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Abstract: The significance of the water-side gas transfer velocity for air–sea CO2 gas exchange
(k) and its non-linear dependence on wind speed (U) is well accepted. What remains a subject
of inquiry are biases associated with the form of the non-linear relation linking k to U (hereafter
labeled as f(U), where f(.) stands for an arbitrary function of U), the distributional properties of U
(treated as a random variable) along with other external factors influencing k, and the time-averaging
period used to determine k from U. To address the latter issue, a Taylor series expansion is applied to
separate f(U) into a term derived from time-averaging wind speed (labeled as 〈U〉, where 〈.〉 indicates
averaging over a monthly time scale) as currently employed in climate models and additive bias
corrections that vary with the statistics of U. The method was explored for nine widely used f(U)
parameterizations based on remotely-sensed 6-hourly global wind products at 10 m above the sea-
surface. The bias in k of monthly estimates compared to the reference 6-hourly product was shown
to be mainly associated with wind variability captured by the standard deviation σU around 〈U〉
or, more preferably, a dimensionless coefficient of variation Iu= σU/〈U〉. The proposed correction
outperforms previous methodologies that adjusted k when using 〈U〉 only. An unexpected outcome
was that upon setting I2

u = 0.15 to correct biases when using monthly wind speed averages, the
new model produced superior results at the global and regional scale compared to prior correction
methodologies. Finally, an equation relating I2

u to the time-averaging interval (spanning from 6 h to a
month) is presented to enable other sub-monthly averaging periods to be used. While the focus here
is on CO2, the theoretical tactic employed can be applied to other slightly soluble gases. As monthly
and climatological wind data are often used in climate models for gas transfer estimates, the proposed
approach provides a robust scheme that can be readily implemented in current climate models.

Keywords: carbon dioxide; gas transfer velocity; time-averaging; wind speeds

1. Introduction

Describing air–sea flux of long-lived greenhouse gases such as carbon dioxide (CO2)
is of significance for assessing the global carbon cycle and its relation to climate. In climate
models, the water-side air–sea flux (F, mol m−2 y−1) is commonly determined using a
bulk expression

F = K0 k ∆pCO2 (1)

where k is the gas transfer velocity (cm h−1), K0 is the gas solubility (mol L−1 atm−1)
in water that is a function of sea surface temperature (SST) and salinity, and ∆pCO2 is
the difference in partial pressure of pCO2 between water and air (atm). The dominant
factors determining k are governed by a number of physical processes primarily, but not
exclusively, associated with wind speed U. For this reason, k is operationally parameterized
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as a non-linear function of U set at a reference height of 10 m. For comparison purposes,
the general formulations (common ones listed in Table 1) take the form of

k = (Sc/660)−1/2 f(U) (2)

where f(U) (cm h−1) is a non-linear function of wind speed U, also known as the gas
transfer velocity k660 normalized to the dimensionless molecular Schmidt number (Sc) for
CO2 in seawater at 20 ◦C (Sc = 660). The function f(U) may be quadratic, cubic, or even a
higher-order polynomial, and Sc (�1) is the ratio of the kinematic viscosity (m2 s−1) and
the molecular diffusion coefficient (m2 s−1) of CO2 or other gases in seawater. For this
reason, Equation (2) is routinely used for slightly soluble gases. The f(U) can also be derived
using turbulent transport theories [1–5], bubbles [6,7], and wave-breaking mechanics [8–10].
However, f(U) cannot be viewed as linking k to an instantaneous U at a point; rather, f(U)
must emerge as an approximation to macroscopic equations derived by averaging gas
transfer over space and time scales (analogous to a closure model for turbulent fluxes in
Reynolds-averaged Navier–Stokes equations). The spatial scales must be much larger than
the largest eddy or wave length impacting gas exchange, whereas the time scales must
be sufficiently long to accommodate the effects of turbulent fluctuations (i.e., ensemble
of many eddy-turnover times) or wave formation and subsequent breaking, but short
enough to resolve mesoscale variations in U. This interval is commensurate with hourly
time scales and coincides with time scales associated with the well-known spectral gap in
the atmosphere [11]. Fourier power spectra of wind time series sampled from fractions of
seconds (turbulent scales) to years support the occurrence of a “gap” in the squared Fourier
amplitudes separating mesoscales (longer than few hours) from micro-scales (smaller than
minutes). This gap forms the basis of separating U into a micro-scale contribution whose
effects on k are to be averaged out and captured by f(U) and a meso-scale or longer (i.e.,
larger than hours) contribution [12].

Based on gas transfer velocity parameterizations, modelling and observation-based
estimates of the global oceanic CO2 sink vary significantly from −1.18 to −3.1 Pg C yr−1

(negative referring to net flux of CO2 into the ocean) [13–18]. The range in these estimates
reflects different time periods and uncertainties. Uncertainties result from using various
data products, methodological uncertainties in k parameterizations, the relative sparsity of
CO2 data coverage in time and space, and thermal and haline effects [19–25].

Additionally, temporal averaging of wind data substantially contributes to uncertain-
ties in global F estimates due to the non-linearity in f(U) [26–28] and frames the scope of
the work here. As an example, if wind blows half the time at a speed of 4 m s−1 and the
other half of the time at 16 m s−1 (solid points on the curves), k values estimated from the
mean wind speed of 10 m s−1 are biased low by 11.2 and 30.6 cm h−1 relative to the true
k (circles on dash lines) for the quadratic and the cubic relations, respectively. Quadratic
and cubic equations are taken from [29,30], respectively (Figure 1). Long-term averaged
(monthly or longer) wind speeds underestimate gas exchange by 25% and by 50% for
quadratic and cubic f(U), respectively [31]. Such known biases can be handled by: (i) using
wind speeds with short temporal intervals (i.e., 6 h) or (ii) applying correction factors when
averaging over longer intervals (e.g., monthly) to mitigate these expected biases [26–28].
Because using short-term wind speeds (e.g., 6-hourly wind products) globally to evalu-
ate f(U) is computationally expensive now and in the foreseeable future, bias-corrected
methodologies are gaining attention. However, reported biases in k are still pronounced
even after applying current correction factors, thereby motivating the development of
other approaches. The time is ripe to begin exploring such bias corrections to existing gas
exchange formulations given the availability of satellite-based wind products at 6-hourly
temporal resolution.
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Figure 1. Conceptual diagram representing the bias in gas transfer velocity (k) estimates associ-
ated with averaging wind speed variability (adapted from [32]). The quadratic and cubic relations 
are in blue and orange, respectively. 
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Figure 1. Conceptual diagram representing the bias in gas transfer velocity (k) estimates associated
with averaging wind speed variability (adapted from [32]). The quadratic and cubic relations are in
blue and orange, respectively.

In this study, we compare various published corrections and propose a new method
that we test globally and regionally for any function f(U). The findings here apply for
any slightly soluble gas for which its f(U) is known. For a more accurate correction, wind
variance should also be supplied to correct monthly k. In the absence of such information,
the work here suggests a constant squared coefficient of variation can be used (Iu

2 = 0.15).
The manuscript is organized as follows: the datasets and data processing, review of current
correction methods, and the proposed new correction method are presented in Section 2. In
Section 3, this new method is applied to 29 years of data to obtain the corrected gas transfer
velocity and is evaluated by comparing the newly corrected k to results from earlier models
and studies. A summary and concluding remarks are presented in Section 4.

Table 1. The f(U) parameterizations used in estimating gas transfer velocity for CO2 (same expressions can be used for
other slightly soluble gases [33]). The f(U) formulations developed from long-term wind speeds (i.e., monthly) were not
considered here. In Serial No.9, because the three equations are identical in form with a small difference in their α coefficients,
we use the expression f(U) = 0.251 U2 [25] in the following analysis as a representative equation of all three models.

Serial No. Reference f(U) Parameterization for CO2
f(U) = k (Sc/660)1/2

1 Wanninkhof (1992) [29] 0.31U2

2 Wanninkhof and McGillis (1999) [30] 0.0283U3

3 Nightingale et al. (2000) [34] 0.222U2 + 0.333U

4 McGillis et al. (2001) [35] 0.026U3 + 3.3

5 McGillis et al. (2004) [36] 0.014U3 + 8.2

6 Weiss et al. (2007) [37] 0.365U2 + 0.46U

7 Wanninkhof et al. (2009) [38] 0.011U3 + 0.064U2 + 0.1U + 3

8 Prytherch et al. (2010) [39] 0.034U3 + 5.3

9 Ho et al (2006) [40], Sweeney et al. (2007) [41], Wanninkhof (2014) [33] αU2

(where α = 0.266/0.27/0.251)
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2. Data and Methods
2.1. Data and Data Processing

The U and sea surface temperature (SST) data from 1990 to 2018 are used to compute
globally averaged k. The 6-hourly and averaged monthly cross-calibrated multiplatform
CCMP V2.0 wind data at the 0.25◦ × 0.25◦ grid were obtained from the Remote Sensing
Systems described elsewhere [42]. The gridded CCMP V2.0 wind products are produced
from a combination of satellite (Version-7 remote sensing system radiometer wind speeds,
QuikSCAT, and ASCAT scatterometer wind vector wind), moored buoy, and model wind
data. The high-resolution CCMP captures wind variability well and is relatively bias
free compared to in situ estimates [43,44]. Therefore, the CCMP data is often used to
parameterize the gas transfer velocity coefficient and in estimating k [25,33,43,45]. The
6-hourly and monthly SST data at the spatial resolution of 0.25◦ × 0.25◦ were derived
from the European Centre for Medium-Range Weather Forecasts (ECMWF) fifth generation
ERA5 reanalysis product described elsewhere [46]. The wind speeds and SST are linearly
interpolated onto a spatial resolution of 0.5◦ × 0.5◦. Within this grid, the statistics of U
are assumed to be planar homogeneous. Additionally, both U and SST data were linearly
interpolated to 5◦ × 5◦ to evaluate the effect of spatial resolution on k estimates. Nine
commonly used f(U) parameterizations (Table 1) were applied to estimate globally averaged
gas transfer velocity for CO2. The Sc for CO2 is a function of SST and is determined using
a standard formulation [33].

2.2. Review of Prior Correction Methods for the Time-Average Bias

Correction factors are routinely applied to account for biases in k estimates associated
with time-averaging of wind speeds. One commonly used method is based on a Reynolds
decomposition into a well-defined mean 〈U〉 (e.g., monthly) and fluctuations U′ (on the
scales of hours) around this average so that U = 〈U〉+U′ with

〈
U′
〉

= 0. When f(U) = aU2,

f(〈U〉) = a〈U〉2 and 〈f(U)〉=
〈

aU2
〉

. Therefore, the 〈f(U)〉 can be evaluated as

〈f(U)〉 = a〈
(
〈U〉+ U′

)2〉 = a
(
〈U〉2 + 2〈U〉〈U′〉+ 〈U′2〉

)
= a〈U〉2

[
1 +

(
σU
〈U〉

)2
]

= f(〈U〉)
[
1 + (σU/〈U〉)2

] (3)

where σU is the standard deviation, Iu = (σU/〈U〉) is as before the coefficient of variation,
and the sought correction (as a ratio or bias) can be expressed as

〈f(U)〉
f(〈U〉) =

(
1 + Iu

2
)

and 〈f(U)〉 − f(〈U〉) = aσ2
U (4)

Clearly, this correction depends on the non-linearity of f(U) [32,47]. With available 6-hourly
wind speed (U6 hour) data, other widely used multiplier corrections [26–28,31,40,45,48–52] for
the quadratic formulation is expressed in this form as

R2 = 〈U2
6 hour〉/〈U6 hour〉2 (5)

and for the cubic formulation

R3 = 〈U3
6 hour〉/〈U6 hour〉3 (6)

These R2 and R3 corrections can be obtained empirically or derived analytically
when assuming the distributional properties of U for meso-scale (and longer) varia-
tions [26–28,31,40,45,48–52]. A Rayleigh distribution, which is commonly used in the
evaluation of R2 and R3 [26] arises when the magnitude of the wind velocity is analyzed in
two dimensions (usually in the plane parallel to the water surface) (see Text S1 in Supple-
mentary). Assuming that each component is uncorrelated and normally distributed with
equal variance in each of the two directions (i.e., planar homogeneous air flow), the overall
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wind vector magnitude is characterized by a Rayleigh distribution (i.e., a special form
of Chi-squared). These R2 and R3 corrections are also simplified using zonally averaged
profiles [26,27]. Globally and regionally, the R2 ranges from 1.12 to 1.26 whereas the R3
ranges from 1.35 to 2.17 [26,28,48,53].

2.3. Proposed Correction Based on Taylor Series Expansions

For a wind-only related formulation, f(U) ∝ Un (n > 1) and upon space-time averaging
yields 〈Un〉 6= 〈U〉n. To assess biases arising from setting 〈f(U)〉 = f (〈U〉), a Taylor
series expansion of any f(U) form around the space-time averaged value f(〈U〉) are now
introduced and given by

f(U) = f(〈U〉) + df
dU

∣∣∣∣
〈U〉

(U− 〈U〉) + 1
2!

d2f
dU2

∣∣∣∣∣
〈U〉

(U− 〈U〉)2 +
1
3!

d3f
dU3

∣∣∣∣∣
〈U〉

(U− 〈U〉)3 + . . . (7)

Applying the space-time averaging operation 〈.〉 term by term in Equation (7) yields

〈f(U)〉 = f(〈U〉) + df
dU

∣∣∣
〈U〉
〈U− 〈U〉〉+ 1

2
d2f
dU2

∣∣∣
〈U〉
〈 (U− 〈U〉 )2〉

+ 1
6

d3f
dU3

∣∣∣
〈U〉
〈(U− 〈U〉)3〉+ . . .

(8)

This expression can be arranged as

〈f(U)〉 = f(〈U〉) + kb,with kb = ︸ ︷︷ ︸
Term 1

〈f(U)〉 − f(〈U〉) = ︸ ︷︷ ︸
Term 2

1
2

d2f
dU2

∣∣∣∣∣
〈U〉

σ2
U +

1
6

d3f
dU3

∣∣∣∣∣
〈U〉
〈(U− 〈U〉 )3〉 . . . (9)

where kb is the sought bias and σ2
U is the variance in wind speed around 〈U〉. In this

expression, all derivatives of f(U) are presumed to be known (e.g., Table 1 or other physics-
based formulation) and are being evaluated at 〈U〉. When n = 1, all the derivative terms
are identically zero and kb = 0. General expression for a quadratic relation (n = 2) f(U) can
be expressed as

f(U) = aU2 (10)

applying Equation (9) to f(U) results in

〈f(U)〉 = a〈U〉2 + kb, with kb = a σ2
U (11)

suggesting an additive correction (i.e., bias) that only varies with σ2
U. This expression

is consistent with [47], though the approach taken here is more general. For the cubic
relations (n = 3),

f(U) = a U3 + bU2 + dU + e (12)

and this results in

〈f(U)〉 = a 〈U〉3 + b〈U〉2 + d〈U〉+ e + kb,
with kb = 3a〈U〉σ2

U + bσ2
U + a〈(U− 〈U〉)3〉

(13)

In this case, the skewness of U as estimated with the Fisher–Pearson coefficient of
skewness (Sk = 〈(U− 〈U〉)3〉/σ3

U) is also required. In summary, the newly proposed
corrections and the three prior correction methods listed in Table 2 are used to adjust for
the bias.
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Table 2. Summary of all the correction methodologies for CO2 and other gases.

Method Reference Correction Correction Details

1 This study kb from Equation (11) (for quadratic
relations) and Equation (13) (for cubic
relations) are added to f(〈U〉) to estimate
the corrected k.

Grid-by-grid spatially multi-year mean kb

2 This study
A simplified method using overall
averaged value of kb to fix the bias.

3 Wanninkhof (2002) [26]
(1) The corrected k with multiplier
correction R2 (Equation (5)) for the
quadratic parameterization is in the form
of f(〈U〉) = a R2〈U〉2,
(2) For the cubic relation with multiplier
correction R3 (Equation (6)), the corrected
f(〈U〉) is expressed as
f(〈U〉) = a R3 〈U〉3 + b 〈U〉2 + d 〈U〉+ e

Assuming a Rayleigh distribution of the
6-hourly wind speeds, R2= Γ(2)

[Γ(3/2)]2
= 1.27

and R3 =
Γ(5/2)

[Γ(3/2)]3
= 1.91 (See Text S1 in

Supplementary for details).

4 Jiang et al. (2008) [28]

Global averaged multiplier correction
factors R2 and R3 are estimated using the
measured 6-hourly wind speed with
R2 = 1.23 and R3 = 1.78.

5 Fangohr et al. (2008) [27]

Zonal averaged R2 and R3 are used. Large
gradients in zonal R2 and R3 are because of
the large zonal gradients in wind variance
(Figure S1).

3. Results
3.1. Bias in k Induced by Averaging of Wind Data

Globally averaged k for CO2 at various temporal and spatial resolutions were assessed
for the parameterizations of f(U), listed in Table 1. The k computed from maximum
spatial (0.5◦ × 0.5◦) and temporal resolution (6-hourly) products were used as a reference
to illustrate the deviation of k in percentage (Figure 2 and Table S1). As expected, the
monthly k underestimates k for all parameterizations. The absolute biases induced by
time-averaging wind speed (~10–28% range) are more significant for cubic relations (Serial
NO. (2), (4), (5), (7), and (8)) than for quadratic relations (Serial NO. (1), (3), (6), and (9)),
with a comparable magnitude in biases at both spatial resolutions of 0.5◦ × 0.5◦ and 5◦ × 5◦.
In contrast, uncertainties due to differential spatial resolutions are negligible (less than
1%) at the temporal resolutions of both 6 h and a month (Figure 2). For this reason, we
only focus hereafter on the uncertainty induced by differential temporal resolution of wind
speed data, though the method can be applied to any type of averaging [28]. As expected,
k substantially varies with the choice of f(U) being used (Figure S2). Undoubtedly, the
mechanisms constraining gas transfer velocity must be explored, but this issue is beyond
the scope of the present work.
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Figure 2. Bias in k of CO2 due to wind speeds at varying spatial resolutions (0.5◦ × 0.5◦ and 5◦ × 5◦) for 6-hourly and
monthly gas transfer velocity (k), and temporal bias in k (6 hourly and monthly) at the spatial resolution of 0.5◦ × 0.5◦ and
5◦ × 5◦. The kmon and k6h are gas transfer velocities averaged over all k values estimated from monthly and 6-hourly wind
speed records, respectively. k5◦ and k0.5◦ are gas transfer velocities averaged over all k values estimated from 5◦ and 0.5◦

wind speed, respectively. The bias is estimated as4k*100/k6h,0.5◦ (k6h,0.5◦ is k at the resolution of 6-hourly and 0.5◦ × 0.5◦).
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3.2. Assessment of the “Bias Correction Model”

This new “bias correction model” was applied to all the nine parameterizations of
k, as shown in Table 1. Measured bias in f(U) (term 1 in Equation (9), Figure S3) and bias
kb from the new model (term 2 in Equation (9), Figure S4) were estimated. In term 1,
the 6-hourly space-time product was used to evaluate 〈f(U)〉 and the monthly space-time
product was used to evaluate f(〈U〉). Overall, the proposed model reproduces the bias
between 6-hourly k and monthly k (Figure 3). Spatially, the differences in the first term
and the second term are negligible in quadratic parameterizations ((1), (3), (6), and (9) in
Figure S5). In contrast, for the cubic relations such as the k parameterizations of (2), (4), (5),
(7), and (8), the differences are small, lower than 0.6 cm h−1 (Figure 3). The higher values
in the mid and high latitude of the northern hemisphere (Figure S5) might be associated
with large variability in wind speed within a month (Figure S1) due to the occurrence of
synoptic high wind events in these regions [54].
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Figure 3. Mean bias in gas transfer velocity (k) for CO2 estimated from term 1 (measured bias in f(U))
and term 2 (bias correction kb from new model) of Equation (9) over the period spanning 1990 to
2018 for the parameterizations presented in Table 1.

3.3. Comparison of Correction Methods

The proposed new bias correction was compared to common correction methodologies.
We tested the new corrections presented in Equations (11) and (13) based on two methods.
In method 1, the correction was estimated using the annual mean grid-by-grid kb (i.e., with
grid-by-grid σ2

U, 〈U〉 and 〈(U− 〈U〉)3〉). In method 2, the correction was the averaged kb
(i.e., with averaged σu-related terms) (Table 2). As σu and 〈U〉 both increase in time, the
squared coefficient of variation I2

u = (σU/〈U〉)2 is a more “conserved” parameter in time
with a slowly decreasing (insignificant) trend of 0.002 dec−1 and an average of 0.15 (Figure
4). Thus, for a constant I2

u = 0.15 in method 2, the kb of quadratic relations (Equation (11))
can be arranged as

kb = a 〈U〉2
(

σu

〈U〉

)2
= a 〈U〉2I2

u = 0.15a〈U〉2 (14)
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pled at a resolution of 0.5° × 0.5° spatially and temporally monthly. Taking CO2 as an ex-
ample, globally averaged corrected k values were calculated for all the nine parameteri-
zations, and biases in corrected k are estimated in reference to the 6-hourly k. 

As expected, deviations of the corrected k from the reference 6-hourly k are signifi-
cantly reduced using the new approaches (Figure 5). The largest absolute biases yielded 
by methods 1 and 2 are only 0.6% and 4.46%, respectively. In contrast, the range of abso-
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Figure 4. Left panel: time series of global (a) monthly averaged wind speed 〈U〉 (in black) and standard deviation
(σu, in grey) around 〈U〉, (b) monthly squared coefficient of variation Iu

2 = (σu/〈U〉)2 from 1990 to 2018 (note the small
variations along the ordinate axis). The black and the grey dashed lines in (b) indicate the long-term trend (0.002 dec−1) and
average (Iu

2 = 0.15), respectively. Right panel: spatial distribution of (c) trends in the wind speed standard deviation (σu)
around 〈U〉, (d) monthly averaged wind speed 〈U〉, and (e) monthly squared coefficient of variation Iu

2 = (σu/〈U〉)2 from
1990 to 2018.

To simplify further, only the first term in Equation (12) is taken for cubic expressions,
so that

〈f(U)〉 = a〈U〉3 + kb (15)

Evidently, kb is also a function of I2
u for cubic expressions given as

kb = 3a 〈U〉3
(

σu

〈U〉

)2
= 3a 〈U〉3I2

u = 0.45a〈U〉3 (16)

With constant I2
u = 0.15, Equations (14) and (16) can be used to approximate unbiased

f(U), and k considering differences in Sc for CO2 and other gases (see [33] for Sc of other
gases). The same f(U) parameterization for all slightly soluble gases may not be realistic for
gases with differing solubilities [55–57], but this inquiry is better kept for the future.

The newly proposed corrections were compared to three commonly used methods
(listed in Table 2) when adjusting wind variability-induced bias in k for wind speeds
sampled at a resolution of 0.5◦ × 0.5◦ spatially and temporally monthly. Taking CO2
as an example, globally averaged corrected k values were calculated for all the nine
parameterizations, and biases in corrected k are estimated in reference to the 6-hourly k.

As expected, deviations of the corrected k from the reference 6-hourly k are signifi-
cantly reduced using the new approaches (Figure 5). The largest absolute biases yielded by
methods 1 and 2 are only 0.6% and 4.46%, respectively. In contrast, the range of absolute
biases generated by the other three methods vary from 3.5% to 28% (Table S2). It is worth
noting that the bias induced by the time averaging of SST values is negligible (small dif-
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ference in 6-hourly and corrected k after applying correction only associated with wind
variance) due to the small variance of SST (Figure 6) and the smaller effect of SST on k for
all parameterizations (Table 3). From the perspective of zonal distribution, the magnitude
of the corrected k using method 1 agrees well with the 6-hourly k (Figure 7a). Though
the simpler method 2 appears to overestimate k at mid and high latitude regions (within
0–30◦N and 30◦–60◦N), the overall corrected k is generally consistent with the 6-hourly k
(especially in the Southern hemisphere), with a smaller root-mean-square errors (RMSE)
between corrected k and the 6-hourly k compared to methods 3, 4, and 5 (Figure 7b).
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monthly averaged 〈SST〉; (b) Time series of annual averaged variance of SST (σ2
SST) around monthly

averaged 〈SST〉, the dashed line indicates the long-term trend; (c) Spatial pattern of trend in averaged
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SST) around monthly averaged 〈SST〉 from 1990 to 2018.
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Table 3. Parameters used to run scenarios of imposed changes in wind speed (U) and sea surface temperature (SST) and
their effects on the gas transfer velocity (k) for the nine k parameterizations featured in Table 1. The starting values of U and
SST were set to 6.48 m s−1 and 13.73 ◦C, respectively, according to their climatological global mean. The sensitivities of k to
U and SST were assessed from the ratio of the percentage change in k (Y) to percentage change in each factor (X) using the
equation: sensitivity = (∆Y/Y)/(∆X/X).

Serial NO

Starting Value
Imposed Change Imposed Change

U SST U SST

U m·s−1 SST (◦C)
2% 4% 8% 2% 3% 4% 2% 4% 8% 2% 3% 4%

∆k k Sensitivity

1

6.84 13.73

0.49 1.00 2.04 0.09 0.14 0.18 2.02 2.04 2.08 0.38 0.38 0.38
2 0.47 0.95 1.98 0.06 0.09 0.11 3.06 3.12 3.25 0.38 0.38 0.38
3 0.39 0.79 1.61 0.08 0.12 0.16 1.84 1.85 1.89 0.38 0.38 0.38
4 0.43 0.88 1.82 0.07 0.11 0.15 2.19 2.24 2.32 0.38 0.38 0.38
5 0.23 0.47 0.98 0.08 0.12 0.16 1.08 1.10 1.15 0.38 0.38 0.38
6 0.42 0.86 1.75 0.08 0.12 0.16 2.02 2.04 2.08 0.38 0.38 0.38
7 0.43 0.87 1.77 0.08 0.12 0.16 2.02 2.04 2.08 0.38 0.38 0.38
8 0.30 0.60 1.24 0.06 0.10 0.13 1.72 1.74 1.80 0.38 0.38 0.38
9 0.40 0.81 1.65 0.07 0.11 0.15 2.02 2.04 2.08 0.38 0.38 0.38
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Figure 7. (a) Zonal profiles of corrected k for CO2 using the five correction methodologies in compar-
ison to annual k derived from 6-hourly (red solid curve) and monthly (red dashed curve) wind speed. 
Zonal variation in k estimated using method 1 (in black) is not visible because it overlaps with the 6-

Figure 7. (a) Zonal profiles of corrected k for CO2 using the five correction methodologies in comparison to annual k
derived from 6-hourly (red solid curve) and monthly (red dashed curve) wind speed. Zonal variation in k estimated using
method 1 (in black) is not visible because it overlaps with the 6-hourly k. Panels (a1–a9) show the latitudinal variations in
nine k parameterizations listed in Table 1. (b) The RMSE of each method in corrected k from 6-hourly k.
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Moreover, the relation between the averaging period ∆t (spanning from 6 h to a month)
versus I2

u (Figure 8), needed to infer biases in k computed using wind speeds at a coarse
temporal resolution, was empirically derived and given as

I2
u = −0.18∆t−0.22 + 0.237. (17)

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 15 
 

 

hourly k. Panels (a1–a9) show the latitudinal variations in nine k parameterizations listed in Table 1. 
(b) The RMSE of each method in corrected k from 6-hourly k. 

Moreover, the relation between the averaging period ∆t (spanning from 6 hours to a 
month) versus I୳ଶ (Figure 8), needed to infer biases in k computed using wind speeds at a coarse 
temporal resolution, was empirically derived and given as I୳ଶ = −0.18∆tି.ଶଶ + 0.237. (17) 

Therefore, corrected f(U) in non-linear wind-only parameterizations for any gases at any 
temporal resolution from 6-hourly to monthly (or longer, not show here) can now be estimated 
by substituting I୳ଶ in Equation (11) and Equation (14) for quadratic relations, and in Equation 
(15) and Equation (16) for cubic relations. 

 
Figure 8. Coefficient of variation I୳ଶ as a function of the averaging period ∆t (from 6-hourly to 
monthly). Circles indicate the results from measurements, and the solid line represents a modelled 
fit through the measurements. For ∆t > 18 days, Iu2 becomes independent of ∆t. Global climate 
models operate on a ∆t = 30 days. 

3.4. Study Limitation 
As shown by the Taylor expansion (Equation (9)), the bias due to time-averaging is a 

function of the variance in wind speed. Hence, a corollary question to explore is whether 
the 6-hourly wind speed used as a reference here introduces biases because of missing 
variances at sub-hourly time scales. There may be a fraction of energy in the scale of 
6 hours to minutes or seconds commensurate with the time scales, over which the turbu-
lent or wave action impact k but are presumably captured by the functional form of f(U).  

The spectra of 6-hourly global wind is calculated to show the spectral energy distri-
bution from mesoscale to decadal scale (Figure 9). As estimated, the variance in this range 
is σୢଶ = 0.1 m2 s–2. A f–3 scaling in the spectrum from multi-day to a 12-hour range appears 
to be supported here and implies an enstrophy cascade in quasi-geostrophic flow [58,59]. 
If the spectrum is extrapolated from 12 hours to turbulence scale (seconds) via a Kolmo-
gorov’s –5/3 power law, the “missing variance” in this range is σ୫ଶ ≪0.001 m2 s–2, which 
can be ignored. Extrapolations to finer scales via a f–3 scaling would result in an even 
smaller missing variance. To be clear, this does not imply that the air turbulent time scales 
(on the order of 10 s and smaller) are minor. The energy contents of these time scales are 
quite large but are captured by the non-linearity in f(U) as noted earlier. To illustrate this 
point, a variance in turbulence scale σ୲ଶ of 1 m2 s–2 can be estimated from a turbulence 
similarity relation  σ୲ଶ = (2.3 u∗)2 and u∗ = U CD1/2, where u∗ is the air-side friction ve-
locity and CD is a drag coefficient at the reference height of 10 m, derived elsewhere [60]. 
The energy content in turbulence is clearly an order of magnitude larger than that of the 
decadal to 0.5 hours timescale. However, the effects of these energetic eddies produce 
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u as a function of the averaging period ∆t (from 6-hourly to

monthly). Circles indicate the results from measurements, and the solid line represents a modelled fit
through the measurements. For ∆t > 18 days, Iu

2 becomes independent of ∆t. Global climate models
operate on a ∆t = 30 days.

Therefore, corrected f(U) in non-linear wind-only parameterizations for any gases
at any temporal resolution from 6-hourly to monthly (or longer, not show here) can now
be estimated by substituting I2

u in Equations (11) and (14) for quadratic relations, and in
Equations (15) and (16) for cubic relations.

3.4. Study Limitation

As shown by the Taylor expansion (Equation (9)), the bias due to time-averaging is a
function of the variance in wind speed. Hence, a corollary question to explore is whether
the 6-hourly wind speed used as a reference here introduces biases because of missing
variances at sub-hourly time scales. There may be a fraction of energy in the scale of 6 h to
minutes or seconds commensurate with the time scales, over which the turbulent or wave
action impact k but are presumably captured by the functional form of f(U).

The spectra of 6-hourly global wind is calculated to show the spectral energy distribu-
tion from mesoscale to decadal scale (Figure 9). As estimated, the variance in this range is
σd

2 = 0.1 m2 s–2. A f–3 scaling in the spectrum from multi-day to a 12-h range appears to
be supported here and implies an enstrophy cascade in quasi-geostrophic flow [58,59]. If
the spectrum is extrapolated from 12 h to turbulence scale (seconds) via a Kolmogorov’s
–5/3 power law, the “missing variance” in this range is σm

2 �0.001 m2 s–2, which can be
ignored. Extrapolations to finer scales via a f–3 scaling would result in an even smaller
missing variance. To be clear, this does not imply that the air turbulent time scales (on the
order of 10 s and smaller) are minor. The energy contents of these time scales are quite
large but are captured by the non-linearity in f(U) as noted earlier. To illustrate this point, a
variance in turbulence scale σt

2 of 1 m2 s–2 can be estimated from a turbulence similarity
relation σt

2 = (2.3 u∗)2 and u∗ = U CD
1/2, where u∗ is the air-side friction velocity and CD

is a drag coefficient at the reference height of 10 m, derived elsewhere [60]. The energy
content in turbulence is clearly an order of magnitude larger than that of the decadal to
0.5 h timescale. However, the effects of these energetic eddies produce water-side eddies
(or waves) that are captured by f(U). Therefore, it is safe to state from this analysis that
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extrapolating the meso-scale variance to a sub-daily time scale introduces a negligible
correction to k (Figure 9) provided the appropriate f(U) is used.
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