parameter: 8.69 Degrees of freedom: model 4.997 , variance 4.994 , residual 5
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

1995−2005

Scaled Estimate Std. Error (scaled) t value (scaled) Pr (> |t|)
Distance to MSA −40.33322 0.008175 40.76 <2 × 10−16 ***
Inverse Distance to Development 0.140729 0.007529 18.69 <2 × 10−16 ***
Inverse Distance to Mining Sites 0.341333 0.008027 42.52 <2 × 10−16 ***
Inverse Distance to Oil and Gas Wells 0.42451 0.008035 52.83 <2 × 10−16***
Population Density (per sq. mile) 0.447566 0.00777 57.6 <2 × 10−16 ***
Economic Index −0.1587 0.007668 20.7 <2 × 10−16 ***

Ridge parameter: 38.5 Degrees of freedom: model 5.995 , variance 5.991 , residual 6
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

2005−2015

Scaled Estimate Std. Error (scaled) t value (scaled) Pr (> |t|)
Inverse Distance to MSA −0.4493 0.007628 58.9 <2 × 10−16 ***
Inverse Distance to Development 0.04935 0.006631 7.442 9.95 × 10−14 ***
Inverse Distance to Mining Sites 0.007491 0.007286 1.028 0.303828
Inverse Distance to Oil and Gas Wells 0.0409 0.0091 4.495 6.94 × 10−6 ***
Population Density (in sq mi) 0.400434 0.006916 57.897 <2 × 10−16 ***
Economic Index −0.31697 0.006992 45.333 <2 × 10−16 ***

Ridge parameter: 65.49 Degrees of freedom: model 5.994 , variance 5.987 , residual 6
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Table 6. Model Results of GWRR.

Model R2

GWRR 1985−1995 0.982
GWRR 1995−2005 0.956
GWRR 2005−1015 0.961

Figure 9. Geography of the Squared-Errors.

Taking the high and low error regions into consideration, we can make more reliable
inferences on the local regression parameters. Model parameters for 1995−2005 (Figure 11)
indicate that changes in the economic index and distance to mining areas exhibit notable
influence on the developed land clusters. Distance to oil and gas wells and mining sites
significantly impact land development in the eastern panhandle of the study area. The
metropolitan areas of Charleston and Parkersburg show substantial linkages to changes in
distance to oil and gas wells, and population change and distance to development.
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Figure 10. Geographic Coefficients for the 1985−1995.

Figure 11. Geographic Coefficients for the 1995−2005.

Local coefficients in 2005−2015 indicate that the land development process is impacted
by the oil and gas industry in a large geography. This change is because of the population
movement caused by the job opportunities that these industries create. On the other hand,
oil and gas industries in this region are mainly based on shale gas wells. These sites
require considerable land areas for side facilities and the pipelines [28]. Population density
has comparatively higher coefficient value in the very low populated and rural areas.
In the northern and eastern panhandles, the model parameters indicate that distance
to metropolitan areas play a crucial role in the formation of new land developments
(Figure 12).
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Figure 12. Geographic Coefficients for the 2005−2015.

5. Discussions
5.1. Study Findings

The results of this investigation in the state of WV imply that the majority of detected
land developments in all the three time-steps occurred in rural and lower rural areas.
Nonetheless, the importance of the studied variables on land development process have
been constantly shifting. Without performing the local analysis of this research, it would
suffer from lack of evidence for studying this dynamicity. Local analysis of the variables
helped us to gain insight into the locations where the parameters act quite opposite from
each other. Since we did a separate data normalization for each variable per time-step, our
inferences on the importance of each variable is made in target time-step are independent
from each other.

We incorporated the temporal change of geography of opportunities by representing
distance-based spatial features. Both global and local analysis indicate that the location
of opportunities plays a vital role in driving land development. In the short time period
of 1985−2015 we have observed how the dynamics of geography of opportunities have
shifted the patterns of land development. The dynamic patterns of economic opportunities
over time lead to unstable trends of urban/rural land development. These ephemeral
patterns hinder small, low populated communities and provoke fragmented localities.

Major land transformations were observed in rural regions (Figures 5 and 8), where
the pattern of land development is scattered, with low and very low clusters of developed
and populated lands. This form of development in a region which is covered by forested
lands (according to NLCD 2016 more than 84% of WV is forested [5]) results in an impacted
ecosystem. On the other hand, the need of these fragmented communities, which are
rapidly growing and shrinking, to access health, commercial, social, educational, and
cultural services is a major concern. A shortage of access to these services impacts the
residents’ quality of life.

The energy industry is one of the major reasons for the landscape alterations in
WV [27]. As some energy sources diminish or lose their popularity, it impacts the patterns
of land development; in this case, the older developed areas do not provide enough
incentives to sustain the trends of land development. This indicates that this region
could not maintain the provided opportunities for the job seekers and the geography of
opportunities was mutating.
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5.2. Implications

This study provides a foundation for examining the scenarios and consequences of
land development on ecosystem services. We recommend such studies to be conducted
and reviewed with the communities. Moreover, enriching and educating communities with
sustainable economic development, instead of relying of transitory economic industries
should be considered in planning the future in such regions. Community engagement
steps are encouraged for the sustainability of development in this region.

As indicated by this work, land and natural resources of energy are key role players
in the landscape alterations of WV. Understanding how land development in WV also im-
pacts various aspects of ecosystem services is critical. Mapping, monitoring, and publicly
discussing the land transformation’s impacts on regulating, provisioning, cultural and sup-
porting ecosystem services facilitates public awareness of the environmental consequences
of each act of land consumption.

Future research should attempt to apply the methodology presented here to other
study areas and other forms of land transformation. It is important to incorporate local
knowledge for characterising and determining explanatory variables. For example, other
factors such as terrain characteristics i.e., topography, land supply and demand, govern-
mental policies, local pricing and markets, etc. should be considered. In addition, future
work could investigate the use of other models such as feature selection methods and deep
neural networks.

6. Conclusions

This research examined the significance of multiple variables in the land transfor-
mation process. We applied fused multi-source data to build the feature class for the
geographically weighted and global ridge regressions. Through the proposed method,
the presence of multicollinearity among variables was tested and the modeling process
was improved. We implemented the models and analyzed the data in decennial time
steps.Both local and global ridge regression models were used. In the local ridge regression,
as in the global ridge model, penalizing the loss values helped avoid a multicollinearity
effect. This helped address the problem of over-fitting. We used the results of this study
to infer the role of the energy sector on the land development in the study area. Also, the
process of land development in the study area is essentially fragmented and scattered. We
provided recommendations on the community development and public guidelines and
strategies so the future land developments in the region can move in a more sustainability
and resilient direction.
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