Crop Monitoring and Classification Using Polarimetric RADARSAT-2 Time-Series Data Across Growing Season: A Case Study in Southwestern Ontario, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Dataset
2.2. PolSAR Observables
2.3. Data Processing
2.4. Experimental Design
3. Results
3.1. Temporal Evolution of Polarimetric Observables
3.1.1. SAR Backscattering
3.1.2. Polarimetric Decompositions
- Freeman-Durden Decomposition
- Cloude-Pottier Decomposition
- Neumann Decomposition
3.1.3. Correlation Coefficient and Phase Difference
3.1.4. RVI
3.2. Crop Classification
3.2.1. Classification with Single Groups of Polarimetric Observables
3.2.2. Optimal Combination of Polarimetric Observables
3.2.3. Optimal Combination of SAR Images
3.2.4. Optimal Combination of SAR Images and Polarimetric Observables
3.2.5. Sensitivity to Training and Testing Samples on Overall Classification Performance
3.2.6. Normalized Variable Importance for Crop Classification
4. Discussion
4.1. Temporal Evolutions of Polarimetric Observables
4.2. Crop Classification
4.3. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, L.R. Outgrowing the Earth: The Food Security Challenge in an Age of Falling Water Tables and Rising Temperatures; W. W. Norton & Company: New York, NY, USA, 2005. [Google Scholar]
- Liu, C.; Chen, Z.; Shao, Y.; Chen, J.; Hasi, T.; Pan, H. Research advances of SAR remote sensing for agriculture applications: A review. J. Integr. Agric. 2019, 18, 506–525. [Google Scholar] [CrossRef] [Green Version]
- McNairn, H.; Shang, J.; Jiao, X.; Champagne, C. The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3981–3992. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Knox, J.W.; Ozdogan, M.; Gumma, M.K.; Congalton, R.G.; Wu, Z.; Milesi, C.; Finkral, A.; Marshall, M.; Mariotto, I.; et al. Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help? Photogramm. Eng. Remote Sens. 2012, 78, 773–782. [Google Scholar]
- Bargiel, D. A new method for crop classification combining time series of radar images and crop phenology information. Remote Sens. Environ. 2017, 198, 369–383. [Google Scholar] [CrossRef]
- Yang, J.; Yang, S.; Zhang, Y.; Shi, S.; Du, L. Improving characteristic band selection in leaf biochemical property estimation considering interrelations among biochemical parameters based on the PROSPECT-D model. Opt. Express 2021, 29, 400. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Zhang, S.; Atkinson, P.M. Crop classification from full-year fully-polarimetric L-band UAVSAR time-series using the Random Forest algorithm. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102032. [Google Scholar] [CrossRef]
- Ozdogan, M.; Woodcock, C.E. Resolution dependent errors in remote sensing of cultivated areas. Remote Sens. Environ. 2006, 103, 203–217. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. central great plains. Remote Sens. Environ. 2008, 112, 1096–1116. [Google Scholar] [CrossRef]
- Jiao, X.; Kovacs, J.M.; Shang, J.; McNairn, H.; Walters, D.; Ma, B.; Geng, X. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data. ISPRS J. Photogramm. Remote Sens. 2014, 96, 38–46. [Google Scholar] [CrossRef]
- Wang, K.; Franklin, S.E.; Guo, X.; He, Y.; McDermid, G.J. Problems in remote sensing of landscapes and habitats. Prog. Phys. Geogr. Earth Environ. 2009, 33, 747–768. [Google Scholar] [CrossRef] [Green Version]
- Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of crop identification based on optical and SAR image time series. Remote Sens. Environ. 2005, 96, 352–365. [Google Scholar] [CrossRef]
- Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Zhang, G.; Li, L.; Jin, C.; Zhou, Y.; Wang, J.; Biradar, C.; et al. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015, 160, 99–113. [Google Scholar] [CrossRef]
- Skakun, S.; Kussul, N.; Shelestov, A.Y.; Lavreniuk, M.; Kussul, O. Efficiency assessment of multitemporal C-band RADARSAT-2 intensity and landsat-8 surface reflectance satellite imagery for crop classification in Ukraine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3712–3719. [Google Scholar] [CrossRef]
- Liu, C.; Shang, J.; Vachon, P.W.; McNairn, H. Multiyear crop monitoring using polarimetric RADARSAT-2 data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2227–2240. [Google Scholar] [CrossRef]
- Steele-Dunne, S.C.; McNairn, H.; Monsivais-Huertero, A.; Judge, J.; Liu, P.W.; Papathanassiou, K. Radar remote sensing of agricultural canopies: A Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2249–2273. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Wang, J.; Xie, Q.; Baz, A.A.; Huang, X.; Shang, J.; He, Y. Synergistic Use of multi-temporal RADARSAT-2 and VENµS data for crop classification based on 1D convolutional neural network. Remote Sens. 2020, 12, 832. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Gonzalez, A.; Lopez-Martinez, C.; Papathanassiou, K.P.; Hajnsek, I. Polarimetric SAR time series change analysis over agricultural areas. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7317–7330. [Google Scholar] [CrossRef]
- Larrañaga, A.; Álvarez-Mozos, J. On the added value of quad-pol data in a multi-temporal crop classification framework based on RADARSAT-2 imagery. Remote Sens. 2016, 8, 335. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Wang, J.; Shang, J.; Liao, C.; Liu, J. Application of polarization signature to land cover scattering mechanism analysis and classification using multi-temporal C-band polarimetric RADARSAT-2 imagery. Remote Sens. Environ. 2017, 193, 11–28. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
- Homayouni, S.; McNairn, H.; Hosseini, M.; Jiao, X.; Powers, J. Quad and compact multitemporal C-band PolSAR observations for crop characterization and monitoring. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 78–87. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Wang, C.; Zhang, B.; Liu, M. Crop classification based on temporal information using sentinel-1 SAR time-series data. Remote Sens. 2018, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Guijalba, F.; Martinez-Marin, T.; Lopez-Sanchez, J.M. Dynamical approach for real-time monitoring of agricultural crops. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3278–3293. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Sanchez, J.M.; Ballester-Berman, J.D.; Hajnsek, I.; Hajnsek, I. First results of rice monitoring practices in Spain by means of time series of TerraSAR-X Dual-Pol Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 412–422. [Google Scholar] [CrossRef]
- Canisius, F.; Shang, J.; Liu, J.; Huang, X.; Ma, B.; Jiao, X.; Geng, X.; Kovacs, J.M.; Walters, D. Tracking crop phenological development using multi-temporal polarimetric RADARSAT-2 data. Remote Sens. Environ. 2018, 210, 508–518. [Google Scholar] [CrossRef]
- Li, H.; Zhang, C.; Zhang, S.; Atkinson, P.M. Full year crop monitoring and separability assessment with fully-polarimetric L-band UAVSAR: A case study in the Sacramento Valley, California. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R. Polarisation: Applications in Remote Sensing Polarisation; Oxford University Press: New York, NY, USA, 2010; ISBN 978-0-19-956973-1. [Google Scholar]
- Lee, J.; Pottier, E. Polarimetric Radar Imaging: From basics to applications; CRC Press: Boca Raton, FL, USA, 2009; ISBN 142005497X. [Google Scholar]
- Lin, Y.C.; Sarabandi, K. A Monte Carlo coherent scattering model for forest canopies using fractal-generated trees. IEEE Trans. Geosci. Remote Sens. 1999, 37, 440–451. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Cloude, S.R.; Ballester-Berman, J.D. Rice phenology monitoring by means of SAR polarimetry at X-band. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2695–2709. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Ballester-Berman, J.D.; Cloude, S.R. Polarimetric response of rice fields at C-band: Analysis and phenology retrieval. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2977–2993. [Google Scholar] [CrossRef] [Green Version]
- Busquier, M.; Lopez-Sanchez, J.M.; Mestre-Quereda, A.; Navarro, E.; González-Dugo, M.P.; Mateos, L. Exploring TanDEM-X interferometric products for crop-type mapping. Remote Sens. 2020, 12, 1774. [Google Scholar] [CrossRef]
- Busquier, M.; Lopez-Sanchez, J.M.; Bargiel, D. Added value of coherent copolar polarimetry at X-band for crop-type mapping. IEEE Geosci. Remote Sens. Lett. 2020, 17, 819–823. [Google Scholar] [CrossRef]
- Xu, S.; Qi, Z.; Li, X.; Yeh, A.G.-O. Investigation of the effect of the incidence angle on land cover classification using fully polarimetric SAR images. Int. J. Remote Sens. 2019, 40, 1576–1593. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Ballester-Berman, J.D.; Cloude, S.R. Influence of incidence angle on the coherent copolar polarimetric response of rice at X-band. IEEE Geosci. Remote Sens. Lett. 2015, 12, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Valcarce-Diñeiro, R.; Lopez-Sanchez, J.M.; Sánchez, N.; Arias-Pérez, B.; Martínez-Fernández, J. Influence of incidence angle in the correlation of C-band polarimetric parameters with biophysical variables of rain-fed crops. Can. J. Remote Sens. 2019, 44, 643–659. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, J.; Lopez-Sanchez, J.M.; Peng, X.; Liao, C.; Shang, J.; Zhu, J.; Fu, H.; Ballester-Berman, J.D. Crop height estimation of corn from multi-year RADARSAT-2 polarimetric observables using machine learning. Remote Sens. 2021, 13, 392. [Google Scholar] [CrossRef]
- Liao, C.; Wang, J.; Huang, X.; Shang, J. Contribution of minimum noise fraction transformation of multi-temporal RADARSAT-2 polarimetric SAR data to cropland classification. Can. J. Remote Sens. 2018, 44, 215–231. [Google Scholar] [CrossRef]
- Xie, Y.; Fu, H.; Zhu, J.; Wang, C.; Xie, Q. A LiDAR-aided multibaseline polInSAR method for forest height estimation: With emphasis on dual-baseline selection. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1807–1811. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, J.; Liao, C.; Shang, J.; Lopez-Sanchez, J.M.; Fu, H.; Liu, X. On the use of Neumann decomposition for crop classification using multi-temporal RADARSAT-2 polarimetric SAR data. Remote Sens. 2019, 11, 776. [Google Scholar] [CrossRef] [Green Version]
- Jiao, X.; Mc Nairn, H.; Shang, J.; Pattey, E.; Liu, J.; Champagne, C. The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index. Can. J. Remote Sens. 2011, 37, 69–81. [Google Scholar] [CrossRef]
- Erten, E.; Taskin, G.; Lopez-Sanchez, J.M. Selection of PolSAR observables for crop biophysical variable estimation with global sensitivity analysis. IEEE Geosci. Remote Sens. Lett. 2019, 13, 1–5. [Google Scholar] [CrossRef]
- Liao, C.; Wang, J.; Shang, J.; Huang, X.; Liu, J.; Huffman, T. Sensitivity study of RADARSAT-2 polarimetric SAR to crop height and fractional vegetation cover of corn and wheat. Int. J. Remote Sens. 2018, 39, 1475–1490. [Google Scholar] [CrossRef]
- Touzi, R.; Lopes, A.; Bruniquel, J.; Vachon, P.W. Coherence estimation for SAR imagery. IEEE Trans. Geosci. Remote Sens. 1999, 37, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Neumann, M.; Ferro-Famil, L.; Jager, M.; Reigber, A.; Pottier, E. A Polarimetric Vegetation Model to Retrieve Particle and Orientation Distribution Characteristics. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 4, pp. IV-145–IV-148. [Google Scholar]
- Kim, Y.; van Zyl, J. Comparison of Forest Parameter Estimation Techniques Using SAR data. In Proceedings of the IGARSS 2001. Scanning the Present and Resolving the Future. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217), Sydney, NSW, Australia, 9–13 July 2001; Volume 3, pp. 1395–1397. [Google Scholar]
- Kim, Y.; van Zyl, J. A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2519–2527. [Google Scholar] [CrossRef]
- Ratha, D.; Mandal, D.; Kumar, V.; McNairn, H.; Bhattacharya, A.; Frery, A.C. A generalized volume scattering model-based vegetation index from polarimetric SAR data. IEEE Geosci. Remote Sens. Lett. 2019, 10, 1–5. [Google Scholar] [CrossRef]
- Kim, Y.; Jackson, T.; Bindlish, R.; Hong, S.; Jung, G.; Lee, K. Retrieval of wheat growth parameters with radar vegetation indices. IEEE Geosci. Remote Sens. Lett. 2014, 11, 808–812. [Google Scholar] [CrossRef]
- Arii, M.; van Zyl, J.J.; Kim, Y. A general characterization for polarimetric scattering from vegetation canopies. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3349–3357. [Google Scholar] [CrossRef]
- Deschamps, B.; McNairn, H.; Shang, J.; Jiao, X. Towards operational radar-only crop type classification: Comparison of a traditional decision tree with a random forest classifier. Can. J. Remote Sens. 2012, 38, 60–68. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Random forest classification of crop type using multi-temporal TerraSAR-X dual-polarimetric data. Remote Sens. Lett. 2014, 5, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, S.; Mandal, D.; Tirodkar, S.; Kumar, V.; Bhattacharya, A.; Lopez-Sanchez, J.M. A novel phenology based feature subset selection technique using random forest for multitemporal PolSAR crop classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4244–4258. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Mandal, D.; Ratha, D.; Bhattacharya, A.; Kumar, V.; McNairn, H.; Rao, Y.S.; Frery, A.C. A radar vegetation index for crop monitoring using compact polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6321–6335. [Google Scholar] [CrossRef]
- Mestre-Quereda, A.; Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Jacob, A.W.; Engdahl, M.E. Time-Series of Sentinel-1 Interferometric Coherence and Backscatter for Crop-Type Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4070–4084. [Google Scholar] [CrossRef]
- Jacob, A.W.; Vicente-Guijalba, F.; Lopez-Martinez, C.; Lopez-Sanchez, J.M.; Litzinger, M.; Kristen, H.; Mestre-Quereda, A.; Ziolkowski, D.; Lavalle, M.; Notarnicola, C.; et al. Sentinel-1 InSAR Coherence for Land Cover Mapping: A Comparison of Multiple Feature-Based Classifiers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, C.; Zhang, H.; Tang, Y.; Liu, X. Analysis of Permafrost Region Coherence Variation in the Qinghai–Tibet Plateau with a High-Resolution TerraSAR-X Image. Remote Sens. 2018, 10, 298. [Google Scholar] [CrossRef] [Green Version]
Date | Acquisition Mode | Incidence | Resolution | Orbit | Look Direction |
---|---|---|---|---|---|
12 April 2015 | FQ10W | 28.4~31.6° | 5.5 m × 4.7 m | Ascending | Right |
6 May 2015 | FQ10W | 28.4~31.6° | 5.5 m × 4.7 m | Ascending | Right |
23 June 2015 | FQ10W | 28.4~31.6° | 5.5 m × 4.7 m | Ascending | Right |
17 July 2015 | FQ10W | 28.4~31.6° | 5.5 m × 4.7 m | Ascending | Right |
10 August 2015 | FQ10W | 28.4~31.6° | 5.5 m × 4.7 m | Ascending | Right |
3 September 2015 | FQ10W | 28.4~31.6° | 5.5 m × 4.7 m | Ascending | Right |
27 September 2015 | FQ10W | 28.4~31.6° | 5.5 m × 4.7 m | Ascending | Right |
Land Cover | Training Samples | Testing Samples | ||
---|---|---|---|---|
Number of Pixels | Number of Fields | Number of Pixels | Number of Fields | |
Corn | 6258 | 4 | 20,246 | 16 |
Soybean | 6505 | 4 | 15,995 | 12 |
Forage | 3700 | 5 | 3615 | 7 |
Winter wheat | 6018 | 3 | 17,723 | 16 |
Watermelon | 310 | 1 | 309 | 1 |
Tobacco | 416 | 1 | 301 | 1 |
Forest | 5148 | 4 | 7292 | 6 |
Built-up | 1267 | 1 | 1117 | 1 |
Soil | 2331 | 1 | 1592 | 1 |
Group | Polarimetric Observable | Description | Abbreviation |
---|---|---|---|
1 | HH (C11), HV (C22), VV (C33) | Backscattering coefficients in the linear polarization channels | LP |
2 | HH + VV (T11), HH-VV (T22) | Backscattering coefficients in the Pauli polarization channels | Pauli |
3 | Span | Total backscattering power | Span |
4 | HH/VV, HV/HH, HV/VV | Backscattering ratios | Ra |
5 | Correlation between polarimetric channels | Ro | |
6 | Phase difference between polarimetric channels | Pha | |
7 | Scattering power from different scattering mechanisms derived from Freeman-Durden decomposition | FD | |
8 | Entropy, anisotropy, alpha angle from Cloude-Pottier decomposition | CP | |
9 | Magnitude and phase of the particle scattering anisotropy, the degree of orientation randomness derived from Neumann decomposition | ND | |
10 | RVI | Radar Vegetation Index | RVI |
Data Source | Polarimetric Observables | Number of Images | Number of Layers |
---|---|---|---|
LP | HH (C11), HV (C22), VV (C33) | 7 | 21 |
Pauli | HH + VV (T11), HH-VV (T22) | 7 | 14 |
Span | Span | 7 | 7 |
Ra | HH/VV, HV/HH, HV/VV | 7 | 21 |
Ro | 7 | 28 | |
Pha | 7 | 28 | |
FD | 7 | 21 | |
CP | 7 | 21 | |
ND | 7 | 21 | |
RVI | RVI | 7 | 7 |
Crop Class | LP | Pauli | Span | Ra | Ro | |||||
---|---|---|---|---|---|---|---|---|---|---|
PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | |
Corn | 94.77 | 84.00 | 93.45 | 84.95 | 82.17 | 92.4 | 91.22 | 80.68 | 91.99 | 85.52 |
Forest | 98.33 | 94.28 | 95.79 | 97.39 | 90.30 | 94.36 | 98.86 | 94.21 | 98.94 | 97.72 |
Grass | 90.98 | 67.70 | 87.41 | 69.30 | 66.17 | 87.39 | 52.62 | 42.35 | 45.39 | 52.15 |
Soil | 89.51 | 100.00 | 89.89 | 100.00 | 94.80 | 76.76 | 86.43 | 100.00 | 90.7 | 90.87 |
Soybean | 92.64 | 92.36 | 95.54 | 90.13 | 82.14 | 90.7 | 81.72 | 90.89 | 86.23 | 89.26 |
Tobacco | 62.13 | 99.47 | 65.12 | 97.03 | 50.26 | 63.12 | 25.17 | 63.56 | 28.24 | 95.51 |
Watermelon | 68.28 | 100.00 | 80.91 | 98.04 | 53.22 | 58.9 | 21.17 | 100.00 | 43.37 | 89.93 |
Wheat | 76.44 | 97.40 | 77.71 | 96.80 | 95.17 | 65.76 | 88.8 | 97.66 | 93.22 | 94.49 |
OA | 89.19 | 89.45 | 84.23 | 86.34 | 88.66 | |||||
Kappa | 0.86 | 0.86 | 0.80 | 0.82 | 0.85 | |||||
Crop Class | Pha | FD | CP | ND | RVI | |||||
PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | |
Corn | 90.02 | 86.60 | 95.83 | 87.58 | 90.52 | 82.02 | 93.95 | 89.73 | 66.37 | 57.06 |
Forest | 80.66 | 76.62 | 99.07 | 97.65 | 99.74 | 97.77 | 99.71 | 97.94 | 99.3 | 94.80 |
Grass | 48.47 | 26.42 | 88.38 | 56.62 | 52.62 | 48.48 | 77.12 | 64.93 | 39.52 | 33.94 |
Soil | 70.41 | 76.89 | 91.08 | 100.00 | 82.54 | 99.77 | 83.79 | 99.18 | 78.89 | 100.00 |
Soybean | 79.33 | 76.35 | 94.43 | 93.31 | 83.2 | 87.47 | 88.92 | 91.25 | 61.47 | 63.94 |
Tobacco | 2.33 | 10.45 | 55.81 | 91.30 | 28.57 | 100.00 | 32.23 | 100.00 | 16.85 | 45.19 |
Watermelon | 1.29 | 40.00 | 71.84 | 98.67 | 52.1 | 81.73 | 55.66 | 96.09 | 30.74 | 62.09 |
Wheat | 66.21 | 86.21 | 75.38 | 96.57 | 90.49 | 96.88 | 93.18 | 97.42 | 60.69 | 72.77 |
OA | 76.69 | 89.64 | 87.67 | 91.57 | 65.64 | |||||
Kappa | 0.70 | 0.87 | 0.83 | 0.89 | 0.55 |
Acquisition Date | OA (%) | Kappa |
---|---|---|
12 April 2015 | 46.11 | 0.32 |
6 May 2015 | 53.48 | 0.42 |
23 June 2015 | 72.56 | 0.65 |
17 July 2015 | 60.72 | 0.50 |
10 August 2015 | 56.23 | 0.45 |
3 September 2015 | 73.71 | 0.66 |
27 September 2015 | 72.44 | 0.65 |
Acquisition Date | OA (%) | Kappa |
---|---|---|
12 April 2015 | 46.72 | 0.32 |
6 May 2015 | 55.66 | 0.45 |
23 June 2015 | 72.68 | 0.65 |
17 July 2015 | 62.14 | 0.51 |
10 August 2015 | 56.57 | 0.45 |
3 September 2015 | 73.51 | 0.66 |
27 September 2015 | 69.29 | 0.61 |
Acquisition Date | OA (%) | Kappa |
---|---|---|
12 April 2015 | 55.25 | 0.45 |
6 May 2015 | 56.85 | 0.47 |
23 June 2015 | 68.12 | 0.61 |
17 July 2015 | 59.78 | 0.51 |
10 August 2015 | 55.30 | 0.45 |
3 September 2015 | 63.74 | 0.56 |
27 September 2015 | 67.49 | 0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Q.; Lai, K.; Wang, J.; Lopez-Sanchez, J.M.; Shang, J.; Liao, C.; Zhu, J.; Fu, H.; Peng, X. Crop Monitoring and Classification Using Polarimetric RADARSAT-2 Time-Series Data Across Growing Season: A Case Study in Southwestern Ontario, Canada. Remote Sens. 2021, 13, 1394. https://doi.org/10.3390/rs13071394
Xie Q, Lai K, Wang J, Lopez-Sanchez JM, Shang J, Liao C, Zhu J, Fu H, Peng X. Crop Monitoring and Classification Using Polarimetric RADARSAT-2 Time-Series Data Across Growing Season: A Case Study in Southwestern Ontario, Canada. Remote Sensing. 2021; 13(7):1394. https://doi.org/10.3390/rs13071394
Chicago/Turabian StyleXie, Qinghua, Kunyu Lai, Jinfei Wang, Juan M. Lopez-Sanchez, Jiali Shang, Chunhua Liao, Jianjun Zhu, Haiqiang Fu, and Xing Peng. 2021. "Crop Monitoring and Classification Using Polarimetric RADARSAT-2 Time-Series Data Across Growing Season: A Case Study in Southwestern Ontario, Canada" Remote Sensing 13, no. 7: 1394. https://doi.org/10.3390/rs13071394
APA StyleXie, Q., Lai, K., Wang, J., Lopez-Sanchez, J. M., Shang, J., Liao, C., Zhu, J., Fu, H., & Peng, X. (2021). Crop Monitoring and Classification Using Polarimetric RADARSAT-2 Time-Series Data Across Growing Season: A Case Study in Southwestern Ontario, Canada. Remote Sensing, 13(7), 1394. https://doi.org/10.3390/rs13071394