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Abstract: In order to protect the ecological environment and solve the poverty problem in the western
region, China has established an ecological migration (EM) policy. This policy aims to relocate
populations from poverty-stricken areas with fragile ecological environments, which inevitably leads
to changes in land cover and the ecological environment. The objective of this study was to identify
the effects of EM in a typical region (Wuwei), including changes in the land cover and ecological risk
(ER). A land cover change monitoring method was implemented for the 2010–2019 period for six
land cover classes using random forest, which is an effective supervised machine learning method.
The land cover change patterns were analyzed by determining the area changes of the six classes
and applying a land use transition matrix, and a landscape ecological risk model based on landscape
disturbance and fragility was used. Our results demonstrate that the increase and decrease in the
area of cultivated land, unused land, and construction land can be divided into two stages (2010–2015
and 2015–2019). The area of water and perennial snow doubled during the study periods. The major
land cover transitions were between unused land and construction land and between unused land
and crop land. In addition, the ER value for the Qilian Mountain National Nature Reserve decreased
because of the implementation of EM in the study area, indicating that the ecological environment
was effectively improved. The results demonstrate the advantage of the proposed approach in
understanding the impact of EM on regional land cover changes and the ecological environment so
as to provide guidance for follow-up planning and development.

Keywords: random forest; ecological migration; land cover change monitoring; ecological risk;
Google Earth Engine

1. Introduction

Poverty eradication and ecological environment protection are always important
objectives of sustainable development [1]. However, the poverty rates are high and the
ecological environment is fragile in regions of refugee habitation [2]. In order to effectively
solve these two problems, the governments of some countries have proposed a series of
remedial measures in which ecological migration (EM) is a key component [3–6]. Experts
of the United Nations Population Development Fund have reported that there are tens
of millions of environmental refugees in the world who need to migrate [7]. This project
aims to migrate the population from an ecologically vulnerable area to improve the service
function and value of the ecosystem and to develop the economy [8]. EM plays an important
role in achieving the goal of eliminating absolute poverty [9,10]; however, EM has caused
dramatic changes in land cover and the ecological environment. Monitoring the annual
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change in land cover and analyzing the spatial–temporal patterns of ecological risk (ER)
are essential to support regional sustainable development.

EM is a typical human activity and has generated considerable recent research inter-
est [11,12]. Remote sensing techniques are effective instruments to monitor the impact
of human activities on land cover changes. Previous studies have focused on changes
caused by agricultural land abandonment and retirement [13,14], ecological restoration
programs [15,16], greenhouses [17], urban sprawl [18], and so on. In contrast to these
activities, the changes resulting from EM include two aspects: building the settlement
area and restoring the landform of the emigration area. Therefore, the land cover changes
are more complicated. Among the various methods used to detect land cover changes,
the approach of first monitoring and then classifying has been widely used [19,20]. This
method has proven to be efficient, but it requires the high performance of hardware to
process a large number of remote sensing images for multi-temporal land cover change
monitoring (LCCM). Fortunately, the explosive growth of Earth observation data and the
rapid advancement of cloud computing technology have made large data calculations
possible [21]. Google Earth Engine (GEE) is the most representative platform, which was
launched by Google in December 2010. This tool provides access to petabytes of pub-
licly available remote sensing imagery, ready-to-use products with an explorer web app,
high-speed parallel processing, and machine learning algorithms using the computational
infrastructure of Google. Therefore, GEE has led to great achievements in the field of
remote sensing and has attracted widespread interest for land cover classification, LCCM,
and the extraction of specific objects [22–26].

Ecological changes are a primary manifestation of human utilization of the natural
environment. A clear understanding of changes in the ecological environment resulting
from human activities will help in formulating and managing sustainable development
policies [27,28]. The landscape ecological risk index (ERI) is an important indicator of eco-
logical security. This indicator primarily depends on the coupling of landscape patterns and
ecological processes to achieve the integrated characterization of multi-source risks from
natural or human activities [29,30]. Researchers have previously explored the impacts of
road network expansion [18], geomorphological regionalization [31], and topography [32]
on ER. Existing research has focused on the motivation of EM [33], the relationship between
EM and the environment [12], and the satisfaction of immigrants [34]. There is currently a
lack of research that analyzes the ER changes resulting from the EM project.

In summary, our aim was to describe the spatiotemporal land cover change types
and the condition of the ecological environment with the help of a multi-temporal LCCM
method and the ERI. Therefore, this study detected land cover changes in Wuwei region
from 2010 to 2019 and then evaluated the effects of EM. The specific research objectives were
to (1) generate land cover maps for the period from 2010 to 2019, (2) map spatiotemporal
changes in the study area during the same period, and (3) quantify the ER from 2010
to 2019.

2. Study Area and Dataset
2.1. Study Area

The study area, Wuwei, lies in the middle of Gansu Province, China (as shown in
Figure 1). This prefecture-level city covers an area of 32,347 km2. It is at the intersection of
the Loess Plateau, the Qinghai Tibet Plateau, and the Mongolian New Plateau [35]. The
hypsography is complex and can be divided into three zones. The southern zone is the
Qilian Mountains, with an altitude of 2100–4800 m. The climate is cool with abundant
precipitation, which is conducive to the development of forestry and animal husbandry.
The central zone is a plain oasis area with an altitude of 1450–2100 m above sea level. With
flat terrain and fertile land, it is an important production base of grain, oil, fruits, and
vegetables for the whole province and even the country. The northern zone is a desert area
with less precipitation.
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Figure 1. Location of the study area. The green line in the right part is the boundary of Qilian Mountain National Nature
Reserve in Wuwei.

The south of Wuwei is part of the Qilian Mountain National Nature Reserve, which
is an important ecological security barrier in the west of China; however, the ecological
environment of this area is fragile [32], and the proportion of the population in poverty
was high. Therefore, the Wuwei Municipal Party Committee proposed and implemented
a large-scale EM project in 2011 to gradually move 72,000 poor farmers and herdsmen
living in the high and deep mountain area to a low altitude area. By the end of 2019, the
initial effect had been attained, which can be monitored by remote sensing. Therefore, the
selection of this study area is of representative significance.

2.2. Dataset

As previously mentioned, the experiment on land cover classification was carried out
using GEE. This platform provides online access to archived Landsat data as a collection
of the United States Geological Survey (USGS) [36]. We chose Landsat data in their
atmospherically corrected surface reflection forms, including Landsat 5 TM from 2010 to
2012, Landsat 7 ETM+ from 2010 to 2019, and Landsat 8 OLI/TIRS from 2013 to 2019, on
GEE (in Supplementary Materials code 1). We used the seasonal classes of the Northern
Hemisphere (Spring: March to May; Summer: June to August; Autumn: September to
November; Winter: December to February). The Landsat images available for each season
in 2010–2019 are shown in Figure 2. Image preprocessing included the following steps.
Firstly, the Landsat images of the study area in 2010–2019 were selected. Secondly, the
CFmask algorithm [37] was applied to mask clouds and create cloud-shadow-free images.
Thirdly, to compensate for data loss, we used the following two measures. First, a time
series of Landsat image composites in each season was reduced by calculating the median
of each pixel across the stack of all matching bands. Second, except for 2012, Landsat 5 TM
and Landsat 8 OLI/TIRS images were obtained as the baseline data, and Landsat 7 ETM+
images were used to compensate for data loss. Landsat 5 TM and Landsat 8 OLI/TIRS
images were unavailable for 2012, so only Landsat 7 ETM+ images were used. SLC-off
images (when the Scan Line Corrector failed and Landsat 7 ETM+ products had data gaps)
were processed by calculating the median value in each quarter. In addition, because
there were different land cover types at different altitudes, Shuttle Radar Topology Mission
(SRTM) data were used [38].



Remote Sens. 2021, 13, 1381 4 of 20Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 21 
 

 

 
Figure 2. Number of available Landsat data by sensor, year and season. 

3. Methods 
The workflow of the method had four steps: classification of images from the basic 

year, detection of potential area changes in the comparison years, mapping of annual clas-
sification results, and impact assessment of EM (Figure 3). We chose 2019 as the basic year 
and 2010–2018 as the comparison years. Random forest (RF) was selected as the classifier 
in this study [39]. 

Figure 2. Number of available Landsat data by sensor, year and season.

3. Methods

The workflow of the method had four steps: classification of images from the basic
year, detection of potential area changes in the comparison years, mapping of annual
classification results, and impact assessment of EM (Figure 3). We chose 2019 as the basic
year and 2010–2018 as the comparison years. Random forest (RF) was selected as the
classifier in this study [39].
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3.1. Reference Dataset for Training and Validation Samples

Samples have a crucial impact on classification results [40]. Therefore, selecting repre-
sentative samples for model training and accuracy evaluation is an important prerequisite
to ensure the accuracy of the final map. A training dataset was collected to train the model,
while a validation dataset was constructed to test the accuracy of the classification results.
Samples were acquired with the help of high-definition resolution images in Google Earth
through visual interpretation. As a result, dozens of polygons were selected for each land
cover class for each year. Polygons for each year were randomly divided into the training
and validation datasets in a proportion of 3:1. In order to prevent imbalanced datasets
from affecting the accuracy of minority instances, samples of each class were selected
equitably. Then, 1500 points of each class in the training dataset were randomly selected,
and 500 points of each class within the validation dataset were randomly collected for
accuracy verification. The land cover types were unused land, water and perennial snow
area, cropland, forest land, grassland, and construction land.
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3.2. The Classification of Basic Year Images

As a result, because the land cover map of 2019 was used as the baseline for further
updates of the land cover maps of comparison years, a precise classification result of 2019
was crucial for subsequent stages. In this step, we comprehensively considered various
features in order to ensure that the information contained in remote sensing images could
be fully detected, including quarterly and yearly spectral features and quarterly textural
and terrain features. In addition to six spectral bands of Landsat data (blue, green, red,
near infrared, shortwave infrared 1, and shortwave infrared 2), we chose the Normalized
Difference Vegetation Index (NDVI) [41], the Enhancement Vegetable Index (EVI) [42],
the Green Normalized Difference Vegetation Index (GNDVI) [43], and the Soil-Adjusted
Vegetation Index (SAVI) [44] to distinguish vegetation from other instances. We selected
the Normalized Difference Build Index (NDBI) [45] to detect construction land and the
Modified Normalized Difference Water Index (MNDWI) [46] to distinguish water. The
Gray Level Co-occurrence Matrix (GLCM) [47] of the near-infrared band was calculated
with a moving window size of 5. Textural features were used to distinguish different
land cover types and avoid commission of the same type. Six textural features with low
correlations were selected, including angular second moment (ASM), contrast (CON),
correlation (COR), variance (VAR), inverse difference moment (IDM), and sum entropy
(SENT). Because land cover types are greatly affected by topography, we calculated the
terrain elevation, the slope, the aspect, and the hill shade from Shuttle Radar Topography
Mission (SRTM) data. The features used in this study are shown in Table 1.

Table 1. Features in classification.

Spectral
Features

Season (*41)
B/G/R/NIR/SWIR1/SWIR2/NDVI/EVI/

GNDVI/SAVI/NDBI/MNDWI 2

Year
NDVImax/NDVImin/EVImax/EVImin/GNDVImax/

GNDVImin/SAVImax/SAVImin/NDBImax/
NDBImin/MNDWImax/MNDWImin

Textural
Features Season (*41) ASM/CON/COR/VAR/IDM/SENT 3

Topographical
Features Year Elevation/Slope/Aspect/Hill shade

*41 means four seasons, Spring, Summer, Autumn and Winter. 2 B is the abbreviation of blue bands of Landsat
data, G for green bands, R for red bands, NIR for near infrared bands, SWIR1 for shortwave infrared 1 bands,
SWIR2 for shortwave infrared 2 bands. 3 ASM is the abbreviation of angular second moment bands of textural
features, CON for contrast bands, COR for correlation bands, VAR for variance bands, IDM for inverse difference
moment bands, and SENT for sum entropy bands.

In terms of RF, there are two important parameters: the number of decision trees and
prediction variables. The selection of these two parameters has a significant impact on the
final results. The default number of decision trees is no less than the number of features
of classification images, and the number of prediction variables is the basis of the feature
number. These variables were set to 100 and 9, respectively.

3.3. Detection of Potential Area Changes

This step was designed to find potential area changes by calculating bi-temporal
(basic year and comparison year) variables for each pixel rather than on an annual basis
to avoid error accumulation. NDVI has proven to be less sensitive to varying sun–sensor
geometry than other indices and is thus a robust metric for time-series analyses [48,49], and
the change vector (CV) value has been frequently used to detect area changes, achieving
satisfactory results [50,51]. Therefore, we calculated three variables: the CV value and
the differences in NDVI maximum and NDVI minimum (dNDVImax and dNDVImin), as
shown in Equations (1)–(3). The final potential area change was the union of the possible
area change determined by these 3 indicators.
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In this paper, NDVImax_B and NDVImin_B are the maximum and minimum NDVI
composite images of the basic year; they are obtained by calculating the maximum and
minimum NDVI values of each pixel. NDVImax_C and NDVImin_C are the maximum and
minimum NDVI composite images of the comparison year (in Supplementary Materials
code 2). For the CV, BBi,max and BBi,min are the reflectance of band i (blue, green, red, near
infrared, shortwave infrared 1, and shortwave infrared 2) based on the maximum and
minimum NDVI composite images of the basic year, respectively. BCi,max and BCi,min are
the reflectance of band i based on the maximum and minimum NDVI composite images
of the comparison year, respectively. Specifically, taking BBi,max as an example, we first
determined the time at which the pixel obtained the maximum value of NDVI in the basic
year. Then, we searched Landsat images according to the time. The band i value of this
Landsat image at this pixel is BBi,max.

dNDVImax = NDVImax_B−NDVImax_C (1)

dNDVImin = NDVImin_B−NDVImin_C (2)

CV = ∑i(BBi,max − BCi,max)
2 + (BBi,min − BCi,min)

2 (3)

The larger the values of dNDVImax, dNDVImin, and CV, the greater the possibility of
change. Therefore, it is important to find the thresholds of dNDVImax, dNDVImin, and
CV. We tested the mean plus 0.5 standard deviation, the mean plus 0.25 standard deviation,
and the mean value plus 0.5 of the mean value as threshold values for the three indicators.
The details of the results are shown in Figure 4. As we can see, new area changes or areas
with slight differences may be excluded with thresholds set at the mean plus 0.5 standard
deviation and the mean value plus 0.25 standard deviation. When the threshold value
was 0.5 of the mean value, more unchanged regions were detected. The mean value was
determined to be the most suitable threshold in this study.
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image in 2010, (2) the detail of true color image in 2019, (3) the possible change area obtained when the
threshold is the mean value add 0.5 standard deviation, (4) the possible change area obtained when
the threshold is the mean value add 0.25 standard deviation, (5) the detail of false color image in 2010,
(6) the detail of false color image in 2019, (7) the possible change area obtained when the threshold is
the mean value, (8) the possible change area obtained when the threshold is 0.5 mean value.

3.4. Land Cover Mapping of Comparison Years

The outputs of the previous step were annual binary maps of the potential area change
mask and unchanged area mask. The images of probable area changes can be obtained by
using the mask of the potential area change to extract the image of the comparison year (in
Supplementary Materials code 3). Then, we utilized RF to classify the images of possible
area changes. The classification results were compared with the land cover types of the
baseline year for each pixel. We updated the map of the baseline year with the results of
the actual area changes and obtained the map of the comparison year.

3.5. Accuracy Assessment

The accuracy evaluation can be divided into two parts: the accuracy assessment of
land cover classification results and multi-temporal change monitoring. For the first one, a
confusion matrix was used to calculate users, producers, overall accuracy, and the kappa
coefficient of each category. In order to test the accuracy of the change monitoring results,
change samples and unchanged samples between 2010 and 2019, 2013 and 2019, and 2016
and 2019 were randomly selected at an interval gap of 3 years. High-quality samples were
obtained based on high-definition images from Google Earth and Landsat data in GEE
through visual interpretation.

3.6. Ecological Risk Assessment

ER reflects the impact of human activities on an ecosystem and can be reflected by the
landscape pattern [29]. The ERI was established from the Landscape Disturbance Index
(Ei) and Landscape Fragility Index (Fi) based on the land cover maps of 2010–2019. The
calculation formula is shown in Table 2.
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Table 2. Construction method of Landscape Indices.

Name Computing Method Ecological Meaning

Landscape
Fragmentation Index

(Ci)
Ci = ni/Ai

The higher the value, the higher the
degree of fragmentation.

Landscape Isolation
Index (Ni)

Ni =
A

2Ai

√
ni
A

The greater the value, the more
complex the landscape distribution

and the lower the ecological stability
of the landscape.

Landscape Dominance
Index (DOi)

DOi =
Qi+Mi

4 + Li
2

The higher the value, the greater the
impact of patches on the formation
and evolution of landscape pattern.

Landscape
Disturbance Index (Ei)

Ei = aCi + bNi + cDOi

a, b and c are the weights of the
corresponding landscape index, and

the sum is 1. According to the
existing research results and

combined with the actual situation of
the research area, the values are

respectively 0.5, 0.3, and 0.2.

ERI ERI =
N
∑
i

Ski
Sk

√
Ei ∗ Fi

ERI describes the size of ecological
loss in the sample plot and converts

the spatial pattern into ecological risk
variable through sampling method.

ni is the number of patches in the ith landscape; Ai is the area of the ith landscape; A is the landscape total area; Qi
is the sample number of the ith patches/ total number of samples; Mi is the number of ith patches/total number
of patches; Li is the area of the ith patches/ area of the sampels; Ski is the area of landscape component I in unit k;
Sk is the total area of unit k; and Fi is the Landscape Fragility Index.

Ei represents the degree of loss caused by the external disturbance of an ecosystem.
This index is formed by the Landscape Fragmentation Index (Ci), Landscape Isolation
Index (Ni), and Landscape Dominance Index (DOi) [52]. Ci represents the degree of
fragmentation of the landscape. Ni represents the degree of separation between different
patch individuals in the landscape type. DOi represents the important status of patches in
the landscape. Landscape fragility is the vulnerability of ecosystem structure represented
by various land cover classes. The fragility level can symbolize the ability of the landscape
to maintain stability. The higher the score of Fi, the greater the ER. According to the
characteristics of the study area and previous research [18,31], each type of land cover was
given a corresponding weight. The weights of unused land, water and perennial snow
area, cropland, forest land, grassland, and construction land were 0.2857, 0.2381, 0.1905,
0.0952, 0.1429, and 0.0476, respectively.

In landscape ecology, when the landscape sample (that is, the sampling unit) area
is 2–5 times the mean area of landscape type patches, the landscape pattern information
around the sampling point can be comprehensively represented [31]. Therefore, the scale
of ER assessment was determined to be 3 km. The whole study area was divided into
3879 grids. The landscape index of each grid was calculated using Fragstats software.

Spatial autocorrelation was used to analyze high and low values of spatial aggrega-
tion [53,54]. Regions with high and low ER were identified with the Getis–Ord Gi* method.
In addition, we determined the spatial distribution of ER by empirical Bayesian kriging.

4. Results
4.1. Multi-Temporal Classification Maps and Accuracy Assessment
4.1.1. Classification Results and Accuracy Assessment of the Basic Year

The overall accuracy of the 2019 land cover classification results was 93.67%, and
the kappa coefficient was 0.92. The user and producer accuracies of water and perennial
land were above 98%, as were those of cropland. The categories with lower recognition
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accuracy were grassland and unused land. The user accuracy of grassland was 83.69%,
and the producer accuracy of unused land was 88.60% (as shown in Table 3). Commission
errors mainly appeared between grassland and forest land and between unused land and
construction land. In addition, some unused land pixels were misclassified as grassland.
The detailed land cover maps are shown in Figure 5. From the perspective of distribution,
most of the forest land and grassland are distributed in the south of Wuwei at high
altitudes, the cropland and construction land mostly exist in the middle, and unused land
is distributed in the north of Wuwei region. This is consistent with the basic situation of
Wuwei region introduced in Section 2.1.
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Table 3. Accuracy assessment for basic year classification.

Ground Truth

Unused
Land

Water and
Perennial Land Cropland Forest Land Grassland Construction

Land
Users Accuracy

(%)

Mapping
Class

Unused land 443 0 0 0 0 31 93.46
Water and

perennial land 0 496 0 0 0 0 100.00

Cropland 0 0 493 0 0 10 98.01
Forest land 0 3 0 455 33 0 92.67
Grassland 37 0 6 45 467 3 83.69

Construction
land 20 1 1 0 0 456 95.40

Producer
Accuracy (%) 88.60 99.20 98.60 91.00 93.40 91.20

Overall
Accuracy (%) 93.67 Kappa 0.92
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4.1.2. Classification Results and Accuracy Assessment of Comparison Years

Based on the classification results of the basic year, the changed regions from 2010 to
2018 were updated in the maps of comparison years. The accuracies of land cover maps
in the comparison years were greater than 90%, and the kappa coefficients were above
0.88. In particular, in 2010 and 2018, the mapping accuracy was greater than 93%, and the
kappa coefficients were above 0.93 (as shown in Table 4). The land cover mapping results
of multiple years met the requirements for analyzing the land cover change pattern and
ER. Classification errors mainly occurred between unused land and construction land and
between forest land and grassland (the details are similar to those provided in Section 4.1.1)
due to their similar regular spectral characteristics.

Table 4. Accuracy assessment of multi-temporal classification maps.

Years Overall Accuracy (%) Kappa Coefficient

2010 93.83% 0.93
2011 90.27% 0.88
2012 91.63% 0.90
2013 91.10% 0.89
2014 92.40% 0.91
2015 92.30% 0.91
2016 92.33% 0.91
2017 91.40% 0.90
2018 93.83% 0.93
2019 93.67% 0.92

4.2. Area Change Detection and Accuracy Assessment

In order to investigate the effectiveness of the change monitoring method, a spatial
random sampling strategy was used to select the changed and invariant samples. Intervals
of 3 years, 6 years, and 9 years were used to evaluate the accuracy of change detection
for 2016–2019, 2013–2019, and 2010–2019, respectively. The results for the three change
monitoring periods were higher than 88.90%, which shows the effectiveness of the change
monitoring method described here. The lowest accuracy of the change monitoring results
was for between 2010 and 2019. The conversions between land cover types were complex,
and the reflectance of the same category in 2010 and 2019 differed because the gap between
2010 and 2019 was bigger than that in the other two periods. Between 2010 and 2019,
17,287 pixels were randomly selected, including 8566 changed pixels. With the application
of the change monitoring method in this paper, 7341 changed pixels were detected. The
producer accuracy of the area change was 85.70%, and 8721 unchanged pixels were selected,
of which 8072 pixels were detected. The producer accuracy of the unchanged region was
92.04%. The overall accuracies of change monitoring in 2013–2019 and 2016–2019 were
higher than 93%, and the producer accuracies of the changed area and invariant area were
higher than 91% and 95%, respectively. See Table 5 for details.

Table 5. Accuracy assessment of change area and non-change area.

Ground Truth

2010–2019 2013–2019 2016–2019

Mapped

Change Non-
Change

User
Accuracy Change Non-

Change
User

Accuracy Change Non-
Change

User
Accuracy

Change 7341 694 91.36% 9111 455 95.24% 5740 479 92.30%
Non-Change 1225 8027 86.76% 866 9023 91.24% 564 10434 94.87%

Producer Accuracy 85.70% 92.04% 91.32% 95.20% 91.05% 95.61%
Overall Accuracy 88.90% 93.21% 93.94%
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4.3. Land Cover Change Patterns

The areas of all land types were obtained from the land cover classification maps
for 2010–2019 (shown in Figure 6). The area of each category varied greatly, and the
most representative ones were unused land, cropland, and construction land. Overall, the
areas of unused and construction land were reduced, while the area of cropland increased.
Judging from the time series, the change in unused land area can be divided into two stages:
2010–2015 and 2015–2019. The area of unused land first decreased and then increased
between 2010 and 2015, which also occurred between 2015 and 2019. The cropland and
construction land areas showed opposite tendencies. In these 10 years, the area of water
and perennial snow land increased significantly, from 122.67 km2 in 2010 to 267.67 km2

in 2019

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 21 
 

 

Change 7341 694 91.36% 9111 455 95.24% 5740 479 92.30% 
Non-Change 1225 8027 86.76% 866 9023 91.24% 564 10434 94.87% 

Producer Accuracy85.70% 92.04%  91.32% 95.20%  91.05% 95.61%  
Overall Accuracy   88.90%   93.21%   93.94% 

4.3. Land Cover Change Patterns 
The areas of all land types were obtained from the land cover classification maps for 

2010–2019 (shown in Figure 6). The area of each category varied greatly, and the most 
representative ones were unused land, cropland, and construction land. Overall, the areas 
of unused and construction land were reduced, while the area of cropland increased. 
Judging from the time series, the change in unused land area can be divided into two 
stages: 2010–2015 and 2015–2019. The area of unused land first decreased and then in-
creased between 2010 and 2015, which also occurred between 2015 and 2019. The cropland 
and construction land areas showed opposite tendencies. In these 10 years, the area of 
water and perennial snow land increased significantly, from 122.67 km2 in 2010 to 267.67 
km2 in 2019 

 

 

 

 
Figure 6. The changes of all classes area from 2010 to 2019. 

18,500

19,000

19,500

20,000

20,500

Unite:km2 (a) Unused land

100

150

200

250

300

(b) Water and perennial snow land

3000
3200
3400
3600
3800
4000
4200

(c) Cropland

2000

2200

2400

2600

2800

3000

(d) Forest land

2000
2200
2400
2600
2800
3000
3200

(e) Grassland

3000

3500

4000

4500

5000

(f) Construction land

Figure 6. The changes of all classes area from 2010 to 2019.

To reveal the transition of land cover types in the study area from 2010 to 2019, the
land use transition matrix was calculated. According to the results of the land use transition
matrix (as shown in Table 6), the main transitions occurred between construction land
and unused land and between cropland and unused land. Unused land was mainly
derived from construction land and cropland, with areas of 102.47 km2 and 78.80 km2,
respectively. The degeneration of unused land was also significant, with areas of 191.70 km2
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and 170.91 km2 converted into construction land and cropland, respectively. The most
pronounced area change was in the water and perennial snow area. Although this area
was not large, its acreage more than doubled from 2010 to 2019. The area of water and
perennial snow was mainly converted from forest land, unused land, and grassland, with
areas of 46.13 km2, 45.26 km2, and 44.20 km2, accounting for 17.23%, 16.91%, and 16.51%
of the water area and perennial snow area in 2019.

Table 6. Land use transition matrix between 2010 and 2019 (Unit) km2.

2019

Unused
Land

Water and
Perennial Land Cropland Forest

Land Grassland Construction
Land Total

2010

Unused land 18,992.60 45.26 191.70 26.20 182.96 170.91 19,609.45
Water and perennial

land 2.69 117.90 0.03 0.19 1.73 0.14 122.68

Cropland 78.80 11.62 3238.99 25.82 159.18 79.21 3593.62
Forest land 22.43 46.13 2.97 2409.55 297.43 2.55 2781.06
Grassland 65.99 44.20 17.41 229.26 2360.53 13.46 2730.85

Construction land 102.47 2.56 395.74 25.27 58.13 3288.92 3873.10

Total 19,264.99 267.67 3846.84 2716.10 3059.95 3555.20 32,710.75

4.4. Spatial and Temporal Differentiation of Landscape Ecological Risk

Based on land cover classification products, we calculated the ER value of each
pixel using landscape indexes (mentioned in Section 3.6). In this section, we analyze the
spatiotemporal differentiation of risk from 2010 to 2019. The value of ERI was divided
into five grades: lowest ER (ERI ≤ 0.209), lower ER (0.209 < ERI ≤ 0.231), moderate ER
(0.231 < ERI ≤ 0.266), higher ER (0.266 < ERI ≤ 0.324), and highest ER (ERI > 0.324). The
spatiotemporal differentiation of ER was significant in the study area.

From a spatial perspective, the distribution of ER in Wuwei showed a northwest
to southeast spatial trend, which is similar to the distribution of topography and land
cover types. From southwest to northeast, the distribution of ER can be divided into four
zones: Zone1 (the lowest southern ER zone), Zone2 (the higher south-central ER zone),
Zone3 (the lowest north-central ER zone), and Zone4 (the moderate northern ER zone),
as shown in Figure 7a. The location of Zone1 is basically the same as that of the Qilian
Mountain National Nature Reserve. During 2010–2019, the lowest ER area expanded, and
the highest ER area decreased. Notably, the highest ER area was almost gone by 2019
(Figure 7). It was apparent that the area of the lowest ER had broadened, occupying almost
the entirety of Zone1 (Figure 8). All signs in Zone1 indicated that the ER of the whole
Qilian Mountain National Nature Reserve was gradually decreasing, and the ecological
situation was improving. The area of unused and construction land accounted for the
largest proportion of Zone2. With the implementation of EM, the areas of construction
and unused land in this region decreased, while grassland and forest land expanded.
Landscape fragility and fragmentation were relatively reduced. Therefore, the high ER area
showed a disappearing trend. In Zone3, the connectivity of lowest ER area was enhanced,
illustrating that low ER began to predominate. In addition, in Zone4, the area of the highest
ER expanded, and that of the lowest ER shrunk, indicating that the ER value increased.

From the perspective of time, the average value of ER showed a downward trend
from 0.2453 to 0.2398, with an overall decrease that reached 6.3%. This indicates that the
ER of the study area was gradually reduced.
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5. Discussion
5.1. Advantages and Limitations of Multi-Temporal Land Cover Mapping in GEE

With the help of open-source Landsat images and the powerful cloud computing
capabilities of GEE, we detected changes in the EM area and obtained maps of land
cover for 2010–2019. The open-source Landsat data laid a foundation for the study of
multi-temporal change monitoring. A total of 2488 images were used in this experiment.
Such a large amount of data is difficult to manually process and analyze on a computer
with remote sensing software. The powerful cloud computing capability of GEE makes
it possible to perform image preprocessing and image computing in large quantities.
Additionally, there are many classification algorithm interfaces in GEE, which can classify
a large number of remote sensing images with relative ease. Many advantages provide
substantial convenience for the development of the remote sensing industry, but GEE
has some shortcomings. First, for supervised classification, samples play an important
role in model training and image classification results; however, when the number of
samples exceeds 10,000, the memory limit is easily exceeded, which affects the accuracy
of the classification results. Second, when using the cloud removal function in GEE, non-
cloud pixels, such as snow, are more likely to be removed, resulting in unnecessary error.
Finally, the pixel-based classification inevitably has noise points, but in GEE, the influence
segmentation algorithm is not mature, and users cannot segment a wide range of images,
which limits the use of the object-based classification method [55].

5.2. Analysis of the Method of Land Cover Mapping

The change monitoring method proposed in this paper was comprehensively im-
proved from the aspects of characteristics and samples. To fully mine the hidden informa-
tion of remote sensing images, the spectral, textural, terrain, and temporal characteristics
were comprehensively considered. We randomly selected a determined number of sam-
ple points for each category from the training and validation datasets to ensure that the
samples were representative and to avoid an imbalance in the classification results. In
addition, potentially changed pixels rather than all pixels were classified so as to reduce
the workload. Taking 2010 as an example, 61.63% of all pixels were identified as possible
area changes, which needed further processing. Therefore, the workload of classification
was greatly reduced, which highlights the efficiency of the algorithm in this study. False
changes caused by classification errors could be significantly avoided, and the accuracy of
unchanged categories was ensured. We opted for a more inclusive threshold in order to
minimize potential omissions of any classes of land cover changes. Our results provide
compelling evidence that this method can be used in other conditions of land cover change
detection. When extracting the area change of the thematic map, other variables can be
selected to find the possible area change, such as NDWI (in water extraction) or NDBI (in
construction extraction).

5.3. Influence of EM
5.3.1. Influence of EM on Land Cover Change

From the analysis of the land cover change trend, the EM between 2010 and 2019 can
be divided into two stages: the first stage (2010–2015) and the second stage (2015–2019).
The Wuwei Municipal Government implemented the 12th and 13th Five-Year Plans in
these two periods, respectively. The ecological resettlement project was an important part
of each plan. At the beginning of each stage, a large amount of construction land and
cropland was created to arrange for immigrations. In the development process of other
cities and villages, construction land was mainly converted from cultivated land and green
land [50]. The difference is that the construction land used for ecological resettlement in
Wuwei was mainly derived from unused land. Another part of unused land was converted
into cropland. Toward the end of each stage, a series of ecological construction measures
was carried out. The cultivated and residential lands in the relocated area were abandoned
or used for other purposes; however, the cultivated land and residential area were mostly
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transformed into unused land, and small areas of these categories were converted into
grassland and forest land. This shows that the ecological restoration of the emigrated area
has not been completed since EM, and it should be accelerated as a follow-up measure.
The Qilian Mountains are an important functional water conservation area, which plays an
important role in ecological regulation. The area of water and perennial snow increased.
We believe that there are two main reasons. On the one hand, many reservoirs have been
established to meet the needs of production and living because the study area is short of
water resources. On the other hand, the rivers of the Qilian Mountains have been well
protected during EM. The change in land types in the ecological migration area was drastic.
In order to ensure the living and development needs of the residents, sufficient construction
land and cropland were needed. At the same time, however, the green land as well as water
and perennial snow area needed to be expanded to improve the ecological environment of
the nature reserve. These requirements imply the significance of monitoring and managing
land cover changes in the EM area.

5.3.2. Influence of EM on ER

The immigration and emigration caused changes in land cover, which, in turn, affected
the dominance and fragmentation of the landscape. Additionally, different land types had
different degrees of fragmentation. All of these aspects ultimately affected the ecological
risks in the region.

In order to reveal the impact of ecological migration on the ecological environment
of the study area, we selected the Qilian Mountain area and Huanghuatan resettlement
site for analysis (Figure 9). The government has carried out a series of policy measures to
restrict human activities in the Qilian Mountain area, contributing to the protection of the
ecological environment. Due to a reduction in human activities, the areas of construction
land and cropland have decreased. The fragmentation of the landscape has decreased.
The predominance of grassland and forest land has been enhanced. The main landscape,
circled in Figure 9d,e, has changed from unused land to water and perennial snow. This
change greatly reduced the vulnerability of the area, benefited the restoration of regional
habitats, and effectively reduced the ecological risk. It is undeniable that the EM project
played an important role in water conservation in the Qilian Mountain area.

The Huanghuatan area is a vital resettlement site. To protect the livelihoods of the
immigrants, large areas of residential land and cropland were built. In addition, a water
storage and supply project was implemented. From 2010 to 2015, as the construction of the
resettlement area advanced, large plots of land were divided into scattered areas of land;
however, the infrastructure and supporting facilities were relatively complete. Therefore,
the fragmentation of the landscape was reduced, while the stability increased. The ER of
the resettlement area first increased and then decreased from 2010 to 2019, which is similar
to the results of Liu et al. [9].

5.3.3. Influence of EM on Other Aspects

The results of this research indicate that EM has had a positive impact on protecting
the ecological security of the study area; however, it might threaten the cultural diversity
and ecosystem carrying capacity of the resettlement area. Many ethnic minorities reside
in Wuwei as it is inhabited by 38 ethnic groups, e.g., Han, Tibetan, Hui, and Mongolian
populations. After the implementation of the ecological migration policy, the production,
lifestyle, ideology, and customs of ethnic minorities who originally lived in the impover-
ished area would have been changed, but the influence of these changes is difficult to judge.
On the other hand, in order to guarantee the life satisfaction and well-being of migrants, a
large number of infrastructure and supporting facilities need to be built in the resettlement
area to ensure education, medical care, sanitation, transportation, employment, etc. This
clearly reveals the general restrictive effect of the regional resource and environmental
capacity on EM. Therefore, when formulating and implementing subsequent resettlement
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policies, the government must fully consider the resource and environmental capacity of
the local area.
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5.4. Limitations and Future Works

We constructed annual land cover maps from 2010 to 2019 using GEE and RF, and
then we analyzed the impact of EM on changes in land cover and ER. There are still some
uncertainties and limitations in this study. EM is a long-term process, and historical samples
are difficult to collect through field surveys. Therefore, we selected samples through high
spatial resolution images in Google Earth. It is inevitable that the results would have
been affected by uncertain labels. In future research, we aim to investigate the study area
and find more reliable official data to solve this problem. We selected ER as an indicator
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to quantify the ecological environment; however, the ERI describes the static pattern of
ER rather than the dynamic process of risk adaptation and interaction [29]. It seems that
using only ER is not sufficiently comprehensive. In further work, we plan to also consider
the resilience and connectedness of the ecosystem. In addition, we will consider other
factors, such as the ecosystem carrying capacity, ecological services, indicators of natural
disasters, and risk sources of human disturbance in assessing the ecological environment.
Establishing an evaluation system to quantify the impact of human activities on regional
ecological risks is of great importance.

6. Conclusions

In this study, we developed a method for assessing the impact of ecological migration
(EM) on changes in land cover and ecological risk (ER). Compared with other research
focusing on human activities, our study has made significant improvements in ecological
environment monitoring.

We constructed multi-temporal land cover maps of Wuwei for 2010–2019 with the
help of the random forest algorithm. The characteristics and samples of the supervised
classification method were comprehensively considered. Our approach entailed first
monitoring and then classifying to reduce the extent of calculation. The accuracies of the
land cover maps were above 90%, and the kappa coefficients were higher than 0.88 from
2010 to 2019. In order to further explore the impact of EM, we analyzed the transition of
land cover types in the EM area. In addition, an ER assessment method was introduced
to analyze the ER situation. The results show that: (1) the primary land use transition
occurred between unused land and construction land and between unused land and
cropland; and (2) the ecological condition of the Qilian Mountain area was protected by
the EM project. During the EM project, the ER value of the ecologically protected Qilian
mountain area declined. In the analysis of typical regions, we explored reasons to explain
the ecological risk changes. This study provides a monitoring and evaluation method for
the assessment of the effectiveness of EM on ecological environment. Our conclusions
provide useful information and scientific guidance for efficient planning and sustainable
development in the EM region. This idea can be extended to evaluate the impact of other
similar human activities.
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