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Abstract: Machine learning classifiers are being increasingly used nowadays for Land Use and
Land Cover (LULC) mapping from remote sensing images. However, arriving at the right choice
of classifier requires understanding the main factors influencing their performance. The present
study investigated firstly the effect of training sampling design on the classification results obtained
by Random Forest (RF) classifier and, secondly, it compared its performance with other machine
learning classifiers for LULC mapping using multi-temporal satellite remote sensing data and the
Google Earth Engine (GEE) platform. We evaluated the impact of three sampling methods, namely
Stratified Equal Random Sampling (SRS(Eq)), Stratified Proportional Random Sampling (SRS(Prop)),
and Stratified Systematic Sampling (SSS) upon the classification results obtained by the RF trained
LULC model. Our results showed that the SRS(Prop) method favors major classes while achieving
good overall accuracy. The SRS(Eq) method provides good class-level accuracies, even for minority
classes, whereas the SSS method performs well for areas with large intra-class variability. Toward
evaluating the performance of machine learning classifiers, RF outperformed Classification and
Regression Trees (CART), Support Vector Machine (SVM), and Relevance Vector Machine (RVM) with
a >95% confidence level. The performance of CART and SVM classifiers were found to be similar.
RVM achieved good classification results with a limited number of training samples.

Keywords: land cover; remote sensing; machine learning; sampling design; Google Earth Engine;
spatial simulated annealing

1. Introduction

Land Use and Land Cover (LULC) maps are not only vital for landscape monitoring,
planning, and management but also for studying the impact of climate change and human
interventions on the ecosystem processes and services [1–3]. The term “land cover” refers
to the physical cover present on the surface of the earth, whereas “land use” refers to
the purpose for which the land is used. While land cover is directly amenable to remote
sensing, land use can be derived by using ancillary data and expert knowledge on the
characteristics of the classes available in the study area.

The most common procedure for identifying the land cover types is by classifying
the remote sensing images collected by spaceborne or aerial platforms [4]. A number
of classification techniques exist in the literature that can be applied to remote sensing
images [5,6]. According to Yu et al. [7], the parametric Maximum Likelihood Classifier
(MLC) has been the most popular technique for image classification. However, in recent
times, the non-parametric machine learning (ML) classifiers have been reported to achieve
better classification results for LULC [8]. Among these classifiers Random Forest (RF),
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Classification and Regression Trees (CART), and Support Vector Machine (SVM) proved to
achieve highly accurate LULC classification results [9,10].

CART, a simple binary decision tree classifier that recursively splits the nodes until a
pre-defined threshold is met [11], has been used in global LULC mapping [12]. CART’s
classification accuracy and its fast performance makes it one of the widely used LULC clas-
sifiers, although it has a proven tendency to overfit [13]. This challenge can be successfully
addressed by the RF classifier. RF is an ensemble classifier that consists of a user-defined
number of decision trees where a subset of data is randomly extracted from training sam-
ples through replacement for building a tree, and unlabeled samples are independently
classified by each tree to arrive at a collective decision through majority voting [14]. This
intuitive implementation and its high accuracy results are the reasons for RF to be one of
the favorite LULC classifiers [15]. SVM, on the other hand, follows a different classification
approach: it builds an optimal hyperplane that separates the data such that there are
minimum incorrect pixels in each class. Non-linear datasets are projected using a user-
defined kernel into another higher dimensional feature before building the hyperplane.
The performance of the SVM classifier depends on the defined input parameters such
as the choice of kernels and defined Mercer kernel functions [16]. Despite its sensitivity
to the user-defined parameters, the capability of SVM to choose a smaller subset from
training samples for building the model, makes it one of the most popular classifiers in the
remote sensing field [17]. A similar functional form of SVM is Relevance Vector Machine
(RVM) classifier developed by Tipping [18], which uses a Bayesian framework to build a
probabilistic prediction model using sparse parameters. RVM relies only on those subset of
samples that has non-zero posterior probability distribution on the associated weights of
hyperparameters, thus resulting in less training samples being used in the model. Previous
studies proved that RVM outperformed SVM when a limited number of training samples
is available [19]. Despite its clear advantages, the studies exploring the potential of RVM in
remote sensing are very limited [19,20]. Furthermore, there are no studies that compared
RVM and other well-known ML classifiers such as RF and CART. Deep Learning methods
are also one of the important tools used for land cover classification [21]. But such methods
require large, labeled datasets for training, which is not always feasible. However, recent
studies such as Rostami et al. [22] and Bejiga et al. [23] provide an alternative approach to
building training datasets using transfer learning methodologies that takes advantage of
knowledge from existing data.

The performance of the ML classifiers is influenced by different factors including the
heterogeneity/complexity of the study area, sensors’ characteristics, (e.g., spatial, temporal,
spectral, and radiometric resolution), number of classes, availability of ancillary data,
scale and purpose of the target land cover map, and the chosen classifier [5]. Heydari
and Mountrakis [24] highlighted the importance of understanding the effect of sampling
methods on land cover classification, particularly emphasizing the assessment of the
impact of various sampling strategies for training data upon ML classification results,
which is scarce compared to the study on testing/validation data. Among the few, Jin
et al. [25] investigated how the equal and proportional sample size distribution of each
class influenced the classification accuracies for urban and non-urban regions. In order to
assess the effect of spatial allocation, the authors further divided each stratum into equal-
sized blocks and analyzed the data distribution. Few other studies followed a data-driven
approach to define strata for sampling. For example, the study by Minasny et al. [26]
decomposed the area of interest into blocks with equal variability by iteratively building
a variance Quadtree algorithm. Although stratification and random sampling have been
the commonly used sampling methods for remote sensing applications, few studies have
employed systematic sampling methods for land cover studies. Systematic sampling,
widely used in the field of soils and forestry, is generally the placement of samples at equally
spaced grids. For larger regions, the common method of grid creation is the confluence of
latitudes and longitudes [27]. Geostatistical tools such as semi-variogram are successfully
applied in systematic sampling design mainly because they provide good estimates of
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non-sampled locations through interpolation [28]. Van Groenigen and Stein [29] used
Spatial Simulated Annealing (SSA) with the objective function Minimization of Mean
Squared Distance (MMSD) to optimize the sample distribution [30]. The advantage of such
geostatistical methods is that the underlying spatial variation of the variable(s) in the study
area is considered and, hence, it can contribute to optimal sampling in any area of interest.

For processing the large amount of remote sensing data available today, cloud-based
platforms such as Google Earth Engine (GEE) provide unprecedented computational
resources that allow us to perform geospatial analysis at a global scale [31]. Many studies
have leveraged the power of GEE for global LULC analysis. For example, Midekisa
et al. [32] used GEE to produce annual land cover maps of 15 years over the African
continent; the global forest cover change map developed by Hansen et al. [33] at 30 m
resolution used multi-temporal twelve-year satellite data on GEE. Furthermore, many
studies in urbanization [34–36], the agriculture sector [37–40], and Digital Soil Mapping [41]
have also utilized GEE and its in-built ML classifiers for large and faster data processing.

The present study uses the GEE cloud platform to investigate the effect of Stratified
Equal Random Sampling (SRS(Eq)), Stratified Proportional Random Sampling (SRS(Prop)),
and Stratified Systematic Sampling (SSS) designs upon the LULC classification results
obtained by RF classifier. In addition, we compare the performance of this classifier with
CART, SVM, and RVM classifiers for land cover mapping using multi-temporal satellite
remote sensing data. The research is carried out in a complex and rugged Himalayan
landscape where the availability of reference data is often limited. The study addresses two
major research questions: (1) what is the effect of various training sampling methods on
the classification results obtained by the RF classifier? and (2) how well do the evaluated
ML classifiers perform with respect to each other for land cover mapping in a complex
environment? An important contribution of this work is related to the understanding the
impact of stratified systematic sampling and stratified random sampling methods upon
the classification results obtained by the RF classifier and evaluation of the efficiency of
RVM classifier using GEE for land cover mapping.

2. Materials and Methods
2.1. Study Area and Datasets

Our study area is situated in Dehradun district lying in the northern part of India
and forming a part of the Himalayan landscape (Figure 1). It covers around 3088 km2

and is bound between latitudes 29◦56′33′ ′N and 30◦58′30′ ′N and longitudes 77◦34′45′ ′E
and 78◦18′30′ ′E. Physiographically, the district lies in the Outer and Lower Himalayan
zone. The elevation varies from about 315 to 2500 m above mean seal level. Dehradun, the
district headquarters and the capital of Uttarakhand State, is located in the intermontane
valley flanked by hills on its northern and southern sides. The major Himalayan Rivers,
the Ganga and the Yamuna, flow along its eastern and western boundaries, respectively.
The study area has a wide coverage of well-protected deciduous and evergreen forests
and also comprises a large spread of plantation and agricultural lands mainly in the valley
portion. The diversity of land cover classes present in Dehradun district along with the
rugged nature of the terrain that limits the accessibility for field campaigns in its northern
part make it a good candidate for the present study.

The datasets used in this study fall into three groups: (1) multi-temporal satellite
data; (2) ancillary dataset, i.e., already existing land cover maps; and (3) high-resolution
Google Earth images. Multi-temporal Landsat-8 Operational Land Imager (OLI) Surface
Reflectance images of 2017 at 30 m spatial resolution formed the first group of datasets.
These images are atmospherically corrected using Landsat-8 Surface Reflectance Code
(LASRC) and were accessed from the GEE repository. For identifying the land cover classes
present in the study area and preparing the reference data for further analysis (i.e., selecting
the training and testing samples), the following available land cover maps formed the
second group of datasets: (1) GlobCover map of 2015, released by the European Space
Agency (ESA) at 300 m spatial resolution under the climate change initiative [42] (obtained
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from http://maps.elie.ucl.ac.be/CCI/viewer/index.php accessed on 7 June 2020); and (2)
LULC map prepared at 1:50,000 scale under the project on Biodiversity Characterization
at Landscape Level (BCLL), hereafter referred to as the BCLL-LULC map [43]. The BCLL-
LULC map was generated using Indian Remote Sensing Satellite (IRS) data from 1998
to 2010. Since there is a temporal gap between the reference land cover maps used for
sample generation and the satellite images used for land cover classification, we assessed
the quality of the samples through visual interpretation using the high-resolution (0.5 m)
Google Earth images of 2017 (https://www.google.com/earth/ accessed on 7 June 2020).
Limited field campaigns have also been carried out in accessible areas during February
2019, which consisted of 22 points. The following nine land cover classes are considered
in the study: deciduous forest, evergreen forest, cropland, shrubland, grassland, built-up,
water bodies, river bed, and fallow land.
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Figure 1. The study area, Dehradun district shown as a false color composite of surface reflectance
images (bands 2, 3, and 4 depicted in blue, green, and red colors, respectively) of 2017, where a
median composite image is created using all the Landsat-8 Operational Land Image (OLI) images.

2.2. Methodology

The methodology used in this study is shown in Figure 2. The methodological steps
include the preparation of a reference land cover map (Section 2.2.1), preparation of
satellite datasets for land cover classification (Section 2.2.2), designing different sampling
strategies for selecting training data (Section 2.2.3), land cover classification using different
classifiers (CART, RF, SVM, and RVM) (Sections 2.2.4 and 2.2.5), and accuracy assessment
(Section 2.2.6).

http://maps.elie.ucl.ac.be/CCI/viewer/index.php
https://www.google.com/earth/
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2.2.1. Preparation of Reference Land Cover Maps

Since the collection of extensive ground truth data in our study area would have been
difficult, existing land cover maps (GlobCover and BCLL-LULC) were used for generating
training and testing samples.

The GlobCover and BCLL-LULC maps were resampled to 30 m pixel size to match the
spatial resolution of Landsat OLI images, and the land cover classes present in these maps
were aggregated at the broader taxonomy level following the International Geosphere
Biosphere Program’s (IGBP) land cover classification scheme [44]. Visual inspection of these
land cover maps using high-resolution Google Earth images and ground data indicated
some changes in the land cover classes. For example, we could detect differences between
the boundaries of water bodies in GlobCover and Google Earth Images; at a few locations,
shrubland was mapped as cropland in GlobCover, and there was also an overlap to some
extent between the shrubland and grassland classes in both the LULC maps. The presence
of croplands toward the northern part of the study area was captured well in BCLL-LULC
maps. While classes such as cropland showed better visual accuracy in BCLL-LULC maps,
the GlobCover map better represented the extent of Built-Up classes. Therefore, a new
reference map was generated by considering one LULC map as a source of class boundary
for each class. The selection of LULC map as a source for each class was done using
producer and user accuracy. The producer and user accuracies of GlobCover and BCLL
maps were evaluated to identify the class source and, class boundaries were extracted from
that LULC map which had better class-level accuracy for a given class. This was done for
six land cover classes: deciduous forest, evergreen forest, cropland, shrubland, grassland,
and built-up.

As the present study considered multi-temporal data for land cover classification,
three more highly dynamic, seasonal classes—water body, river bed and fallow land, were
manually delineated based on the visual interpretation of the multi-temporal Landsat
OLI images with high-resolution Google Earth images and field knowledge. Thus, a
new reference land cover map consisting of nine classes was generated to define strata
from which the training and testing samples were selected. Accuracies of the GlobCover,
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BCLL-LULC, and the new reference land cover map were evaluated using a test dataset
containing 100 randomly selected data per class through visual interpretation of high-
resolution Google Earth images, field data, and ground knowledge.

2.2.2. Preparation of Multi-Temporal Remote Sensing Data

Satellite data preparation task includes selecting Landsat-8 multi-temporal images
and their integration for capturing the temporal dynamics of the target land cover classes
(Figure 2). Multi-temporal Landsat-8 Operational Land Imager (OLI) Surface Reflectance
(Tier 1) images of 2017 were directly accessed from the GEE repository and the clouds were
masked out using the available quality bands. Considering that the land cover classes
in the study area are mostly vegetation classes, Normalized Difference Vegetation Index
(NDVI) is considered to help in better discrimination of land cover classes [45]. Therefore,
NDVI was calculated as per Equation (1) and included as an additional input variable for
the classification task.

NDVI =
NIR− R
NIR + R

(1)

Two types of Landsat-8 datasets were created as depicted in Table 1. The first dataset,
hereafter referred to as D-1, was created using the median values of blue (B), green (G), red
(R), near-infrared (NIR), and NDVI bands (i.e., n = 5 where n denotes the number of bands
in an image) for all the Landsat-8 OLI reflectance images available for 2017.

Table 1. Statistical dataset derived from Landsat-8 OLI 2017 images for image classification.

Dataset D-1 Median band values of B, G, R, NIR, NDVI bands

Dataset D-2 Mean, Median, Standard Deviation of B, G, R, NIR, NDVI bands
within 3-month groups of 2017

The second dataset, hereafter referred to as D-2, was created to capture the sea-
sonal/temporal variations of the land cover classes. For this, the images were grouped
at an interval of 3 months (i.e., for every quarter of the year starting from January). All
images within a 3-month group were aggregated as one image containing mean, median,
and standard deviation values for each band, resulting in m * n bands, where m refers to 3
aggregation types i.e., mean, median, and standard deviation. Finally, the quarterly images
were further combined as a single image containing 60 bands (i.e., 4 * m * n = 4 * 3 * 5 = 60).

2.2.3. Training Data Sampling Design

The stratified sampling approach ensures the selection of samples from all available
classes. Thus, the following three stratified sampling designs are studied: (1) Strati-
fied Equal Random Sampling (SRS(Eq)); (2) Stratified Proportional Random Sampling
(SRS(Prop)); and Stratified Systematic Sampling (SSS). Strata are defined based on the
classes present in the reference land cover map generated as explained in Section 2.2.1.
Within each stratum, training data are sampled using random (for different sample sizes)
and systematic methods. The sampling units chosen are individual pixels. The effect of
different sampling designs on LULC classification is further analyzed by evaluating the
classification results obtained by the RF classifier, which is widely recognized as one of the
best performing classifiers according to the literature [46].

To capture the possible variation in accuracies resulting from random sampling of
training samples, 100 replications of sampling are implemented for each sampling design
and sample size. The classification accuracies are obtained for all the trials, and average
values along with their standard deviation are reported and used for assessment.

Stratified Random Sampling

Two methods are used for allocations of random samples to strata in this study. In
case of SRS(Eq), the number of samples selected in each class is equal to the total number
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of samples divided by the number of classes. For SRS(Prop), the total number of samples is
distributed into each class based on the area proportion of the land cover class in the study
area. If N represents the total sample size, c represents the number of classes, A represents
the total study area and ai represents the area of class i, then every class in the SRS(Eq)
method receives N/c samples and (ai/A) * N samples in the SRS(Prop) method. The whole
sampling process was performed in GEE on D-1 and D-2 satellite datasets.

In addition to different sampling strategies, we evaluated the impact of different
sample sizes on classification results. To fix a starting sample size, Cochran’s formula for
large populations (Equation (2)) is used by assuming an unknown proportion for each
class [47]:

n0 =
Z2 pq
e2 ,

(2)

where n0 is the sample size per class, Z is the z-value for a certain confidence, p is the
proportion of class in the population, q = 1− p, and e is the error margin.

For simplicity and maximum variability, p is defined as 0.5, e is defined as 0.05, and
confidence level is defined as 95% (i.e., Z = 1.96). Based on the formula, a sample set
size (training + testing samples) of 358 pixels per class was considered and further varied
to assess the impact upon the classification accuracy. Here, 30% of the sampled data is
randomly selected from each stratum to generate the testing samples.

Stratified Systematic Sampling

Systematic sampling has the advantage of choosing samples at a constant distance
from each other. This study mainly focuses on the SSA-MMSD technique to find an optimal
distance between the sample points. The SSA-MMSD technique helps in obtaining the
minimum distance in a class within which every non-sampled pixel can reach the sampled
points. Hence, by placing the sample points at the distance obtained by this technique, we
can expect the samples to be heterogeneous. The SSA-MMSD technique is mainly used
here to obtain the optimal separation between sample points first and then to execute
sampling at this distance, unlike in the study of Van Groenigen and Stein [29], where this
technique is directly used to place the samples in a systematic grid. The semi-variance can
be used to optimize the initial sampling scheme [48]. In the current study, the semi-variance
parameter range is used to define the initial distribution of samples on which SSA+MMSD
is applied. By placing the initial samples separated by the distance defined by the range
of each class, we intend to reduce the iterations required in the SSA+MMSD technique
to obtain the final solution. For classes that report a large range, the average range of
all classes is used for initial distribution, as large distances do not contribute to the final
solution [30]. Based on the sampling distance obtained for each class, stratified systematic
sampling is performed on the datasets D-1 and D-2.

The ‘spsann’ R-programming package developed by Samuel-Rosa et al. [49] is used
for implementing SSA and MMSD functionality. The initial annealing temperature is set to
high values of 7000–50,000 to have a 95% acceptance probability of perturbations in the
first Markov chain [30]. The MMSD obtained at the end of the annealing process for each
class was used for sampling using GEE to obtain a systematic spread of samples.

2.2.4. Classification Using In-Built Classifiers in Google Earth Engine

Various image classification processes can be easily performed on GEE. The RF, SVM,
and CART classifiers available in the GEE are trained using the samples obtained using
the SRS(Eq) method. We selected this sampling based on its performance in this study
(Section 3.3). Classifiers are tuned with different input parameters as shown in Table 2. The
input parameter choice is based on the recommendations from previous literature, and the
best results are used for further analysis. To obtain a more representative performance of
the classifiers, the classification process is repeated for 100 trials within each sample size
considered.
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Table 2. Input parameter values used for different classifiers available in the GEE.

Classifier Parameter Values Supporting
Reference

CART Cross-Validation
Factor for Pruning 5 and 10 [50]

RF
Number of Trees

Number of Variables
per Split

50, 100, 150, 200
Square root of input variables

(
√

60,
√

5)
[46]

SVM
Kernel Type

Cost Parameter
SVM Type

Linear
210, 211, 3510, 212, 213, 214, 215

C_SVC
[51]

2.2.5. Integrating Relevance Vector Machine Classifier with Google Earth Engine

RVM is a Bayesian classifier that has the advantage of providing information on the
classification uncertainties. The current study uses the faster version of RVM developed by
Tipping and Faul [52] that implements a more optimized maximization of the marginal
likelihood function. Based on the parameterized variables (w) of the training data (x), the
Bayesian classifier builds a model with an overall aim of finding the probability distribution
of target values (y). To constrain the complexity and to prevent over fitting, hyper parameter
α is defined over w. For further details, refer to Shetty et al. [53]. The implementation of
the classification technique is summarized as follows. The following processes (a–f) are
repeated until α reduces to less than 10−4:

(a) A polynomial basis kernel function is defined, which is initialized to 1;
(b) A sparsity factor is calculated to determine the extent of overlap of basis vectors;
(c) A quality factor is calculated using the variance of the kernel function with the

probabilistic output of the training dataset;
(d) The posterior probability distribution is calculated using Sigmoid and Gaussian

convolution to determine α;
(e) If α = ∞, then the corresponding basis vector is retained; and
(f) If α < ∞ and the quality factor is less than the sparsity factor, then the basis vector is

removed.

In this study, the overall RVM classification was distributed between GEE and the
local computation system (Figure 3). While a verified Python implementation of the RVM
classifier by Shaumyan [54] was used for classification in the local system, the process
intensive tasks such as pre-processing of multi-temporal satellite images to create high-
dimensional datasets and extraction of samples were performed on GEE using earth engine
Python APIs.

2.2.6. Accuracy Assessment of the Classified Outputs

For evaluating the effect of sampling designs on classification accuracy and assessing
the performance of classifiers, the following metrics are used: overall accuracy (OA), user
accuracy, and producer accuracy. Among the various available metrics, OA is an effective,
easily interpretable, and most widely used metric for accuracy estimation [55]. The user’s
accuracy and producer’s accuracy, estimated from the confusion matrix, are used to further
evaluate the class-level performance of a given classifier. The test sample sets are chosen
through stratified random sampling using the reference land cover map such that the test
and training samples are spatially disjoint.

Understanding the comparative performance of RF, CART, SVM, and RVM classifiers
is another focus of the study. The relative comparison between the classifier pairs are
performed using the Z-Score. With the assumption that the sample distribution is inde-
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pendent, the significance of comparative results (Z) of two classifiers is established by the
following equation:

Z =
| p1 − p2 |√

s1
2 + s22

, (3)

where p1 and p2 represent the classifier accuracies in decimals, and s1 and s2 denote their
sample standard deviation. Given the null hypothesis, Ho: | p1 − p2 | = 0, and alternative
hypothesis H1: | p1 − p2 | 6= 0, the Z value is calculated for a given confidence level α/2 of
a two-tailed Z-test, and the null hypothesis is rejected if Z is greater than or equal to Zα/2.
In the study, the 95% confidence level is considered to compare the classifier performance
such that a z-score of more than 1.96 will suggest with at least 95% probability that one
classifier performs better than the other and there is only 5% probability that the successful
performance could be by chance.
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3. Results
3.1. Reference Land Cover Map

The average OA of the GlobCover and BCLL-LULC maps was 66.09% and 72.12%,
respectively. Table 3 provides the producer’s and user’s accuracies of the six land cover
classes in the GlobCover and BCLL-LULC maps for 100 trials. Based on these results, we
selected five land cover classes (i.e., cropland, evergreen forest, deciduous forest, shrubland,
and grassland) from the BCLL-LULC map and one class (i.e., built-up) from the GlobCover
map. As already mentioned in Section 2.1, the river bed, water body, and fallow land were
manually delineated.

The resulting reference land cover map was used for further analysis (Figure 4a). The
major land cover classes occupying the study area are cropland, deciduous forest and
evergreen forest, while the classes covering a relatively small portion of the landscape
include grassland, water body, shrubland, river bed, built-up, and fallow land (Figure 4b).
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Table 3. Average producer and user accuracies of GlobCover, Biodiversity Characterization at Landscape Level (BCLL)-Land
Use and Land Cover (LULC), new reference map, validated using test sample of 100 pixels per class. The corresponding
standard deviation of accuracie values are indicated based on the variations during 100 trials (BU—Built-Up, CL—Cropland,
EF—Evergreen Forest, DF—Deciduous Forest, SL—Shrubland, GL—Grassland, WB—Water Bed, RB—River Bed, FL—
Fallow Land).

Land Cover
Map BU CL EF DF SL GL WB RB * FL #

Producer’s Accuracy (%)
Globcover 89.77 ± 2.32 78.63 ± 4.33 90.88 ± 2.35 55.96 ± 1.92 46.83 ± 10.11 34.18 ± 19.41 98.11 ± 1.19 - -

BCLL-LULC 84.28 ± 2.74 76.43 ± 2.60 91.08 ± 2.43 73.14 ± 3.25 56.66 ± 3.55 70.64 ± 8.69 96.73 ± 3.15 55.02 ± 2.26 -
New Reference 85.97 ± 2.69 77.24 ± 3.47 98.67 ± 0.94 90.51 ± 2.37 73.29 ± 2.63 58.34 ± 2.50 69.42 ± 8.65 100 ± 0.00 98.55 ± 1.07

User’s Accuracy (%)
Globcover 100 ± 0.00 66.92 ± 3.90 85.41 ± 3.22 95.73 ± 2.66 13.55 ± 4.46 2.32 ± 1.43 100 ± 0.00 - -

BCLL-LULC 94.32 ± 2.22 84.94 ± 3.03 97.60 ± 1.46 99.58 ± 0.66 67.81 ± 4.04 13.42 ± 3.27 41.99 ± 4.49 76.59 ± 4.50 -
New Reference 93.65 ± 2.28 94.45 ± 2.49 100 ± 0.00 97.87 ± 1.52 99.13 ± 0.83 69.16 ± 4.38 14.68 ± 3.57 100 ± 0.00 82.52 ± 3.13

* Not present in GlobCover map. # Not present in GlobCover and BCLL-LULC maps.

Figure 4. (a) Reference land cover map prepared in this study and (b) area-wise distribution of land cover classes (excluding
the “no data” area).

The OA of the reference land cover map improved from 66.09± 1.2% and 72.12 ± 1.13%
of the individual reference GlobCover and BCLL-LULC maps to 83.49 ± 0.75% for the
combined reference map. Therefore, fusing existing land cover inventories proved to be a
viable source for training and testing samples especially for large and inaccessible study
areas where reliable and sufficient samples required for the classification of satellite images
are limited or unavailable.

3.2. Effect of Sampling Design on the Classification Results
3.2.1. Stratified Random Sampling

Table 4 shows the average overall accuracies of the land cover map and their standard
deviations obtained for datasets D-1 and D-2, using the SRS(Eq) and SRS(Prop) sampling
methods at different sample size, each repeated for 100 trials. The SRS(Prop) method
produced better OA as compared to the SRS(Eq) method (Figure 5). For a sufficiently large
total sample size of 9000, which includes a large number of pixels from all classes, the
SRS(Prop) method provides an approximately 6% better OA than SRS(Eq). Furthermore,
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the OA for dataset D-2 is in general higher as compared to dataset D-1 for different training
sample sizes (Table 4) and for both sampling design methods (Figure 5). The reported
standard deviation of OA results is low and < 1% for most of the sampling strategies.

Table 4. Average overall accuracy and standard deviation of Random Forest (RF) classified land
cover map obtained for D-1 and D-2 datasets using Stratified Equal Random Sampling (SRS(Eq)) and
Stratified Proportional Random Sampling (SRS(prop)) methods with different sample size (training
and testing samples) for 100 trials.

Sample Size

Overall Accuracy (%) with Standard Deviation (%)

SRS(Eq) SRS(Prop)

D-1 D-2 D-1 D-2

3222 63.62 ± 0.4 77.38 ± 0.4 76.07 ± 1 82.33 ± 0.9
9000 64.7 ± 0.3 78.91 ± 0.2 74.69 ± 5 81.24 ± 0.73

18,000 65.12 ± 0.27 79.28 ± 0.13 75.57 ± 0.5 83.96 ± 0.65
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overall accuracy for 100 trials.

The effect of training sampling design particularly in reference to the size of land
cover classes is presented in Figure 6. In terms of sample composition, 11.11% of the
total training sample is contributed by each class in case of SRS(Eq), while the minority
classes form only 2%–5.1% of the training samples in SRS(Prop). In case of SRS(Prop),
larger classes (such as deciduous forest and evergreen forest containing 37% and 20% of
the training samples respectively) yielded better producer’s and user’s accuracies than
the minority classes (such as shrubland and grassland that comprise 5.1% and 2% of the
training samples, respectively). In contrast, minority classes have significantly higher
producer’s and user’s accuracies in case of the SRS(Eq) method with an average increment
in accuracy of 44% between the two methods (Figure 6a,b). On the other hand, larger
classes in the SRS(Prop) method perform slightly better (an increase of +3.885% in average
accuracy) than their corresponding SRS(Eq) results (Figure 6c,d). The variation of the
reported user and producer accuracies for repeated experiments is low and <2.5%.
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3.2.2. Stratified Systematic Sampling

In the SSS method, the sampling distance between the pixels is decided as follows:
the initial distribution of training data was done using the semi-variance range values of
each class. For dataset D-2, the range values varied from 216 m for fallow land to 3637 m
for evergreen forest (Table 5). Classes with less intra-class variability (based on class pixel
values) viz., deciduous forest, evergreen forest, and shrubland, have larger range values.
However, initial sample distribution with such a large distance results in a very reduced
number of training samples, which may not be a good representation of the class in a large
study area. Additionally, SSA with MMSD would have taken a large execution time for
such a large range. Hence, a reduced approximate average class range value of 1500 m
is initially taken for the distribution of training samples in these three classes. Sampling
distance was optimized by the application of SSA+MMSD, where classes such as water
body and river bed experienced a reduction in sampling distance by 73.8% and 74.84%,
respectively. Additionally, classes with a large range have a significantly reduced value
of separation distance between training samples. With new values of separation between
the samples (Table 5), a systematic sampling is performed for each class. This method also
ensures that the sample size is automatically set.

The average OA of the RF classified land cover map using the SSS-based training
samples is 62.36 ± 0.12% for dataset D-1 and 66.12 ± 0.12% for dataset D-2 (Figure 5).
It is important to note that the OA for training samples obtained by applying only the
semi-variogram range parameter values for sampling was 41.3 ± 0.3%. Table 6 shows the
error matrix for the SSS method on dataset D-2. While large classes such as forests depict
good classification results, there is high confusion among cropland, grassland, and fallow
land. A certain amount of overlap also exists between a spectrally similar river bed and
built-up classes. Both commission and omission errors are observed in the shrubland class
from many other classes.



Remote Sens. 2021, 13, 1433 13 of 22

Table 5. Distance obtained from the range of a semi-variogram model and spatial simulated annealing
(SSA) using the minimum mean squared distance (MMSD) objective function on the training sample
distribution of each class for dataset D-2. For classes with very large range values such as evergreen
forest, deciduous forest, and shrubland, initial sample separation is not the same as the range. For
such classes, the initial sample distance taken is taken as an average class range 1500 m. The distance
obtained based on SSA-MMSD is used for systematic sampling which automatically sets the sample
size (BU—Built-Up, CL—Cropland, FL—Fallow Land, EF—Evergreen Forest, DF—Deciduous Forest,
SL—Shrubland, GL—Grassland, RB—River Bed, WB—Water Bed).

Class Initial Range Using
Semi-Variogram (m)

Minimum Distance
Using SSA+MMSD (m)

Final Training
Sample Size

BU 320 280 1006
CL 504 363 2719
FL 216 186 * 450
EF 3637/1500 259 * 1092
DF 2440/1500 1057 * 377
SL 2220/1500 242 2415
GL 333 250 207
WB 1200 314 63
RB 1110 279 * 131

* Rounded off to the nearest integer.

Table 6. Error matrix generated using the RF classifier for the stratified systematic sampling (SSS)
method with dataset D-2 and 100 validation pixels per class, during a single trial. The class-level
performance in terms of producer accuracy (PA) and user accuracy (UA) is depicted under PA
row and UA column (BU—Built-Up, CL—Cropland, FL—Fallow Land, EF—Evergreen Forest, DF—
Deciduous Forest, SL—Shrubland, GL—Grassland, WB—Water Body, RB—River Bed).

Reference Map

BU CL FL EF DF SL GL WB RB UA (%)

C
la

ss
ifi

ed
M

ap

BU 74 6 3 0 0 1 5 7 5 73.27
CL 15 65 36 5 3 11 52 7 12 31.55
FL 1 8 60 1 4 1 0 1 0 78.95
EF 0 6 0 79 10 9 0 0 0 75.96
DF 0 0 0 3 59 0 2 0 0 92.19
SL 2 14 1 12 21 77 19 7 0 50.33
GL 0 1 0 0 3 1 22 0 0 81.48
WB 2 0 0 0 0 0 0 77 2 95.06
RB 6 0 0 0 0 0 0 1 81 92.05

PA (%) 74 65 60 79 59 77 22 77 81
Overall Accuracy: 66%

The producer’s and user’s accuracies of SSS are consistently good for all classes.
SRS(Prop) and SRS(Eq) perform 13.59% and 7.59% better than SSS respectively for datasets
D-2 and D-1 (Figure 5). Although SRS methods have produced better results in most cases,
the accuracies obtained from SSS are still reliable.

3.3. Performance of the Evaluated Machine Learning Classifiers

The ML classifiers (RF, CART, SVM, and RVM) were applied on Landsat OLI datasets
(D-1 and D-2) for land cover classification using the training samples obtained by the
SRS(Eq) method. The OA of these classifiers (for the best possible input parameter selection)
versus the training sample size is shown in Figure 7. Three major observations are found.
Firstly, all the evaluated classifiers show higher OA for the dataset D-2 (containing more
features) as compared to dataset D-1. RF shows an average increase in OA of 14.08%, while
CART shows an 11.36% increase, SVM 3.19%, and RVM 6.07% for dataset D-2. Secondly,
the performance of the classifiers varies with the size of training samples. While RF and
CART classifiers provided comparatively higher OA of ≈79% and ≈72%, respectively (for



Remote Sens. 2021, 13, 1433 14 of 22

dataset D-2), they show a negligible change in accuracy with change in training sample
size (Figure 7a,b).
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On the other hand, the overall accuracies of the SVM and RVM classifiers decreased
significantly when increasing the training sample size (Figure 7c,d). The maximum over-
all classification accuracy (for dataset D-2) is 66.74 ± 0.58% in the case of SVM and
61.29 ± 1.56% in the case of RVM for smaller sample size of 175 pixels/class. Similar
results are observed for the dataset D-1 as well. Thirdly, the RF classifier consistently
shows higher performance as compared to other three classifiers. The OA is obtained as
78.91 ± 0.19%, 70.63 ± 0.4%, 64.26 ± 0.64%, and 57.76 ± 1.34% for RF, CART, SVM, and
RVM classifiers, respectively. The land cover maps obtained from all the four classifiers
for dataset D-2 and using the training sample size of 700 pixels per class are shown in
Figure 8. The analysis of producer’s and user’s accuracies revealed that the RF classifier
outperformed the other classifiers even at the class level, which was followed by CART,
SVM, and RVM. The producer’s and user’s accuracies of shrubland and grassland are
generally found to be low in all classifiers (Figure 9). This could be due to the quality of the
reference land cover map, which has been used to extract the labels of training samples.
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The statistical test on comparison of classifier performance showed statistically sig-
nificant difference between all classifiers except for SVM vs. CART (Table 7). In all the
comparisons, RF performed better than other classifiers 99% of the time, SVM performed
better than RVM with 98% probability, and CART performed better than RVM with 99%
probability.
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Table 7. Z-test results for classifier performance comparison at 95% confidence showing two-tailed
probability with test sample size of 675 pixels on dataset D-2.

RF vs. CART RF vs. SVM RF vs. RVM CART vs. RVM CART vs. SVM SVM vs. RVM

99.998 99.997 99.998 99.855 67.822 98.942

3.4. Application of Relevance Vector Machine (RVM) for Land Cover Classification

The results obtained using RVM for land cover classification on Landsat OLI datasets
are shown in Figure 7. It provided the highest OA of 61.29 ± 1.56% for the smallest created
training sample size of 175 samples per class on dataset D-2. With the same training sample
size, the OA decreased by ≈6% for the dataset D-1. The rate of decrease in the OA is
initially high for a small increase in the training sample size and then gradually decreased
with further increase in the training sample count. This happened because from a given
training sample set, RVM selects a smaller subset of samples called relevance vectors for
classifying the data. In the present study, we observed that even for a large training sample
size (up to 1400 pixels per class), RVM selects only one to three relevance vectors for each
class, resulting in a huge reduction in the actual training samples required for classifying
the data. These final relevant vectors formed only 0.011%–0.017% of the initial sample
size. The error matrix of the classified output obtained through RVM on dataset D-2 for a
training sample size of 175 per class showed about 62% pixels to be correctly classified with
only 20 relevance vectors (Table 8). Classes such as water body and river bed were mapped
well with >80% user accuracy. Most of the cropland classified pixels belonged to other
natural vegetation classes or fallow land. In general, producer’s and user’s accuracies of
<50% were observed in natural and managed vegetation classes.

Table 8. Error matrix obtained from the RVM classifier on dataset D-2 for sample size of 175 pixels
per class for one of the trials. The number of test samples is at an average of 75 pixels per class. The
class-level performance in terms of producer accuracy (PA) and user accuracy (UA) is depicted under
PA row and UA column (BU—Built-Up, CL—Cropland, FL—Fallow Land, EF—Evergreen Forest,
DF—Deciduous Forest, SL—Shrubland, GL—Grassland, WB—Water Body, RB—River Bed).

Reference Map

BU CL FL EF DF SL GL WB RB UA (%)

C
la

ss
ifi

ed
M

ap

BU 46 4 1 0 0 1 0 1 4 75
CL 4 33 1 1 2 3 7 0 1 48
FL 0 5 68 2 0 11 13 0 2 62.9
EF 1 6 0 52 3 19 16 2 0 45.6
DF 2 9 3 11 59 10 18 1 0 43.3
SL 0 9 0 5 4 30 13 0 0 40
GL 3 5 0 2 8 3 7 3 0 13.3
WB 5 1 0 1 0 1 1 65 3 90.5
RB 15 4 1 1 0 1 0 3 66 82.5

PA (%) 47.4 32.4 82.2 62.7 60.5 30.4 5.3 90.5 93.6
Overall Accuracy: 62.46%

RVM also provides additional information that helps analyze the classification errors
from the posterior probability distribution of test samples into each class. Table 9 shows
the posterior probability distribution of misclassified test samples where the probability
values are distributed into quartiles, with each quartile depicting the percentage of incor-
rectly classified pixels. A higher probability value indicates a higher chance of a classifier
misclassifying a pixel. It is evident that ≈80% of the total misclassified samples belong to
the natural and managed vegetation classes, while the remaining ones belong to built-up,
water body, and river bed. Built-up and water body classes are more accurately mapped
as compared to other classes. Furthermore, ≈82% of the total misclassified test samples,
mainly containing vegetation classes, fall in the first two quartiles (Q1 and Q2) with poste-



Remote Sens. 2021, 13, 1433 17 of 22

rior probability ranging from 0.17 to 0.42. Only≈13% and 4.3% of misclassified samples fall
in Q3 and Q4, respectively. Fallow land and river bed are the only classes falling in Q4, sug-
gesting that many of the classes tend to be misclassified with high probability/confidence
to either fallow land or river bed. Such understanding through the probabilistic output
of the RVM is critical to refine input satellite data and/or training–testing samples and,
consequently the classification output.

Table 9. Misclassified test samples based on posterior probability of classified output obtained
through RVM (BU—Built-Up, CL—Cropland, FL—Fallow Land, EF—Evergreen Forest, DF—
Deciduous Forest, SL—Shrubland, GL—Grassland, WB—Water Body, RB—River Bed).

Quartile
Posterior

Probability Misclassified Test Samples (%) in Allocated Class Total Mis-
classification

(%)(Min–Max) BU CL FL EF DF SL GL WB RB

Q1 0.17–0.29 4.3 5.9 2.4 4.0 15.8 3.2 4.3 1.2 1.2 42.3
Q2 0.30–0.42 0.0 1.6 3.6 10.7 5.5 8.3 5.1 1.6 4.0 40.3
Q3 0.43–0.54 0.0 0.0 5.1 4.0 0.0 0.8 0.0 0.8 2.4 13.0
Q4 0.55–0.67 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 2.4 4.3

Total Misclassification (%) 3.9 4.3 7.5 13.0 18.6 21.3 12.3 9.5 3.6 9.9

4. Discussion

The SRS(prop) sampling method obtained better classification results for the majority
of classes. Such results with proportional sampling can also be observed in studies such as
Heung et al. [56], where training sampling strategies were studied for digital soil mapping.
On the other hand, class-level performances of minority, i.e., infrequent, classes are found
to be better for SRS(Eq) than SRS(Prop). This outcome confirms the results reported by
Jin et al. [25]. Unlike SRS(Eq) and SRS(Prop), SSS relies on the class spatial variation and
standard deviation to obtain the training samples using SSA and MMSD. This ensured that
the SSS method performed consistently for all classes irrespective of the class size in the
study area. Our study showed that the SSS method is more suitable for classes with high
intra-variability (e.g., grassland) or large classes (e.g., deciduous and evergreen forests),
where proportional and equal sampling can over-represent a class. Since SSS is based
on the spatial distance, the training sample size is also automatically set. Additionally,
the usage of MMSD helps include heterogeneous pixels in the training sample. However,
SSS possesses a risk of error propagation if the first randomly chosen training sample is
erroneous. Thus, given the advantages and certain disadvantages associated with each
evaluated sampling method, this work proved the importance of understanding the class
heterogeneity, study area, classification requirement, and the classifier for choosing the
right sampling method. Furthermore, the results also account for the variation introduced
by randomization of the training sample selection.

The sample size is also one of the factors that influence the results of the ML classifier.
While increasing the sample size had a negligible effect on the accuracies of tree-based
classifiers such as RF and CART, classifiers such as SVM and RVM showed better OA
at smaller sample sizes. Similar results of RVM and SVM for smaller training sets and
higher dimensional datasets can be observed in the studies by Pal and Mather [57] and Pal
and Foody [19], which led the former authors to suggest using RVM as an alternative to
SVM, as it uses fewer training vectors. Although a few studies (e.g., Mountrakis et al. [16])
indicated that SVM is less sensitive to sample size, the present study showed a decrease in
accuracy when increasing the sample size. This may be due to the chosen input parameters
viz., cost parameter, type of kernel, and training sample quality. However, further tuning
of the cost parameter might help achieve better results for SVM when a larger sample size
is used for training. It was observed that RVM used a very small proportion of the training
samples, only 1-3 vectors per class. Our results are similar to the study reported by Pal
and Foody [19], where only 1-10 relevance vectors from the training sample were involved
in crop classification. This characteristic of RVM makes it an attractive classifier in areas
where a limited number of high-quality training samples is available. In our study, most of
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the misclassified pixels fall under the lower probability quartile of posterior probability
distribution. Approximately 4.5% of the test pixels were misclassified with high probability
to fallow land and river bed, indicating the need for refining certain training samples.
Further analysis indicated that most of the classified river bed was actually built-up class,
while fallow land and deciduous forest were confused with the shrubland and grassland.
Such analysis can be used to refine the input data further by adding more features and/or
improving training–testing samples so that they are well separated in the feature space
and away from the boundary for RVM to better discriminate the most challenging land
cover classes.

Irrespective of the sample size, RF performed better compared to other classifiers,
followed by CART, SVM, and RVM. Previous studies reported a similar capability of RF
and SVM classifier [58]. While some earlier studies reported better performance of SVM
over CART (e.g., Shao and Lunetta [59]), a few other reported vice versa (e.g., Goldblatt
et al. [34]). Our results showed similar performance of both SVM and CART.

Training sample quality is another factor affecting the classifier performance. In our
study, the training samples might have contained unavoidable errors due to the inherent
inaccuracy of the reference land cover maps. A large study area and rough terrain posed
limitations to acquire a sufficient number of good quality reference data from the field,
and we had to rely mostly on the available land cover maps. Therefore, certain classes
such as grassland and shrubland generally obtained producer’s and user’s accuracies of
<50% for all the classifiers. The low accuracy obtained for these two classes can also be
explained by the overlap of these classes with fallow land and other vegetation classes in
the feature space. However, we took advantage of the presence of incorrectly labeled data
to understand the classifier sensitivity to the quality of training samples. The obtained
results indicated that the kernel-based SVM and RVM classifiers are more sensitive to the
quality of the training samples as compared to RF and CART. Similar observations were
made by Foody et al. [60] for SVM, where intentionally mislabeled training data were
introduced into the training samples set. SVM’s affinity to boundary pixels and RVM’s
anti-boundary nature make them more sensitive to training data quality. RF classifier, on
the other hand, proved to be robust to the presence of noise in the training sample quality.
Previous studies have also reported low sensitivity of RF classifier to the quality of training
data [61].

Reported land cover classification accuracies were influenced by the input satellite
images as well. In this study, we used two derived datasets to capture the effect of season
dynamics of LULC and its influence on the classification accuracy. The study area consists
of dynamic land cover classes such as cropland, shrubland, grassland, deciduous forest,
water body, and river bed with high variations within a year. For example, the water body
extents change significantly within a year, and the cropland in the study area consists of
cereals, food grains, plantations, and pulses, and each of these crops shows a variation in
growth and density during the different seasons [62]. These changes are better captured
by dataset D-2, which captures variation in target land cover classes by grouping them
based on different seasons. The classification accuracies are also significantly higher for
D-2 when compared to D-1 (Figure 7). Therefore, a deep understanding of the temporal
dynamics of the classes of interest is recommended.

Land cover classification employing multi-temporal satellite images for large study
areas requires high computational resources. The GEE platform not only provided the data
and computational resources but also helped in performing most of the image processing
tasks through the built-in methods (i.e., RF, CART, and SVM classifiers). The integration of
an externally implemented RVM classifier by distributing the pre-processing part into GEE
shows the flexibility of this open cloud platform. However, additional tools to perform geo-
statistical processes on GEE such as semi-variance calculations and simulated annealing
need to be integrated on the platform as well.
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5. Conclusions

The accuracy of classified land cover maps from remote sensing data is affected by
various factors including the choice of classifiers, quality of training data, heterogeneity of
the landscape, or characteristics of the input remote sensing datasets. This paper aimed
at analyzing the impact of various sampling strategies upon the performance of the RF
classifier for land cover mapping using multi-temporal Landsat-8 OLI data on the GEE
platform. In addition, the classification results obtained by this classifier were compared to
those obtained by CART, RVM, and SVM. The study is carried out in a part of the Himalayan
landscape, where the availability of ground truth data is generally limited owing to rugged
terrain and inaccessibility. The following conclusions and recommendations are made
based on the results obtained in this study:

1. Among the sampling techniques assessed using the RF classifier, the SRS(Prop)
method produced the highest OA but obtained less satisfactory results for the un-
derrepresented, i.e., minority, land cover classes. The SRS(Eq) method achieved a
slightly lower OA but mapped minority classes with good accuracy. The performance
of the SSS method increased significantly after applying the SSA+MMSD on the initial
distribution of training sample points. In this method, the producer’s and user’s
accuracies for all classes were consistently good for different datasets, but the OA was
lower than the SRS(Eq) method. We concluded that the training sampling method
should be chosen based on the class size and classification requirement: the SRS(Prop)
method is recommended when the difference between the size of target classes is
small, whereas the SRS(Eq) method should be applied for obtaining good accuracies
at individual class levels, irrespective of their areal extent. The SSS method using
SSA+MMSD techniques can be successfully used in case of large intra-class variability.
Given the high performance of RF and Artificial Neural Networks for land cover
mapping [21] and the importance of understanding training sampling strategies from
the current work, future research is recommended to assess the effect of sampling
strategies on the performance of deep neural networks. Given the limited number of
training samples available for our study area, deep neural network assessments fall
beyond the scope of this research.

2. The RF and CART classifiers performed relatively well for different sizes of training
samples. However, the SVM and RVM classifiers showed a decrease in performance
when increasing the training sample size. The RF classifier outperformed other
classifiers for all the training sample sizes and datasets. The performance of CART
and SVM are found to be similar in this study. The potential of the RVM classifier
should be further explored for land cover classification, especially due to its capability
to provide information about the classification uncertainties.

3. RF and CART classifiers proved to be less sensitive to the quality of training samples
as compared to the kernel-based SVM and RVM classifiers. The robustness of the
RF classifier to the training sample quality is as an additional advantage besides its
overall higher performance.

4. The performance of the RF and RVM classifiers proved to improve significantly as
compared to the CART and SVM classifiers when the dataset with additional features
such as seasonal variations represented by statistical measures, in terms of temporal
variability in spectral signatures, was used as input variables.

5. The availability of multi-dimensional remote sensing data, processing capability, and
flexibility to integrate with external programs makes GEE a vital platform for land
cover mapping and monitoring the change. The inclusion of geostatistical tools would
further strengthen its functionality.
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