Velocity Analysis Using Separated Diffractions for Lunar Penetrating Radar Obtained by Yutu-2 Rover
Abstract
:1. Introduction
2. Methods
2.1. Plane-Wave Destruction Method
2.2. Focusing Analysis Method
3. Results
3.1. Synthetic Data Results
3.2. LPR Data Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Campbell, B.A.; Ray Hawke, B.; Morgan, G.A.; Carter, L.M.; Campbell, D.B.; Nolan, M. Improved Discrimination of Volcanic Complexes, Tectonic Features, and Regolith Properties in Mare Serenitatis from Earth-Based Radar Mapping. J. Geophys. Res. Planets 2014, 119, 313–330. [Google Scholar] [CrossRef]
- Morgan, G.A.; Campbell, B.A.; Campbell, D.; Hawke, B. Investigating the Stratigraphy of Mare Imbrium Flow Emplacement with Earth-Based Radar. J. Geophys. Res. Planets 2016, 121, 1498–1513. [Google Scholar] [CrossRef] [Green Version]
- Peeples, W.J.; Sill, W.R.; May, T.W.; Ward, S.H.; Phillips, R.J.; Jordan, R.L.; Abbott, E.A.; Killpack, T.J. Orbital Radar Evidence for Lunar Subsurface Layering in Maria Serenitatis and Crisium. J. Geophys. Res. Solid Earth 1978, 83, 3459–3468. [Google Scholar] [CrossRef]
- Sharpton, V.L.; Head, J.W., III. Stratigraphy and Structural Evolution of Southern Mare Serenitatis: A Reinterpretation Based on Apollo Lunar Sounder Experiment Data. J. Geophys. Res. Solid Earth 1982, 87, 10983–10998. [Google Scholar] [CrossRef] [Green Version]
- Ono, T.; Kumamoto, A.; Nakagawa, H.; Yamaguchi, Y.; Oshigami, S.; Yamaji, A.; Kobayashi, T.; Kasahara, Y.; Oya, H. Lunar Radar Sounder Observations of Subsurface Layers under the Nearside Maria of the Moon. Science 2009, 323, 909. [Google Scholar] [CrossRef] [Green Version]
- Fang, G.Y.; Zhou, B.; Ji, Y.C.; Zhang, Q.Y.; Shen, S.X.; Li, Y.X.; Guan, H.F.; Tang, C.J.; Gao, Y.Z.; Lu, W.; et al. Lunar Penetrating Radar Onboard the Chang’e-3 Mission. Res. Astron. Astrophys. 2014, 14, 1607–1622. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, W.; Hu, S.; Lin, Y.; Fang, G.; Li, C.; Peng, W.; Zhu, S.; He, Z.; Zhou, B.; et al. Volcanic History of the Imbrium Basin: A Close-up View from the Lunar Rover Yutu. Proc. Natl. Acad. Sci. USA 2015, 112, 5342–5347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhou, B.; Lin, Y.; Zhu, M.-H.; Song, H.; Dong, Z.; Gao, Y.; Di, K.; Yang, W.; Lin, H.; et al. Lunar Regolith and Substructure at Chang’E-4 Landing Site in South Pole-Aitken Basin. Nat. Astron. 2021, 5, 25–30. [Google Scholar] [CrossRef]
- Lv, W.; Li, C.; Song, H.; Zhang, J.; Lin, Y. Comparative Analysis of Reflection Characteristics of Lunar Penetrating Radar Data Using Numerical Simulations. Icarus 2020, 350, 113896. [Google Scholar] [CrossRef]
- Conyers, L.B.; Goodman, D. Ground-Penetrating Radar: An Introduction for Archaeologists; AltaMira Press: Walnut Creek, CA, USA, 1997. [Google Scholar]
- Heiken, G.H.; Vaniman, D.T.; French, B.M. Lunar Sourcebook, a User’s Guide to the Moon; CUP Archive: Cambridge, UK, 1991. [Google Scholar]
- Kobayashi, T.; Kim, J.H.; Lee, S.R.; Araki, H.; Ono, T. Simultaneous Observation of Lunar Radar Sounder and Laser Altimeter of Kaguya for Lunar Regolith Layer Thickness Estimate. IEEE Geosci. Remote Sens. Lett. 2010, 7, 435–439. [Google Scholar] [CrossRef]
- Feng, J.; Su, Y.; Ding, C.; Xing, S.; Dai, S.; Zou, Y. Dielectric Properties Estimation of the Lunar Regolith at CE-3 Landing Site Using Lunar Penetrating Radar Data. Icarus 2017, 284, 424–430. [Google Scholar] [CrossRef]
- Dong, Z.; Fang, G.; Zhao, D.; Zhou, B.; Gao, Y.; Ji, Y. Dielectric Properties of Lunar Subsurface Materials. Geophys. Res. Lett. 2020, 47, e2020GL089264. [Google Scholar] [CrossRef]
- Dong, Z.; Feng, X.; Zhou, H.; Liu, C.; Zeng, Z.; Li, J.; Liang, W. Properties Analysis of Lunar Regolith at Chang’E-4 Landing Site Based on 3D Velocity Spectrum of Lunar Penetrating Radar. Remote Sens. 2020, 12, 629. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Li, C.; Zhang, J.; Wu, X.; Liu, Y.; Zou, Y. Rock Location and Property Analysis of Lunar Regolith at Chang’E-4 Landing Site Based on Local Correlation and Semblance Analysis. Remote Sens. 2020, 13, 48. [Google Scholar] [CrossRef]
- Harlan, W.S.; Claerbout, J.F.; Rocca, F. Signal/Noise Separation and Velocity Estimation. Geophysics 1984, 49, 1869–1880. [Google Scholar] [CrossRef]
- Fomel, S.; Landa, E.; Taner, M.T. Poststack Velocity Analysis by Separation and Imaging of Seismic Diffractions. Geophysics 2007, 72, U89–U94. [Google Scholar] [CrossRef]
- Berkovitch, A.; Belfer, I.; Hassin, Y.; Landa, E. Diffraction Imaging by Multifocusing. Geophysics 2009, 74, WCA75–WCA81. [Google Scholar] [CrossRef]
- Klokov, A.; Fomel, S. Separation and Imaging of Seismic Diffractions Using Migrated Dip-Angle Gathers. Geophysics 2012, 77, S131–S143. [Google Scholar] [CrossRef]
- Asgedom, E.G.; Gelius, L.J.; Tygel, M. 2D Common-Offset Traveltime Based Diffraction Enhancement and Imaging. Geophys. Prospect. 2013, 61, 1178–1193. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J. Diffraction Imaging Using Shot and Opening-Angle Gathers: A Prestack Time Migration Approach. Geophysics 2014, 79, S23–S33. [Google Scholar] [CrossRef]
- Merzlikin, D.; Fomel, S. Analytical Path-Summation Imaging of Seismic Diffractions. Geophysics 2017, 82, S51–S59. [Google Scholar] [CrossRef]
- Merzlikin, D.; Fomel, S.; Sen, M.K. Least-Squares Path-Summation Diffraction Imaging Using Sparsity Constraints. Geophysics 2019, 84, S187–S200. [Google Scholar] [CrossRef]
- Tschannen, V.; Ettrich, N.; Delescluse, M.; Keuper, J. Detection of Point Scatterers Using Diffraction Imaging and Deep Learning. Geophys. Prospect. 2020, 68, 830–844. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, X.; Chen, Y. Separation and Imaging of Seismic Diffractions Using a Localized Rank-Reduction Method with Adaptively Selected Ranks. Geophysics 2020, 85, V497–V506. [Google Scholar] [CrossRef]
- Yuan, H.; Montazeri, M.; Looms, M.C.; Nielsen, L. Diffraction Imaging of Ground-Penetrating Radar Data. Geophysics 2019, 84, H1–H12. [Google Scholar] [CrossRef]
- Economou, N.; Vafidis, A.; Bano, M.; Hamdan, H.; Ortega-Ramirez, J. Ground-Penetrating Radar Data Diffraction Focusing without a Velocity Model. Geophysics 2020, 85, H13–H24. [Google Scholar] [CrossRef]
- Claerbout, J.F.; Abma, R. Earth Soundings Analysis: Processing Versus Inversion; Blackwell Scientific Publications: London, UK, 1992; Volume 6. [Google Scholar]
- Fomel, S. Applications of Plane-Wave Destruction Filters. Geophysics 2002, 67, 1946–1960. [Google Scholar] [CrossRef]
- Decker, L.A. Seismic Diffraction Imaging Methods and Applications. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2014. [Google Scholar]
- Wiggins, R.A. Minimum Entropy Deconvolution. Geoexploration 1978, 16, 21–35. [Google Scholar] [CrossRef]
- Levy, S.; Oldenburg, D. Automatic Phase Correction of Common-Midpoint Stacked Data. Geophysics 1987, 52, 51–59. [Google Scholar] [CrossRef]
- Fomel, S. Local Seismic Attributes. Geophysics 2007, 72, A29–A33. [Google Scholar] [CrossRef]
- Fomel, S. Time-Migration Velocity Analysis by Velocity Continuation. Geophysics 2003, 68, 1662–1672. [Google Scholar] [CrossRef]
- Fomel, S. Velocity Continuation and the Anatomy of Residual Prestack Time Migration. Geophysics 2003, 68, 1650–1661. [Google Scholar] [CrossRef]
- Giannopoulos, A. Modelling Ground Penetrating Radar by GprMax. Constr. Build. Mater. 2005, 19, 755–762. [Google Scholar] [CrossRef]
- Warren, C.; Giannopoulos, A.; Giannakis, I. gprMax: Open Source Software to Simulate Electromagnetic Wave Propagation for Ground Penetrating Radar. Comput. Phys. Commun. 2016, 209, 163–170. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhang, J. Velocity Analysis Using Separated Diffractions for Lunar Penetrating Radar Obtained by Yutu-2 Rover. Remote Sens. 2021, 13, 1387. https://doi.org/10.3390/rs13071387
Li C, Zhang J. Velocity Analysis Using Separated Diffractions for Lunar Penetrating Radar Obtained by Yutu-2 Rover. Remote Sensing. 2021; 13(7):1387. https://doi.org/10.3390/rs13071387
Chicago/Turabian StyleLi, Chao, and Jinhai Zhang. 2021. "Velocity Analysis Using Separated Diffractions for Lunar Penetrating Radar Obtained by Yutu-2 Rover" Remote Sensing 13, no. 7: 1387. https://doi.org/10.3390/rs13071387
APA StyleLi, C., & Zhang, J. (2021). Velocity Analysis Using Separated Diffractions for Lunar Penetrating Radar Obtained by Yutu-2 Rover. Remote Sensing, 13(7), 1387. https://doi.org/10.3390/rs13071387