Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Image Processing
2.2.1. Flowchart
2.2.2. Training Samples
2.2.3. Separability Analysis
2.2.4. kNN Classifier
2.2.5. RF Classifier
2.2.6. Validation and Accuracy Analysis
2.2.7. ROC Curve and AUC
3. Results
3.1. Spectral Separability Analysis
3.2. kNN Training
3.3. RF Training
3.4. Burned Area Analysis
3.5. Classification Errors
3.6. Overall Accuracy (OA)
3.7. Algorithms Errors
4. Discussion
4.1. Separability Analysis
4.2. Validation Product
4.3. kNN and RF Classifiers
4.4. Accuracy Analysis
4.5. OA and Algorithms Errors
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization (FAO). Global Forest Resources Assessment 2010—Main Report; FAO Forestry Paper 163; FAO: Rome, Italy, 2010; Available online: http://www.fao.org/3/i1757e/i1757e.pdf (accessed on 24 January 2021).
- Carmenta, R.; Parry, L.; Blackburn, A.; Vermeylen, S.; Barlow, J. Understanding human-fire interactions in tropical forest regions: A case for interdisciplinary research across the natural and social sciences. Ecol. Soc. 2011, 16, 53–75. [Google Scholar] [CrossRef] [Green Version]
- Mabuhay, J.; Nakagoshi, N.; Horikoshi, T. Microbial biomass and abundance after forest fire in pine forests in Japan. Ecol. Res. 2003, 18, 431–441. [Google Scholar] [CrossRef]
- Lauk, C.; Erb, K.-H. Biomass consumed in anthropongenic vegetation fires: Global patterns and processes. Ecol. Econ. 2009, 69, 301–309. [Google Scholar] [CrossRef]
- Chandra, K.; Bhardwaj, A.K. Incidence of Forest Fire in India and Its Effect on Terrestrial Ecosystem Dynamics, Nutrient and Microbial Status of Soil. Int. J. Agric. For. 2015, 5, 69–78. [Google Scholar] [CrossRef]
- Vicente, F.; Cesari, M.; Serrano, A.; Bertolani, R. The impact of fire on terrestrial tardigrade biodiversity: A first case-study from Portugal. J. Limnol. 2013, 72, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Vandermeer, J.; Perfecto, I. Breakfast of Biodiversity. The Political Ecology of Rain Forest Destruction, 2nd ed.; Food First Books: New York, NY, USA, 2013. [Google Scholar]
- Fearnside, P.M. Biodiveristy as an Environmental Service in Brazil’s Amazonian Forests: Risks, Value and Conservation. Environ. Conserv. 1999, 26, 305–321. [Google Scholar] [CrossRef] [Green Version]
- Griffith, D.M. Agroforestry: A refuge for tropical biodiversity after fire. Conserv. Biol. 2000, 14, 325–326. [Google Scholar] [CrossRef]
- Alkhatib, A.A.A. A review of forest fire detection techniques. Int. J. Distrib. Sens. Netw. 2014, 597368. [Google Scholar] [CrossRef] [Green Version]
- Bonazountas, M.; Kallidromitou, D.; Kassomenos, P.A.; Passas, N. Forest fire risk analysis. Hum. Ecol. Risk Assess. 2004, 11, 617–626. [Google Scholar] [CrossRef]
- Miranda, A.I.; Coutinho, M.; Borrego, C. Forest fire emissions in Portugal: A contribution to global warming? Environ. Pollut. 1994, 83, 121–123. [Google Scholar] [CrossRef]
- Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; et al. The impact of Boreal forest fire on climate warming. Science 2006, 314, 1130–1132. [Google Scholar] [CrossRef] [Green Version]
- Dixon, R.K.; Krankina, O.N. Forest fires in Russia: Carbon dioxide emissions to the atmosphere. Can. J. For. Res. 1993, 23. [Google Scholar] [CrossRef]
- Gillett, N.A.; Weaver, A.J.; Zwiers, F.W.; Fiannigan, M.D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 2004, 31, L18211. [Google Scholar] [CrossRef] [Green Version]
- Pribadi, A.; Kurata, G. Greenhouse gas and air pollutant emissions from land and forest fire in Indonesia during 2015 based on satellite data. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012060. [Google Scholar] [CrossRef] [Green Version]
- Matricardi, E.A.T.; Skole, D.L.; Pediowski, M.A.; Chomentowski, W.; Fernandes, L.C. Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sens. Environ. 2020, 114, 1117–1129. [Google Scholar] [CrossRef]
- Dahn, C.N.; Candelaria-Ley, R.I.; Reale, C.S.; Reale, J.K.; Van Horn, D.J. Extreme water quality degradation following a catastrophic forest fire. Freshwater Biol. 2015, 60, 2584–2599. [Google Scholar] [CrossRef]
- Pearson, T.R.H.; Brown, S.; Murray, L.; Sidman, G. Greenhouse gas emissions from tropical forest degradation: An underestimated source. Carbon Balance Manag. 2017, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, S.E.; Moses, T.A. Forest fire and the natural soil erosion regime in the Colorado front range. Ann. Am. Assoc. Geogr. 1987, 77, 245–254. [Google Scholar] [CrossRef]
- Kutiel, P.; Inbar, M. Fires impacts on soil nutrients and soil erosion in a Mediterranean pine forest plantation. Catena 1993, 20, 129–139. [Google Scholar] [CrossRef]
- Salesa, D.; Minervino Amodio, A.; Rosskopf, C.M.; Garfi, V.; Terol, E.; Cerdà, A. Three topographical approaches to survey soil erosion on a mountain trail affected by a forest fire. Barranc de la Manesa, Llutxent, Eastern Iberian Peninsula. J. Environ. Manag. 2020, 264, 110491. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A.; Jiménez, E.; Fonturbel, T. Effectiveness of three post-fire treatments at reducing soil erosion in Galicia (NW Spain). Int. J. Wildland Fire 2011, 20, 104–114. [Google Scholar] [CrossRef] [Green Version]
- Myronidis, D.I.; Emmanouloudis, E.A.; Mitsopoulos, I.A.; Riggos, E.E. Soil erosion potential after fire and rehabilitation treatments in Greece. Environ. Model. Assess. 2010, 15, 239–250. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Fires and Ecosystems; Academic Press, Inc.: Cambridge, MA, USA, 1974. [Google Scholar]
- Cochrane, M.A.; Schulze, M.D. Fire as a recurrent event in tropical forests of the eastern Amazon: Effects on forest structure, biomass, and species composition. Biotropica 1999, 31, 2–16. [Google Scholar] [CrossRef]
- Wallenius, T.; Niskanen, L.; Virtanen, T.; Hottola, J.; Brumelis, G.; Angervouri, A.; Julkumen, J.; Pihiström, M. Loss of hábitats, naturalness and species diversity in Eurasian forest landscapes. Ecol. Indic. 2010, 10, 1093–1101. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Murphy, B.P.; Boer, M.M.; Bradstock, R.A.; Cary, G.J.; Cochrane, M.A.; Fensham, R.J.; Krawchck, M.A.; Price, O.F.; Williams, R.J. Forest fire management, climate change, and the risk of catastrophic carbon losses. Front. Ecol. Environ. 2013. [Google Scholar] [CrossRef] [Green Version]
- Bonazountas, M.; Kalidromitou, D.; Kassomenos, P.; Passas, N. A decision support system for managing forest fires casualties. J. Environ. Manag. 2007, 84, 412–418. [Google Scholar] [CrossRef]
- Diakakis, A.; Xanthopoulos, G.; Gregos, L. Analysis of forest fire fatalities in Greece: 1977–2013. Int. J. Wildland Fire 2016, 25, 797–809. [Google Scholar] [CrossRef]
- Polychronaki, A.; Gitas, I.Z. Burned Area Mapping in Greece Using SPOT-4 HRVIR Images and Object-Based Image Analysis. Remote Sens. 2012, 4, 424–438. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Yue, C.; Heil, A.; Mouillot, F.; Alonso-Canas, I.; Padilla, M.; Pereira, J.M.; Oom, D.; Tansey, K. A new global burned area product for climate assessment of fire impacts. Glob. Ecol. Biogeogr. 2016, 25, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Domenikiotis, C.; Loukas, A.; Dalezios, N.R. The use of NOAA/AVHRR satellite data for monitoring and assessment of forest fires and floods. Nat. Hazards Earth Syst. Sci. 2003, 3, 115–128. [Google Scholar] [CrossRef] [Green Version]
- San Miguel Ayanz, J.; Barbosa, P.; Schmuck, G.; Liberta, G.; Schulte, E. Towards a coherent forest fire information system in Europe: The European Forest Fire Information System (EFFIS). In Environmental Monitoring in the South-Eastern Mediterranean Region Using RS/GIS Techniques; Gitas, I.Z., San Miguel Ayanz, J., Eds.; CIHEAM Options Méditerranéennes: Série B; Etudes et Recherches: Chania, Greece, 2003; Volume 46, pp. 5–16. [Google Scholar]
- Gutiérrez, E.; Lozano, S. Avoidable damage assessment of forest fires in European countries: An efficient frontier approach. Eur. J. For. Res. 2013, 132, 9–21. [Google Scholar] [CrossRef]
- Souza, C.M.; Roberts, D.A.; Cochrane, M.A. Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sens. Environ. 2005, 98, 329–343. [Google Scholar] [CrossRef]
- Plank, S. Rapid damage assessment by means of multi-temporal SAR—A comprehensive review and outlook to Sentinel-1. Remote Sens. 2014, 6, 4870–4906. [Google Scholar] [CrossRef] [Green Version]
- Sunar, F.; Özkan, C. Forest Fire Analysis with Remote Sensing Data. Int. J. Remote Sens. 2001, 22, 2265–2277. [Google Scholar] [CrossRef]
- Novo, A.; Fariñas-Álvarez, N.; Martínez-Sánchez, J.; González-Jorge, H.; Fernández-Alonso, J.M.; Lorenzo, H. Mapping forest fire risk—A case study in Galicia (Spain). Remote Sens. 2020, 12, 3705. [Google Scholar] [CrossRef]
- Adaktylou, N.; Stratoulias, D.; Landenberger, R. Wildfire risk assessment based on geospatial open data: Application on Chios, Greece. ISPRS Int. J. Geo-Inf. 2020, 9, 516. [Google Scholar] [CrossRef]
- Chuvieco, E.; Congalton, R.G. Mapping and inventory of forest fires from digital processing of tm data. Geocarto Int. 2008, 3, 41–53. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review. Remote Sens. 2014, 6, 470–520. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.A.; Pereira, J.M.C.; Libonati, R.; Oom, D.; Setzer, A.W.; Morelli, F.; Machado-Silva, F.; De Carvalho, L.M.T. Burned Area Mapping in the Brazilian Savanna Using a One-Class Support Vector Machine Trained by Active Fires. Remote Sens. 2017, 9, 1161. [Google Scholar] [CrossRef] [Green Version]
- Loboda, T.V.; Hoy, E.E.; Giglio, L.; Kasischke, E.S. Mapping burned area in Alaska using MODIS data: A data limitations-driven modification to the regional burned area algorithm. Int. J. Wildland Fire 2011, 20, 487–496. [Google Scholar] [CrossRef]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten years of global burned area products from spaceborne remote sensing—A review: Analysis of user needs and recommendations for future developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Canas, I.; Chuvieco, E. Global Burned Area Mapping from ENVISAT-MERIS data. Remote Sens. Environ. 2015, 163, 140–152. [Google Scholar] [CrossRef]
- Llorens, R.; Sobrino, J.A.; Cristina Fernández, C.; Fernández-Alonso, J.M.; José, J.V. A methodology to estimate forest fires burned areas and burn severity degrees using Sentinel-2 data. Application to the October 2017 fires in the Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102243. [Google Scholar] [CrossRef]
- Arellano, S.; Vega, J.A.; Rodríguez y Silva, F.; Fernández, C.; Vega-Nieva, D.; Álvarez-González, J.G.; Ruiz-González, A.D. Validación de los índices de teledetección dNBR y RdNBR para determinar la severidad del fuego en el incendio forestal de Oia-O Rosal (Pontevedra) en 2013. Rev. Teledetección 2017, 49, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, A.; Amaral, A. A Statistical and Spatial Analysis of Portuguese Forest Fires in Summer 2016 Considering Landsat 8 and Sentinel 2A Data. Environments 2019, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Huesca, M.; de Miguel, S.M.; Alonso, F.G.; García, C.V. An intercomparison of satellite burned area maps derived from MODIS, MERIS, SPOT-VEGETATION and ARST images. An application to the August 2006 Galicia (Spain) forest fires. For. Syst. 2013, 22, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.R.; Petropoulos, G.P.; Ferentinos, K.P. Appraisal of the Sentinel-1 & 2 use in a large-scale wildfire assessment: A case study from Portugal’s fires of 2017. Appl. Geogr. 2018, 100, 78–89. [Google Scholar] [CrossRef]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.C.; Vázquez, A.; Caldeira, R. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.L.; Pereira, J.M.; Carreiras, J.M. Fire frequency analysis in Portugal (1975–2005), using Landsat-based burnt area maps. Int. J. Wildland Fire 2012, 21, 48–60. [Google Scholar] [CrossRef]
- Vallejo-Villalta, I.; Rodríguez-Navas, E.; Márquez-Pérez, J. Mapping forest fire risk at a local scale—A case study in Andalusia (Spain). Environments 2019, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Fernández, A.; Illera, P.; Casanova, J.L. Automatic mapping of surfaces affected by forest fires in Spain using AVHRR NDVI composite image data. Remote Sens. Environ. 1997, 60, 153–162. [Google Scholar] [CrossRef]
- Roteta, E.; Bastarrika, A.; Padilla, M.; Storm, T.; Chuvieco, E. Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 2019, 222, 1–17. [Google Scholar] [CrossRef]
- Chuvieco, E.; Mouillot, F.; van der Werf, G.R.; Miguel, J.; Tanasse, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.; et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 2019, 225, 45–64. [Google Scholar] [CrossRef]
- Teodoro, A.C.; Amaral, A. Evaluation of forest fires in Portugal mainland during 2016 summer considering different satellite datasets. In Proceedings of the SPIE 10421, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIX, Warsaw, Poland, 2 November 2017., 104211R. [Google Scholar] [CrossRef]
- Panisset, J.; Dacamara, C.C.; Libonati, R.; Peres, L.F.; Calado, T.J.; Barrios, A. Assigning dates and identifying areas affected by fires in Portugal based on MODIS data. An. Acad. Bras. Ciênc. 2017, 89. [Google Scholar] [CrossRef] [Green Version]
- Humber, M.L.; Boschetti, L.G.; Giglio, L.; Justice, C.O. Spatial and temporal intercomparison of four global burned area products. Int. J. Digit. Earth 2019, 12, 460–484. [Google Scholar] [CrossRef]
- Libonati, R.; Dacamara, C.C.; Setzer, A.W.; Morelli, F.; Melchiori, A.E. An Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 µm MODIS Imagery. Remote Sens. 2015, 7, 15782–15803. [Google Scholar] [CrossRef] [Green Version]
- Kleinn, C.; Corrales, L.; Morales, D. Forest area in Costa Rica: A comparative study of tropical forest cover estimates over time. Environ. Monit. Assess. 2002, 73, 17–40. [Google Scholar] [CrossRef]
- Noi Thanh, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Tomppo, E.; Haakana, M.; Katila, M.; Perasaari, J. Multi-Source National Forest Inventory. Methods and Applications; Springer: Berlin, Germany, 2008; Volume 18. [Google Scholar] [CrossRef]
- Fix, D.; Hodges, J.L. Discriminatory Analysis, Nonparametric Discrimination: Consistency Properties; Technical Report 4; USAF School of Aviation Medicine: Randolph Field, TX, USA, 1951. [Google Scholar]
- Moeur, M.; Stage, A.R. Most similar neighbor: An improved sampling inference procedure for natural resource planning. For. Sci. 1995, 41, 337–359. [Google Scholar]
- Franco-Lopez, H.; Ek, A.R.; Bauer, M.E. Estimation and mapping of forest stand density, volumen, and cover type using the k-nearest neighbors method. Remote Sens. Environ. 2001, 77, 251–274. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Tomppo, E.O. Remote sensing support for national forest inventories. Remote Sens. Environ. 2007, 110, 412–419. [Google Scholar] [CrossRef]
- Ohmann, J.L.; Gregory, M.J. Predictive mapping of forest composition and structure with direct gradient analysis and nearest-neighbor imputation in coastal Oregon, U.S.A. Can. J. For. Res. 2002, 32, 725–741. [Google Scholar] [CrossRef]
- Wulder, M.A.; Franklin, S.E.; White, J.C.; Linke, J.; Magnussen, S. An accuracy assessment framework for large-area land cover classification products derived from medium-resolution satellite data. Int. J. Remote Sens. 2006, 27, 663–683. [Google Scholar] [CrossRef]
- Halperin, J.; LeMay, V.; Coops, N.; Verchot, L.; Marshall, P.; Lochhead, K. Canopy cover estimation in miombo woodlands of Zambia: Comparison of Landsat 8 OLI versus RapidEye imagery using parametric, nonparametric, and semiparametric methods. Remote Sens. Environ. 2016, 179, 170–182. [Google Scholar] [CrossRef]
- Ramo, R.; García, M.; Rodríguez, D.; Chuvieco, E. A data mining approach for global burned area mapping. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 39–51. [Google Scholar] [CrossRef]
- Kanevski, M.A.; Pozdnoukhov, V. Machine Learning for Spatial Environmental Data: Theory Applications and Software; CRC Press: Boca Raton, FL, USA, 2009; 368p. [Google Scholar]
- Roy, D.P.; Huang, H.; Boschetti, L.; Giglio, L.; Yan, L.; Zhang, H.H.; Li, Z. Landsat-8 and Sentinel-2 burned area mapping—A combined sensor multi-temporal change detection approach. Remote Sens. Environ. 2019, 231, 111254. [Google Scholar] [CrossRef]
- Liu, J.; Heiskanen, J.; Maeda, E.E.; Pellikka, P.K.E. Burned area detection based on Landsat time series in savannas of southern Burkina Faso. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Stroppiana, D.; Bordogna, G.; Carrara, P.; Boschetti, M.; Boschetti, L.; Brivio, P. A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple Spectral Indices and a region growing algorithm. ISPRS J. Photogramm. Remote Sens. 2012, 69, 88–102. [Google Scholar] [CrossRef]
- Fornacca, D.; Ren, G.; Xiao, W. Performance of Three MODIS Fire Products (MCD45A1, MCD64A1, MCD14ML), and ESA Fire_CCI in a Mountainous Area of Northwest Yunnan, China, Characterized by Frequent Small Fires. Remote Sens. 2017, 9, 1131. [Google Scholar] [CrossRef] [Green Version]
- Smiraglia, D.; Filipponi, F.; Mandrone, S.; Tornato, A.; Taramelli, A. Agreement Index for Burned Area Mapping: Integration of Multiple Spectral Indices Using Sentinel-2 Satellite Images. Remote Sens. 2020, 12, 1862. [Google Scholar] [CrossRef]
- Singh, M.; Evans, D.; Chevance, J.; Tan, B.S.; Wiggins, N.; Kong, L.; Sakhoeun, S. Evaluating remote sensing datasets and machine learning algorithms for mapping plantations and successional forests in Phnom Kulen National Park of Cambodia. PeerJ 2019, 7, e7841. [Google Scholar] [CrossRef]
- Rishickesh, R.; Shahina, A.; Khan, A.N. Predicting forest fires using supervised and ensemble machine learning algorithms. Int. J. Recent Technol. Eng. 2019, 8, 3697–3705. [Google Scholar] [CrossRef]
- Yao, J.; Raffuse, S.M.; Brauer, M.; Williamson, J.; Bowman, D.M.J.S.; Johnston, H.; Henderson, S.B. Predicting the minimum height of forest fire smoke within the atmosphere using machine learning and data from the CALIPSO satellite. Remote Sens. Environ. 2018, 206, 98–106. [Google Scholar] [CrossRef]
- Ramo, R.; Chuvieco, E. Developing a Random Forest Algorithm for MODIS Global Burned Area Classification. Remote Sens. 2017, 9, 1193. [Google Scholar] [CrossRef] [Green Version]
- Collins, L.; Griffioen, P.; Newell, G.; Mellor, A. The utility of Random Forests for wildfire severity mapping. Remote Sens. Environ. 2018, 216, 374–384. [Google Scholar] [CrossRef]
- Leshem, G. Improvement of Adaboost Algorithm by Using Random Forests as Weak Learner and Using This Algorithm as Statistics Machine Learning for Traffic Flow Prediction. Ph.D. Thesis, Hebrew University, Jerusalem, Israel, 2005. [Google Scholar]
- Dos Santos, E.E.; Cruz Sena, N.; Balestrin, D.; Fernandes Filho, E.I.; Marciano da Costa, L.; Bozzi Zeferino, L. Prediction of burned areas using the random forest classifier in the Minas Gerais state. Floreta e Ambiente 2020, 27, e20180115. [Google Scholar] [CrossRef]
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, S. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Collins, L.; McCarthy, G.; Mellor, A.; Newell, G.; Smith, L. Training data requirements for fire severity mapping using Landsat imagery and random forest. Remote Sens. Environ. 2020, 111839. [Google Scholar] [CrossRef]
- Wood, D.A. Prediction and data mining of burned areas of forest fires: Optimized data matching and mining algorithm provides valuable insight. Artif. Intell. Agric. 2021, 5, 24–42. [Google Scholar] [CrossRef]
- Castelli, M.; Vanneschi, L.; Popovic, A. Predicting burned areas of forest fires: An artificial intelligence approach. Fire Ecol. 2015, 11, 106–118. [Google Scholar] [CrossRef]
- Naganathan, H.; Seshaseyee, S.P.; Kim, J.; Chong, W.K.; Chou, J.S. Wildfire predictions: Determining reliable models using fused dataset. Glob. J. Comput. Sci. Technol. 2016, 16, 29–40. [Google Scholar]
- Cortez, P.; Morais, A.A. A data mining approach to predict forest fires using meteorological data. In New Trends in Artificial Intelligence, Proceedings of the 13th Portuguese Conference on Artificial Intelligence; Springer: Berlin, Germany, 2007; pp. 512–523. [Google Scholar]
- Miranda, P.; Coelho, F.; Tomé, A.R.; Valente, M.A.; Carvalho, A.; Pires, C.; Pires, H.O.; Pires, V.C.; Ramalho, C. 20th century Portuguese climate and climate scenarios. In Climate Change in Portugal: Scenarios, Impacts and Adaptation Measures (SIAM Project); Santos, F.D.K., Ed.; Gradiva: Lisbon, Portugal, 2002; pp. 23–83. [Google Scholar]
- Lourenço, L. Tipos de tempo correspondentes aos grandes incêndios florestais ocorridos em 1986 no Centro de Portugal. Finisterra 1988, 23, 251–270. [Google Scholar] [CrossRef] [Green Version]
- Vilar, L.; Camia, A.; San-Miguel-Ayanz, J. A comparison of remote sensing products and forest fire statistics for improving fire information in Mediterranean Europe. Eur. J. Remote Sens. 2015, 48, 345–364. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.C.S.; Vasconcelos, M.J.; Pereira, J.M.C.; Dasgupta, N.; Alldredge, R.J.; Rego, F.C. Land cover type and fire in Portugal: Do fires burn land cover selectively? Landsc. Ecol. 2005, 20, 661–673. [Google Scholar] [CrossRef]
- Calvo, L.; Santalla, S.; Valbuena, L.; Marcos, E.; Tarrega, R.; Luis-Calabuig, E. Post-fire natural regeneration of a Pinus pinaster forest in NW Spain. Plant Ecol. 2008, 197, 81–90. [Google Scholar] [CrossRef]
- USGS EROS Center. 2019. Available online: https://earthexplorer.usgs.gov/ (accessed on 24 January 2021).
- Randerson, J.T.; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. 2012, 117, G04012. [Google Scholar] [CrossRef]
- Pieschke, R.L. US Geological Survey Distribution of European Space Agency’s Sentinel-2 Data; No. 2017-3026; US Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m SIN Grid V006 [Data Set]. NASA EOSDIS Land Processes DAAC 2015. Available online: https://lpdaac.usgs.gov/products/mod09a1v006/ (accessed on 22 November 2020).
- Thomas, I.L.; Ching, N.P.; Benning, V.M.; D’Aguanno, J.A. A review of multi-channel indices of class separability. Int. J. Remote Sens. 1987, 8, 331–350. [Google Scholar] [CrossRef]
- Richards, J.A.; Jia, X. Feature Reduction. In Remote Sensing Digital Image Analysis: An Introduction, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 267–294. [Google Scholar]
- Van Niel, T.G.; McVicar, T.R.; Datt, B. On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification. Remote Sens. Environ. 2005, 98, 468–480. [Google Scholar] [CrossRef]
- Aha, D.W. Artificial Intelligence Review. Lazy Learn. 1997, 11, 1–6. [Google Scholar] [CrossRef]
- McRoberts, R.E. A two-step nearest neighbors algorithm using satellite imagery for predicting forest structure within species composition classes. Remote Sens. Environ. 2009, 113, 532–545. [Google Scholar] [CrossRef]
- Stojanova, D.; Kobler, A.; Ogrinc, P.; Zenko, B.; Dzeroski, S. Estimating the risk of fire outbreaks in the natural environment. Data Min. Knowl. Discov. 2012, 24, 411–442. [Google Scholar] [CrossRef]
- Cariou, C.; Le Moan, S.; Chehdi, K. Improving K-Nearest Neighbor Approaches for Density-Based Pixel Clustering in Hyperspectral Remote Sensing Images. Remote Sens. 2020, 12, 3745. [Google Scholar] [CrossRef]
- Rodríguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sánchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Hastie, R.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning. Data Mining, Inference, and Prediction, 2nd ed.; Springer: Berlin, Germany, 2009. [Google Scholar]
- Quinlan, J.R. C4.5: Programs for Machine Learning; Morgan Kaufmann: San Mateo, CA, USA, 1993. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. Statistics/Probability Series; Wadsworth & Brooks/Cole Advanced Books & Software: Monterey, CA, USA, 1984. [Google Scholar]
- Cutler, D.; Edwards, T.; Beard, K.; Cutler, A.; Hess, K.; Gibson, J.; Lawler, J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- ICNF 2019. Defesa da Floresta Contra Incêndios; Instituto da Conservação da Natureza e das Florestas: Lisboa, Portugal, 2019. [Google Scholar]
- Story, M.; Congalton, R.G. Accuracy assessment: A user’s perspective. Photogramm. Eng. Remote Sens. 1986, 52, 397–399. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Cohen, J.A. Coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Pereira, J.M.C.; Sá, A.C.L.; Sousa, A.M.O.; Silva, J.M.N.; Santos, T.N.; Carreiras, J.M.B. Spectral characterisation and discrimination of burned áreas. In Remote Sensing of Large Wildfires in the European Mediterranean Basin; Chuvieco, E., Ed.; Springer: Berlin, Germany, 1999; pp. 123–138. [Google Scholar]
- Nogueira, J.M.P.; Ruffault, J.; Chuvieco, E.; Mouillot, F. Can We Go Beyond Burned Area in the Assessment of Global Remote Sensing Products with Fire Patch Metrics? Remote Sens. 2017, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Lizundia-Loiola, J.; Pettinari, M.L.; Ramo, P.M.; Tansey, K.; Mouillot, F.; Laurent, P.; Storm, T.; Heil, A.; Plummer, S. Generation and analysis of a new global burned area product based on MODIS 250m reflectance bands and thermal anomalies. Earth Syst. Sci. Data 2018, 10, 2015–2031. [Google Scholar] [CrossRef] [Green Version]
- Padilla, M.; Stehman, S.V.; Litago, J.; Chuvieco, E. Assessing the temporal stability of the accuracy of a time series of burned area products. Remote Sens. 2014, 6, 2050–2068. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Boschetti, L. Southern Africa validation of the MODIS, L3JRC and GlobCarbon burned-area products. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1032–1044. [Google Scholar] [CrossRef]
- Ngadze., F.; Mpakairi, K.S.; Kavhu, B.; Ndaimani, H.; Maremba, M.S. Exploring the utility of Sentinel-2 MSI and Landsat 8 OLI in burned area mapping for a heterogenous savannah landscape. PLoS ONE 2020, 15, e0232962. [Google Scholar] [CrossRef]
- Soler, M.; Úbeda, X. Evaluation of fire severity via analysis of photosynthetic pigments: Oak, eucalyptus and cork oak leaves in a mediterranean forest. J. Environ. Manag. 2018, 206, 65–68. [Google Scholar] [CrossRef] [Green Version]
- Sever, L.; Leach, J.; Bren, L. Remote sensing of post-fire vegetation recovery; a study using Landsat 5 tm imagery and NDVI in north-east Victoria. J. Spat. Sci. 2012, 57, 175–191. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Gessler, P.E.; Morgan, P.; Hudak, A.T.; Smith, A.M.S. Characterizing and mapping forest fire fuels using aster imagery and gradient modeling. For. Ecol. Manag. 2005, 217, 129–146. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [Google Scholar] [CrossRef]
- Silva Junior, J.A.; Pacheco, A.P. Análise do Modelo Linear de Mistura Espectral na Avaliação de Incêndios Florestais no Parque Nacional do Araguaia, Tocantins, Brasil: Imagens EO-1/Hyperion e Landsat-7/ETM+. Anuário do Instituto de Geociências 2020, 43, 4. [Google Scholar] [CrossRef]
- ICNF—Sistema de Gestão de Informação de Incêndios Florestais. 7.º Relatório Provisório de Incêndios Rurais Departamento de Gestão de Fogos Rurais/Divisão de Apoio à Gestão de Fogos Rurais. 2019. Available online: http://www2.icnf.pt/portal/florestas/dfci/Resource/doc/rel/2019/2019-10-10-RPIR-07-01jan-30set.pdf (accessed on 24 January 2021).
- Oshiro, T.; Pérez, P.; Baranauskas, J. How Many Trees in a Random Forest? Lect. Notes Comput. Sci. 2012, 7376. [Google Scholar] [CrossRef]
- Çömert, R.; Matci, D.; Avdan, U. Object based burned area mapping with random forest algorithm. Int. J. Eng. Geosci. 2019, 4, 78–87. [Google Scholar] [CrossRef]
- Meng, Q.; Cieszewski, C.; Madden, M.; Borders, B.K. Nearest Neighbor Method for Forest Inventory Using Remote Sensing Data. GISci. Remote Sens. 2007, 44, 149–165. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, J. Improvement and comparison of weighted k Nearest Neighbors classifiers for model selection. J. Softw. Eng. 2016, 10, 109–118. [Google Scholar] [CrossRef]
- Blanzieri, E.; Melgani, F. Nearest Neighbor Classification of Remote Sensing Images with the Maximal Margin Principle. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1804–1811. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.; Goossens, R. A time-integrated MODIS burn severity assessment using the multi-temporal differenced normalized burn ratio (dNBRMT). Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Pleniou, M.; Koutsias, N. Sensitivity of spectral reflectance values to different burn and vegetation ratios: A multi-scale approach applied in a fire affected area. ISPRS J. Photogramm. Remote Sens. 2013, 79, 199–210. [Google Scholar] [CrossRef]
- Santana, N.A.; Morales, C.A.S.; da Silva, D.A.A.; Antoniolli, Z.I.; Jacques, R.J.S. Soil Biological, Chemical, and Physical Properties After a Wildfire Event in a Eucalyptus Forest in the Pampa Biome. Rev. Braileira Ciênc. Solo 2018, 42. [Google Scholar] [CrossRef]
- Lambin, E.; Goyvaerts, K.; Petit, C. Remotely-sensed indicators of burning efficiency of savannah and forest fires. Int. J. Remote Sens. 2003, 24, 3105–3118. [Google Scholar] [CrossRef]
- Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ. 2011, 115, 1003–1012. [Google Scholar] [CrossRef]
- Sertel, E.; Ugur, A. Comparison of pixel and object-based classification for burned area mapping using SPOT-6 images. Geomat. Nat. Hazards Risk 2016, 7, 1198–1206. [Google Scholar] [CrossRef] [Green Version]
- Lanorte, A.; Danese, M.; Lasaponara, R.; Murgante, B. Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 42–51. [Google Scholar] [CrossRef]
- Palomino-Ángel, S.; Anaya-Acevedo, J.A. Evaluation of the causes of error in the MCD45 burned-area product for the savannas of northern South America. Dyna 2012, 79, 35–44. [Google Scholar]
- Shimabukuro, Y.E.; Dutra, A.C.; Arai, E.; Duarte, V.; Cassol, H.L.G.; Pereira, G.; Cardozo, F.D.S. Mapping burned areas of Mato Grosso state brazilian amazon using multisensor datasets. Remote Sens. 2020, 12, 3827. [Google Scholar] [CrossRef]
- Tanase, M.A.; Belenguer-Plomer, M.A.; Roteta, E.; Bastarrika, A.; Wheeler, J.; Fernández-Carrillo, Á.; Tansey, K.; Wiedemann, W.; Navratil, P.; Lohberger, S.; et al. Burned Area Detection and Mapping: Intercomparison of Sentinel-1 and Sentinel-2 Based Algorithms over Tropical Africa. Remote Sens. 2020, 12, 334. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, W.; Ruminski, M.; Csiszar, I.; Giglio, L.; Prins, E.; Schmidt, C.; Morisette, J. Validation analyses of an operational fire monitoring product: The hazard mapping system. Int. J. Remote Sens. 2008, 6059–6066. [Google Scholar] [CrossRef]
- Calle, A.; Casanova, J.L.; Romo, A. Fire detection and monitoring using MSG Spinning Enhanced Visible and Infrared Imager (SEVIRI) data. J. Geophys. Res. 2006, 111, G04S06. [Google Scholar] [CrossRef]
- Koltunov, A.; Ustin, S.L. Early fire detection using non-linear multitemporal prediction of thermal imagery. Remote Sens. Environ. 2007, 110, 18–28. [Google Scholar] [CrossRef]
- Amos, C.; Petropoulos, G.P.; Ferentinos, K.P. Determining the use of Sentinel-2A MSI for wildfire burning & severity detection. Int. J. Remote Sens. 2019, 40, 905–930. [Google Scholar] [CrossRef]
- Axel, A.C. Burned Area Mapping of an Escaped Fire into Tropical Dry Forest in Western Madagascar Using Multi-Season Landsat OLI Data. Remote Sens. 2018, 10, 371. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Nascetti, A.; Ban, Y.; Gong, M. An implicit radar convolutional burn index for burned area mapping with Sentinel-1 C-band SAR data. ISPRS J. Photogramm. Remote Sens. 2019, 158, 50–62. [Google Scholar] [CrossRef]
- Chou, Y.H.; Minnich, R.A.; Chase, R.A. Mapping probability of fire occurrence in San Jacinto Mountains, California, USA. Environ. Manag. 1993, 17, 129–140. [Google Scholar] [CrossRef]
- Siljander, M. Predictive fire occurrence modelling to improve burned area estimation at a regional scale: A case study in East Caprivi, Namibia. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 380–393. [Google Scholar] [CrossRef]
- Dlamini, W.M. Application of Bayesian networks for fire risk mapping using GIS and remote sensing data. GeoJournal 2011, 76, 283–296. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
Band | OLI | MSI | ASTER | MODIS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
λ (µm) | Res. | (m) | λ (µm) | Res. | (m) | λ (µm) | Res. | (m) | λ (µm) | Res. | (m) | |
B1 | – | – | 0.52–0.60 | Green | 15 | – | ||||||
B2 | 0.45–0.51 | Blue | 30 | 0.45–0.52 | Blue | 10 | 0.63–0.69 | Red | 15 | – | ||
B3 | 0.53–0.59 | Green | 30 | 0.54–0.57 | Green | 10 | 0.78–0.86 | NIR | 15 | 0.45–0.47 | Blue | 500 |
B4 | 0.64–0.67 | Red | 30 | 0.65–0.68 | Red | 10 | – | 0.54–0.56 | Green | 500 | ||
B5 | 0.85–0.88 | NIR | 30 | 0.69–0.71 | Red edge | 20 | – | 1.23–1.25 | NIR2 | 500 | ||
B6 | 1.57–1.65 | SWIR1 | 30 | 0.73–0.74 | Red edge | 20 | – | 1.62–1.65 | SWIR1 | 500 | ||
B7 | 2.11–2.29 | SWIR2 | 30 | 0.77–0.79 | Red edge | 20 | – | 2.10–2.15 | SWIR2 | 500 | ||
B8 | – | 0.78–0.89 | NIR | 10 | – | – | ||||||
B11 | – | 1.56–1.65 | SWIR | 20 | – | – | ||||||
B12 | – | 2.10–2.28 | SWIR | 20 | – | – |
Reference Map (True Class) | ||||
---|---|---|---|---|
Burned | Unburned | Total | ||
Classified Product | Burned | TP | FN | TP + FN |
Unburned | FP | TN | FP + TN | |
Total | TP + FP | FN + TN | TP + FN + FP + TN |
Band | JM Separability | |||||||
---|---|---|---|---|---|---|---|---|
OLI | MSI | ASTER | MODIS | |||||
B1 | – | – | 0.02 | Green | – | |||
B2 | 0.31 | Blue | 0.39 | Blue | 0.07 | Red | – | |
B3 | 0.18 | Green | 0.19 | Green | 1.84 | NIR | 0.15 | Blue |
B4 | 0.26 | Red | 0.36 | Red | – | 0.53 | Green | |
B5 | 1.91 | NIR | 0.45 | Red edge | – | 1.65 | NIR2 | |
B6 | 0.24 | SWIR1 | 1.82 | Red edge | – | 0.50 | SWIR1 | |
B7 | 0.70 | SWIR2 | 1.83 | Red edge | – | 0.75 | SWIR2 | |
B8 | – | 1.75 | NIR | – | – | |||
B11 | – | 0.14 | SWIR | – | – | |||
B12 | – | 0.81 | SWIR | – | – |
Classifiers | Area (km2) | ||||
---|---|---|---|---|---|
OLI | MSI | ASTER | MODIS | ICNF (Reference Map) | |
kNN | 75.39 | 76.95 | 88.02 | 45.99 | 93.40 |
RF | 76.36 | 78.38 | 89.37 | 45.63 | |
0.97 | 1.43 | 1.35 | 0.36 | ||
–18.01 (19.3%) | –16.45 (17.6%) | –5.38 (5.8%) | –47.41 (50.8%) | ||
–17.04 (18.2%) | –15.02 (16.1%) | –4.03 (4.3%) | –47.77 (51.1%) |
Classifiers | Parameters | OLI | MSI | ASTER | MODIS |
---|---|---|---|---|---|
kNN | OA (%) | 92.95 | 93.09 | 93.62 | 89.83 |
DC | 0.88 | 0.88 | 0.93 | 0.85 | |
RF | OA (%) | 93.24 | 93.35 | 93.52 | 89.45 |
DC | 0.89 | 0.89 | 0.93 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco, A.d.P.; Junior, J.A.d.S.; Ruiz-Armenteros, A.M.; Henriques, R.F.F. Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. Remote Sens. 2021, 13, 1345. https://doi.org/10.3390/rs13071345
Pacheco AdP, Junior JAdS, Ruiz-Armenteros AM, Henriques RFF. Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. Remote Sensing. 2021; 13(7):1345. https://doi.org/10.3390/rs13071345
Chicago/Turabian StylePacheco, Admilson da Penha, Juarez Antonio da Silva Junior, Antonio Miguel Ruiz-Armenteros, and Renato Filipe Faria Henriques. 2021. "Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery" Remote Sensing 13, no. 7: 1345. https://doi.org/10.3390/rs13071345
APA StylePacheco, A. d. P., Junior, J. A. d. S., Ruiz-Armenteros, A. M., & Henriques, R. F. F. (2021). Assessment of k-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. Remote Sensing, 13(7), 1345. https://doi.org/10.3390/rs13071345