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Abstract: Multiview synthetic aperture radar (SAR) images contain much richer information for
automatic target recognition (ATR) than a single-view one. It is desirable to establish a reasonable
multiview ATR scheme and design effective ATR algorithm to thoroughly learn and extract that
classification information, so that superior SAR ATR performance can be achieved. Hence, a general
processing framework applicable for a multiview SAR ATR pattern is first given in this paper,
which can provide an effective approach to ATR system design. Then, a new ATR method using
a multiview deep feature learning network is designed based on the proposed multiview ATR
framework. The proposed neural network is with a multiple input parallel topology and some
distinct deep feature learning modules, with which significant classification features, the intra-view
and inter-view features existing in the input multiview SAR images, will be learned simultaneously
and thoroughly. Therefore, the proposed multiview deep feature learning network can achieve an
excellent SAR ATR performance. Experimental results have shown the superiorities of the proposed
multiview SAR ATR method under various operating conditions.

Keywords: multiview; synthetic aperture radar (SAR); automatic target recognition (ATR); deep
neural network; feature learning

1. Introduction

Synthetic aperture radar (SAR) has been an important and powerful modern mi-
crowave sensor system in both military and civilian areas [1]. Due to its superior oper-
ational capabilities [2,3], SAR has played a significant information acquisition role for
reconnaissance and detection nowadays. In addition, SAR can obtain the electromagnetic
scattering characteristics of the detected targets and scenarios and acquire unique informa-
tion from the imaging results at microwave frequencies [4], which have been of remarkable
superiorities compared with other sensor systems.

With the improvement of the imaging capability of SAR systems, people have been
interested in not only SAR signal processing but also interpretation or recognition of the
real-world targets from SAR images. Automatic target recognition (ATR) [5–8] has become
one of the most attractive but challenging research hotspots in SAR application. From the
point of view of the users, an ideal ATR system should locate the regions with potential
targets of interests from the SAR image and give those targets with accurate category labels
intelligently and efficiently [9].

The general scheme of an end-to-end SAR ATR system, proposed by the researchers
from MIT Lincoln Laboratory, has three basic stages with a hierarchical processing [10],
i.e., detection [11], discrimination [12], and classification [13]. It aims to find the regions
of interests (ROIs) from the SAR imagery, screen the targets we wanted [14], remove the
false alarm clutters, and finally assign the classified attributes for the SAR targets with a
well-designed classifier. In order to make the intelligent SAR target recognition to a reality,
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people have proposed many novel SAR ATR methods in the past several years [15–26],
such as principal component analysis (PCA) [27], linear discriminant analysis (LDA) [28],
support vector machine (SVM) [15], adaptive boosting (AdaBoost) [29], conditional Gaus-
sian model (CGM) [30], sparse representation [19], iterative graph thickening (IGT) [20],
and so on, which generally performed well in applications.

To be viewed from a system level, there are generally two different SAR ATR genres
according to the implementations: template-based [10] and model-based [31]. The template-
based ATR system relies on template matching between the labeled target templates or
features and the class-unknown input SAR target. It is a sequential processing and has
advantages in simple construction and execution efficiency. Nevertheless, it is lacking in
sufficient knowledge and intelligence, and its recognition results could be interfered by
the operating condition variation and the template matching means. On the contrary, the
model-based system includes two modules, i.e., offline model construction and online
prediction and recognition, and tries to take a different approach to SAR ATR. It has much
more intelligence and flexibility than the template-based system. However, additional
complexity from the model construction and online prediction will also bring big challenges
for the model-based SAR ATR system.

The ATR approaches mentioned above often need to extract specialized features from
SAR images and predesign complex or sophisticated algorithms for target recognition. With
the development of artificial intelligence, a novel ATR genre based on deep learning [32]
has been growing fast and achieved remarkable performance in computer vision [33],
natural language processing, and image classification [34] domains. As a new type of
ATR approach, it can spontaneously discover and extract hierarchical and useful features
from input data and give effective solutions to complex target recognition tasks. Naturally,
due to the superiorities of deep learning, many significant works based on deep neural
networks have also greatly upgraded the performance of SAR ATR [16,21,22,24,35].

Most of the existing SAR ATR systems and algorithms regard the SAR images as
independent individuals, and they are often designed for single-input SAR images in
practical ATR missions. Actually, it is a complex electromagnetic inverse scattering process
for SAR imagery formation, and SAR images of the same target are often sensitive to
different viewing angles. Hence, it is difficult for us to mine enough information from a
single-input SAR image for ATR in general. On the other hand, SAR ATR will be benefited
from multiview measurements [36] because the multiview SAR images of the same target
could contain much richer classification information than single-view ones. SAR sensors
have the abilities of obtaining images of the same target from different views with spotlight
or circular modes in practice. Naturally, if the classification information could be effectively
exploited or learned from the multiview SAR images, the SAR ATR performance may be
significantly improved.

Inspired by this thought, a number of novel methods using multiview inputs have
been proposed in recent years, which are of high recognition accuracy. For example,
Ref. [36] shows the benefits of aspect diversity for SAR ATR based on the experimental
analysis, and Ref. [37] proposes a multiview SAR ATR method using a Bayesian classifier,
which improves the ATR performance. In Ref. [38], a machine learning based method is
proposed for SAR ATR using multiple acquisition from multiple sensors, which improves
the SAR target recognition performance greatly. Ref. [39] extracts the feature of the multi-
view SAR images using PCA and obtains a good classification result based on a radial basis
function neural network. In [40], two fusion strategies are involved for target recognition
with multiview SAR images, and the recognition performance excels the single-view based
methods. Ref. [41] employs joint sparse representation and proposes a novel multiview
SAR ATR method, and the experimental result shows its superiority. Ref. [42] exploits
the multiview SAR robust target recognition and further improves the ATR performance
based on sparse representation classification. Some multiview SAR ATR methods are also
proposed based on various deep neural network architectures [43–45], which could achieve
outstanding recognition results under different operating conditions.
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Generally, multiview SAR ATR is a complex and integrated information processing
procedure. In order to achieve outstanding multiview SAR ATR performance, two impor-
tant issues must be incorporated: a valid ATR processing framework and an appropriate
ATR algorithm for classification feature learning from limited raw SAR samples. A rea-
sonable processing framework is necessary for the effectiveness of multiview SAR ATR,
while the ATR algorithm is one of the most key points in the framework. Hence, it is
indispensable and desirable to establish a standard processing framework for multiview
SAR ATR architecture design and then search for an effective ATR algorithm.

In this paper, we will give a general processing framework for multiview SAR ATR
including three parts, i.e., raw multiview SAR data formation, multiview SAR data prepro-
cessing, and multiview target recognition, which can provide an effective and standard
way to multiview SAR ATR system design. Then, a novel ATR method using a multiview
deep feature learning network is proposed based on this framework. The proposed deep
neural network is with a multiple input parallel topology, and some specific modules
such as convolutional layer, convolutional gated recurrent unit (ConvGRU), weighted
concatenation unit (WCU), 3D convolutional layer, and 3D pooling layer are embedded
in this network. Both the intra-view and inter-view features of the input multiview SAR
images will be thoroughly learned with this elaborately designed multiview deep feature
learning network. Therefore, the proposed network can take advantage of comprehensive
and significant classification information from multiview SAR images and achieve high
target recognition accuracy.

The main contributions compared with available SAR ATR works are the following:
(1) We give a general processing framework for multiview SAR ATR, which can make
a paradigm for ATR system designs and future studies of this field. (2) A multiview
deep feature learning network is proposed for effective SAR ATR, and this network can
simultaneously extract the intra-view and inter-view features from multiview SAR images.
(3) Compared with the available SAR ATR methods, the proposed deep neural network can
achieve excellent ATR performances under various operating conditions but with limited
raw SAR data for training sample generation.

This paper is organized as follows: A general processing framework for multiview
SAR ATR is introduced in Section 2. Section 3 details the proposed SAR ATR method using
a multiview deep feature learning network. Experiments are carried out in Section 4, and
Section 5 gives the conclusions of our work.

2. Multiview SAR ATR Processing Framework

Practical implementation of SAR ATR had been summarized as a multistage process-
ing by the researchers from MIT Lincoln Laboratory in the last century [46], which is a
classical and excellent SAR ATR framework. Nevertheless, that ATR scheme was general-
ized and mainly designed for single-view input SAR image at the beginning. Multiview
SAR data are with higher dimensions than single-view ones, and contain rich classification
information, so this needs a more sophisticated and specific processing ATR scheme than
before. Therefore, based on the MIT ATR scheme, we give a general processing framework
that is appropriate for multiview SAR ATR.

The framework includes three specific parts as shown in Figure 1, i.e., raw multiview
SAR data formation, multiview SAR data preprocessing, and multiview target recognition,
each of which performs easily identifiable functions. Modules in this framework are
detailed as follows.
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Figure 1. Basic scheme of multiview SAR ATR processing framework.

2.1. Raw Multiview SAR Data Formation

The first module in the framework is to acquire the eligible and valid raw multiview
SAR images and find out the ROIs, which can locate the targets we wanted and reduce
the computational load of the ATR system. Generally, this module should contain two
processing steps, i.e., multiview SAR imaging and ROIs acquisition. Some SAR imaging
modes, such as spotlight mode [47] and circular mode [48], can continuously observe the
same scene or target and are perfect for raw multiview SAR images collection. Then, the
target chips with multiple views will be obtained by the ROI acquisition step, and there are
many target detection and discrimination methods that can be chosen to realize it.

2.2. Multiview SAR Data Preprocessing

After the raw multiview SAR data formation, the multiview SAR target chips are
obtained; however, there are still some problems to be solved. For example, the orientations
of the same target on the SAR chips are different, and the scattering information of the
target on the multiview SAR images could be inapparent. In addition, sufficient training
samples should be fed into the multiview SAR ATR algorithm to optimize its parameters
during the training phase. However, the amount of the available raw multiview SAR data
are often limited in practice, which could lead to overfitting of the ATR algorithm.

The aims of the multiview SAR data preprocessing are to eliminate the inconsistence,
enhance the scattering information, and augment the raw multiview SAR data for training,
which correspond to orientation correction, image enhancement, and data augmentation
in this module, respectively. After the data preprocessing, the multiview SAR data are
more suitable for the following ATR processing, and the classification information of the
multiview SAR targets will be more easy to learn than before.

2.3. Multiview Target Recognition

Multiview target recognition is the back-end module in the multiview SAR ATR
processing framework. It constructs ATR algorithms, receives the multiview SAR samples
from the preceding module, and assigns the most probable classified label for the target.
Essentially, this module is to learn and extract effective classification features from the input
samples and make optimal division for the features with hyperplanes in the feature space.

There are two kinds of very important features to be learned in multiview SAR images,
i.e., intra-view feature and inter-view feature. The intra-view feature means the inherent
scattering or structural feature of the SAR target within each view, while the inter-view
feature is the mutual feature in the multiview SAR image sequence, which is distinct from
single-view SAR ATR. Meanwhile, the inter-view feature includes two individual features.
When SAR observes the same target from different views, the correlated feature among the
multiview image sequence, namely the temporal feature, will contain intrinsic classification
information. In addition, the variation feature of the multiview image sequence, i.e., spatial
feature, can also provide complementary discriminative information of the same target and
benefit to ATR. Therefore, the most important point in multiview target recognition module
is to design an appropriate ATR algorithm to simultaneously learn classification features of
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both intra-view and inter-view from multiview SAR images. After feature learning, the
multiview target recognition module will give us an accurate class attribute of the target.

Thus far, the multiview SAR ATR processing framework is summarized as three
individual but related modules with several distinct steps. In this way, the multiview SAR
ATR problem can be effectively handled. While this ATR framework includes some specific
processing steps within each module, it is noted that not every processing step is absolutely
necessary; people could also make some adjustments in ATR practice.

3. Proposed Multiview SAR ATR Method

A multiview deep feature learning network is presented for SAR ATR in this section,
which is based on the above-mentioned framework and can simultaneously learn both the
intra-view and inter-view features of multiview SAR images. According to the multiview
ATR framework, we will first discuss the raw multiview SAR data formation and multiview
SAR data preprocessing. Then, the design of the feature learning network for multiview
SAR ATR will be given, and at last the configuration of the network will also be detailed.

3.1. Raw Data Formation

In the multiview SAR imaging pattern, the SAR sensor collects returns and obtains
the multiview images for a given target from different elevation and aspect angles. For
simplicity, the depression angle is set as constant here. Figure 2 shows the geometric
model of the multiview SAR imaging process. The given view interval is denoted as
θ, and the view number is k > 1. Then, the target chips with multiple views will be
obtained by target detection and discrimination methods. Using these raw SAR images
from different view angles, more classification information could be exploited than from
the single-view pattern.

Depression φ

View intervalθ 

z

y
x

View #1

Target

SAR Platform
View #2 View #3

View #k

Figure 2. Geometric model of multiview SAR ATR for a ground target.

3.2. Data Preprocessing

Before the training and recognition phases of ATR, some preprocessing steps are
needed for the raw multiview SAR data, which includes orientation correction, image
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enhancement, and data augmentation. The targets on SAR images are often sensitive to the
views and present themselves differently both in scattering characteristics and orientations
on the multiview images. In order to keep the scatting information of the targets from
multiview images while reducing their orientation difference, we align the targets to the
same orientation by aspect rotation with an affine transformation:[

u
v

]
=

[
cos φ − sin φ
sin φ cos φ

][
p
q

]
(1)

where φ is the rotation angle estimated by the SAR target aspect estimation method [49],
(p, q) is the original coordinates, and (u, v) is the transformed coordinates.

After target orientation correction, we employ the gray enhancement method based on
power function [50] to enhance the scattering information of the raw multiview SAR images:

x(u, v) =
[
x′(u, v)

]ρ (2)

where x′(u, v) is the original image and x(u, v) is the SAR image after information enhance-
ment, respectively, and ρ is the enhancement factor.

Next, we use a typical multiview SAR data augmentation method to generate adequate
samples for training [45]. Suppose X(raw) = {X1, X2, · · · , XC} is the set of raw SAR images.
The image set Xi = {x1, x2, · · · , xni} collected by SAR with their aspect angles 0◦−360◦

belongs to class yi. Their corresponding aspect angles are ϕ(xi). The class label set is
{yi ∈ [1, 2, · · · , C]}. For a given view number k > 1, all the view combinations of one class
SAR images can be obtained, and the combination number is Ck

ni
= ni!

/
k!(ni − k)!. Then,

the training data can be significantly augmented as the steps in Table 1. In Table 1, Ni is
the number of the multiview SAR image sequence from the combinations that fulfills the
selection condition in class yi, and the final input multiview SAR image sequence set for
training is X =

{
X1, X2, · · · , XC}.

Table 1. Process of multiview SAR data augmentation.

Initialization: view interval θ and view number k.

Input: raw SAR images X(raw) = {X1, X2, · · · , XC} and class labels {yi ∈ [1, 2, · · · , C]}.
for i = 1 to C do

Find out all view combinations of raw SAR images from class yi.

for j = 1 to Ck
ni

do

Arrange elements for each combination
{

xj1 , xj2 , · · · , xjk

}
,

s.t.
(

ϕ
(

xj1

)
< ϕ

(
xj2

)
< · · · < ϕ

(
xjk

)
orϕ

(
xj1

)
> ϕ

(
xj2

)
> · · · > ϕ

(
xjk

))
.

Find out Xi
j, s.t.

∣∣∣ϕ(xj1

)
− ϕ

(
xjk

)∣∣∣ ≤ θ.

end for

Get Xi =
{

Xi
1, Xi

2, · · · , Xi
Ni

}
.

end for

Output: multi-view SAR image sequence set X =
{

X1, X2, · · · , XC} for ATR algorithm training.

Figure 3 shows an example of using the data augmentation method to generate
multiview SAR samples for training. Suppose the view number is 3 in each view interval,
the data augmentation method can get nine 3-view SAR training samples from only six
raw SAR images. When the view number and interval increase, sufficient training samples
can be obtained for a given number of raw SAR images.
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Figure 3. Graphic explanation of the data augmentation method.

3.3. Multiview Deep Feature Learning Network

The basic architecture of the proposed multiview deep feature learning network is
shown in Figure 4. As we can see, this deep neural network employs a parallel topological
structure with multiview inputs, and these multiple inputs are progressively merged and
fused in different layers, which can effectively learn and extract the recognition information
from the SAR images with different views.

3D Convolutional+
ReLU

3D Max Pooling

Convolutional+
ReLU

     
     

     
     

 Dropout

Fully Connecte
d

Softm
ax Class

ifie
r
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Input view #1
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Input view #k
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ConvGRU
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Max Pooling
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 Concate
natio

n Unit

Convolutional+
ReLU

Max Pooling
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 Concate
natio

n Unit

Figure 4. Basic architecture of the proposed multiview SAR ATR network.

As is mentioned in Section 2.3, intra-view and inter-view features are two kinds of
important features that should be learned in multiview SAR images, which incorporate
complete classification information. The proposed multiview deep feature learning network
is designed with alternate convolutional and pooling layers in each branch, which can
learn the inherent classification feature of the target in the SAR image within each view and
reduce the feature dimension. Meanwhile, a special recurrent neural network structure,
ConvGRU, is implanted in the proposed deep neural network to extract the temporal
feature and learn the correlated feature among the multiview SAR images. In addition,
we propose a new spatial feature learning module, WCU, to effectively learn and fuse
the classification feature of the multiview SAR images between two different network
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branches. After all the network branches being merged, the feature maps are fed into a
3D convolutional layer followed by a 3D max pooling layer to further learn the inter-view
feature from the fused feature maps. Finally, the proposed network ends with a fully
connected layer, and the recognition decision is conducted by the softmax classifier.

From the basic architecture, it can be seen that the proposed multiview deep feature
learning network is capable of learning both intra-view and inter-view classification fea-
tures from multiview SAR images and benefits ATR. In the following discussions, we
will detail the network layers for intra-view feature and inter-view feature learning in the
multiview deep feature learning network.

The layers designed for intra-view feature learning from multiview SAR images
mainly include convolutional layer and pooling layer which are detailed as follows.

3.3.1. Convolutional Layer

Convolutional layer is inspired by the process of the biological neuron in the visual
cortex to a specific stimulus and can learn the features from images well. Thus, it can be
used to effectively learn the intra-view feature from the multiview SAR images. Here, let
a(l−1)

i be the ith feature map in l − 1 convolutional layer in our neural network, and it will

be connected to all the feature maps in the l layer by convolution operation. w(l)
ij denotes

the convolution kernel operating the ith input feature map to the jth output feature map
in the l convolutional layer, and b(l)j is the bias. The forward process in the convolutional
layer for each unit can be written as

z(l)j = ∑
i

a(l−1)
i ∗w(l)

ij + b(l)j (3)

where z(l)j is the output feature map, the symbol ∗ is 2D convolution operation. Rectified
linear units (ReLUs) are selected as the activation function after each convolutional layer,
which can increase the nonlinear properties of the proposed network. The ReLU can be
expressed as

a(l)j = σ
(

z(l)j

)
= max

{
0, z(l)j

}
(4)

3.3.2. Pooling Layer

Convolutional layer is often followed by a pooling layer in the structure of a deep
neural network. The pooling layer can select the local feature from its input feature map
and reduce the dimension of the feature, which is a perfect auxiliary for intra-view feature
learning. Here, we utilize max pooling operation in the proposed neural network, which
can be written as

a(l)j (x, y) = max
[
a(l)j (x · s1 + u, y · s2 + v)

]∣∣0≤u<p1,0≤v<p2 (5)

where s1 and s2 are the pooling strides, and p1 and p2 are the pooling window sizes. When
the pooling window on the feature map slides and computes the maximum in the window
as its output, the valuable local feature of the SAR images within each view is effectively
extracted, and the feature dimension is also reduced.

As the intra-view feature of the multiview SAR images is being learned by the convo-
lutional layer and max pooling layer, the modules for inter-view feature learning are also
designed in the proposed neural network, which are described in the following.

3.3.3. Convolutional Gated Recurrent Unit

Multiview SAR images contain the temporal feature among the sequence, which
could provide intrinsic classification information. Thus, the ATR performance will be
improved if we can extract it well from multiview SAR images. A recurrent neural network
is a special deep neural network that is suitable to learn the correlated feature of data
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sequence, which can handle this problem. A typical recurrent neural network structure,
gated recurrent unit (GRU), is able to adaptively extract the temporal feature by resetting
and updating the flow of information inside the unit, which has the potential of capture
dependencies among the multiview SAR image sequence. However, classical GRU is with
a fully-connected operation within each unit and cannot take advantage of the underlying
structural information of the feature maps learned from SAR images. We therefore employ
a kind of GRU with convolution operation, namely ConvGRU [51], to the proposed deep
neural network. It can obtain the superiority of recurrent unit but is more appropriate for
feature learning from multiview SAR images than classical ones.

The block diagram of ConvGRU is a two-input and two-output system and mainly
composed of reset gate, update gate, and some other operations, which is shown in Figure 5.
In the ConvGRU, when a new input arrives, the reset gate will control the feature learned
from a previous view we might want to remember, while the update gate will determine
how much the new feature of current view will be retained.

1−

Convolutional
+Sigmoid

Convolutional
+Sigmoid Convolutional

+Tanh

Reset Gate t r Update Gate t z

Input t a

1Previous State t − h

t
h

Current State t h

Output to

+

Figure 5. Basic block diagram of ConvGRU.

For a given ConvGRU, the input feature map is at and the state input of the previous
learned feature is ht−1. The reset gate rt and update gate zt are computed as

rt = sig(war ∗ at + whr ∗ ht−1 + br) (6)

zt = sig(waz ∗ at + whz ∗ ht−1 + bz) (7)

where war, whr and waz, whz are the convolution kernel, and br, bz are their corresponding
biases, respectively. sig(·) denotes a sigmoid function to transform input values to the
interval (0, 1). Then, the candidate hidden state of the ConvGRU can be computed as

h̃t = tanh[wah ∗ at + whh ∗ (rt � ht−1) + bh] (8)

where wah and whh are the convolution kernel, and bh is the bias. The symbol � indi-
cates Hadamard product, and tanh(·) denotes a tanh function to ensure the values of the
candidate hidden state to the interval (−1, 1).

Finally, the current state ht and the output of the ConvGRU are obtained by the
following equation:
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ot = ht = zt � ht−1 + (1− zt)� h̃t (9)

When the feature maps from previous network module arrive, the temporal feature
will be effectively learned from the multiview SAR image sequence by the ConvGRUs.

3.3.4. Weighted Concatenation Unit

The inputs or the feature maps are progressively merged and fused in different layers
in the proposed neural network. Thus, several concatenating operations should exist in the
network to extract classification information from different views. The input feature maps
are straightforwardly stacked in a traditional concatenation module, and the importance
of each feature map is treated as equal. However, the features learned from multiview
SAR images are different and their corresponding feature maps are of variation in different
network branches. Therefore, it is necessary to select beneficial spatial features, focus
on important features, and suppress trivial ones from different network branches during
feature learning. To this end, a new spatial feature learning module, WCU, is designed in
the neural network to learn and fuse classification feature from different network branches.
The block diagram of the proposed WCU is shown in Figure 6.

Feature Maps a

Feature Maps ′a

Concatenated Maps c

Weighting Maps mW

Weighted Maps d

Output

Figure 6. Basic block diagram of WCU.

Let feature maps a ∈ Rm×n×r and a′ ∈ Rm×n×s be two inputs flowed into the WCU,
and the feedforward propagation in the WCU is processed as{

c = conc(a, a′)
d = Wm � c

(10)

where c ∈ Rm×n×(r+s), function conc(·, ·) denotes concatenation operation as in Figure 6.
Wm ∈ Rm×n×(r+s) is the corresponding weighting maps to be learned, and the feature
maps d ∈ Rm×n×(r+s) are the output weighted maps of the WCU.

Through the weighted concatenation processing, WCU is able to find out the op-
timal weighting maps during network learning and concatenate and weight the input
feature maps, which can learn and emphasize meaningful spatial features of multiview
SAR images.

3.3.5. 3D Convolutional Layer and 3D Pooling Layer

After all the input views have been progressively merged in the network, the learned
feature maps are concatenated together. Then, those concatenated feature maps will flow
into a 3D convolutional layer [52] and a 3D max pooling layer, in which the inter-view
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feature from the fused feature maps will be further learned. In contrast to 2D convolution,
the input, convolution kernel, and the output are represented as 3D tensors in the 3D
convolutional layer, which can learn and fuse both the spatial and temporal features from
the preceding concatenated feature maps.

Specifically, the convolution is in the form of 3D calculation on feature tensors in 3D
convolutional layer, which can be written as

a(l)j (x, y, z) = σ

(
∑

i

P−1

∑
p=0

Q−1

∑
q=0

R−1

∑
r=0

a(l−1)
i (x− p, y− q, z− r)w(l)

ij (p, q, r) + b(l)j

)
(11)

where a(l)j (x, y, z) denotes the value of the output feature tensor at position (x, y, z), w(l)
ij

here is the 3D convolution kernel with a size of P×Q× R, and σ(·) is the ReLU nonlinear
activation function.

Usually, a 3D convolutional layer is followed by a 3D pooling operation to extract the
local feature and reduce the dimension of the feature tensor. Here, the 3D max pooling
operation is employed after the 3D convolutional layer, which can be expressed as

a(l)j (x, y, z) = max
[
a(l)j (x·s1+u, y·s2+v, z·s3+w)

]
(12)

where s1, s2 and s3 are the pooling strides, 0 ≤ u < p1, 0 ≤ v < p2, 0 ≤ w < p3, and p1, p2
and p3 are the pooling window sizes.

In addition, some other helpful module or operation, such as dropout and softmax
classifier, are necessary in the proposed network. Dropout operation [53] is a good choice
to reduce overfitting and widely used in neural network. It forces the network neurons
to have robust learning ability with the random active neuron combinations. In our deep
neural network, dropout operation is included after the last convolutional layer to increase
the generalization.

After all the intra-view and inter-view features of the multiview SAR images have
been learned, those feature maps are transformed as a feature vector connecting to a fully
connected layer. Then, the softmax classifier is used for the final recognition:

p
(

yi|z(L)
)
=

exp
(

z(L)
i

)
∑C

j=1 exp
(

z(L)
j

) (13)

where z(L) is the input feature vector to the softmax classifier, and C is the class number. Fi-
nally, the recognition result corresponds to the class with the maximal posterior probability.

3.3.6. Cost Function and Network Training

After the forward propagation, the proposed deep network will compare the class
label with the inferred output of the softmax classifier, which is calculated with the cross
entropy cost function:

L = −
C

∑
i=1

yi log p
(

yi|z(L)
)

(14)

The training method to minimize the cost function and optimize those trainable
parameters is similar to the common SAR ATR neural networks although the proposed
deep neural network has a complex network structure. The back propagation through time
algorithm [54] can be used to train the network parameters for temporal feature learning
module, i.e., ConvGRU, while training the rest of the proposed deep network is realized by
a back propagation algorithm. Once the network training phase finished, the proposed
deep network will get its optimal parameters, which can effectively learn various features
and make accurate classification for the input multiview SAR images.
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4. Experiments and Results

ATR performance of the proposed multiview deep feature learning network will
be evaluated in this section. First, the network architecture setup is specified, and the
multiview SAR training and testing data formation for experiments are also given. Finally,
we will extensively assess the performance of the proposed multiview deep network under
different SAR ATR operating conditions.

4.1. Network Architecture Setup

We will utilize two network instances with three and four input views to assess the
proposed deep network for SAR ATR, which are shown in Figure 7. The input SAR image
size for a three view network instance is 90× 90 and for four view network instance is
120× 120. The stride size in each convolutional layer is 1× 1, and in each pooling layer
is set as 2 × 2. The probability of dropout is 0.5 during training phase. Other hyper-
parameters in the proposed multiview deep network are shown in Figure 7, and those
hyper-parameters in the instance are determined by statistical validation and trials.

The proposed multiview neural network is implemented with the framework of
TensorFlow. The instances are trained with a minibatch size of 128 examples and learning
rate 0.001. Their weights and biases are initialized from Gaussian distributions with zero
mean and a standard deviation of 0.1. All the experiments are conducted on a PC with
Intel Core i9-10900K CPU at 3.70 GHz, 64.0G RAM, and a NVIDIA GeForce RTX 3080 GPU.
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Max-pool 2 2 ×

WCU

Input view #1

Input view #2 Conv.16@ 6 6 / ReLU×

Max-pool 2 2 ×

ConvGRU.16@5 5×
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Max-pool 2 2 ×
ConvGRU.16@5 5×

Conv.64@5 5 / ReLU×
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Conv.32@5 5 / ReLU×
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×
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Softmax

(a)

Conv.16@ 6 6 / ReLU×

Max-pool 2 2 ×

WCU

Input view #1

Input view #2 Conv.16@ 6 6 / ReLU×

Max-pool 2 2 ×

ConvGRU.16@5 5×

ConvGRU.16@5 5×

Input view #3 Conv.16@ 6 6 / ReLU×

Max-pool 2 2 ×
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Conv.32@5 5 / ReLU×
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Figure 7. Network instances with three and four input views. A convolutional layer is expressed as Conv. (number of
feature maps)@(convolution kernel size), and Max-pool p1 × p2 represents its pooling window size. (a) network instance
with three input views; (b) network instance with four input views.

4.2. Data Set

In our experiment, raw SAR images from the moving and stationary target acquisition
and recognition (MSTAR) program are employed to assess the recognition performance of
the proposed multiview deep neural network. The MSTAR program aims to develop the
advanced SAR ATR system in a battlefield environment under the support of U.S. Defense
Advanced Research Projects Agency and the U.S. Air Force Research Laboratory [55]. It
has collected a significant quantity of SAR images as the benchmark data set to evaluate
the performance of an advanced SAR ATR system, and those SAR images were acquired
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near Huntsville, AL, USA, by the Sandia National Laboratory using the Synthetic Aperture
Radar Target Location and Recognition System. The MSTAR data set includes a series of
0.3 m× 0.3 m resolution SAR images collected with an X-band spotlight SAR sensor. Those
images contain different types of vehicle targets and clutter, and ten classes of targets,
including T62 and T72 tanks, 2S1 rocket launcher, ZIL131 truck, BTR70, BTR60, BRDM2
and BMP2 armored personnel carriers, ZSU23/4 air defense unit, and D7 bulldozer, are
utilized in our experiment for ATR performance evaluation. The optical images of those
targets and their corresponding SAR images are illustrated in Figure 8.

The proposed multiview deep feature learning network will be tested both under
standard operating condition (SOC) and extended operating condition (EOC) to compre-
hensively evaluate its recognition performance. In the following Sections 4.3 and 4.4, the
two instances of the proposed deep network will be tested under SOC and EOC, respec-
tively. In addition, we will also compare the recognition performance of the proposed deep
network with some new published and widely cited SAR ATR algorithms in Section 4.5.

(a) (b)

(c) (d)

Figure 8. Optical images and MSTAR SAR images of targets. (a,b) optical images and their corresponding SAR images
for BMP2, BTR70, T72, BTR60, 2S1; (c,d) optical images and their corresponding SAR images for BRDM2, D7, T62, ZIL131,
ZSU23/4.

4.3. Results under SOC

In this experiment, we will evaluate the recognition performance of the network
instances with ten classes of typical vehicle targets under SOC. We only select part of the
raw SAR images with depression 17◦ from the MSTAR data set to generate multiview
SAR image sequences for network training. Their aspect angles of those selected raw SAR
images for each target type are all covered from 0◦−360◦. All of the raw SAR images with
depression 15◦ from the data set are used to generate testing samples. The usage of raw
SAR images in this experiment for training and testing samples generation is listed in
Table 2.

Table 2. Raw SAR images selection from the MSTAR dataset in experiments.

Training Testing

Target Types 3-Views Instance 4-Views Instance Target Types 3-/4-Views Instances

BMP2sn-9563 78 59 BMP2sn-9563 195
BTR70 78 59 BTR70 196

T72sn-132 78 58 T72sn-132 196
BTR60 86 64 BTR60 195

2S1 100 75 2S1 274
BRDM2 100 75 BRDM2 274

D7 100 75 D7 274
T62 100 75 T62 273

ZIL131 100 75 ZIL131 274
ZSU23/4 100 75 ZSU23/4 274
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Here, we use the method described in Section 3.2 to generate a large number of
multiview SAR image sequences from a few subsets of the MSTAR data set for deep
network training. The view interval θ is 45◦ in both the multiview training and testing
phase. There are 48,764 and 43,533 multiview SAR image sequences with 17◦ depression
for three and four input view deep network instances training, respectively. We randomly
select the samples from multiview SAR image sequences with 15◦ depression for testing.
For each class, the number of randomly selected testing samples is 2000, thus there are
20,000 tests for ATR performance evaluation in each SOC experiment.

The recognition results of the proposed deep networks with three and four input
views are shown in Tables 3 and 4, which are presented with confusion matrices. The rows
in confusion matrix represent the ground truths of the target labels, and its columns are the
predicted class labels by the ATR method.

Table 3. Confusion Matrix of 3-views network instance under SOC (Recognition rate: 99.30%).

Class BMP2sn-9563 BTR70 T72sn-132 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU23/4

BMP2sn-9563 99.60 0.10 0.00 0.10 0.10 0.00 0.00 0.10 0.00 0.00
BTR70 0.10 99.40 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00

T72sn-132 0.20 0.00 99.40 0.00 0.00 0.00 0.00 0.40 0.00 0.00
BTR60 0.20 0.40 0.00 96.10 0.50 1.20 0.00 1.10 0.50 0.00

2S1 0.00 0.00 0.10 0.00 99.90 0.00 0.00 0.00 0.00 0.00
BRDM2 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00

D7 0.00 0.00 0.00 0.00 0.00 0.00 99.70 0.00 0.30 0.00
T62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.60 0.40 0.00

ZIL131 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
ZSU23/4 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.50 0.00 99.30

Table 4. Confusion Matrix of 4-views network instance under SOC (Recognition rate: 99.62%).

Class BMP2sn-9563 BTR70 T72sn-132 BTR60 2S1 BRDM2 D7 T62 ZIL131 ZSU23/4

BMP2sn-9563 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BTR70 0.30 99.50 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00

T72sn-132 0.10 0.00 99.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BTR60 0.40 0.40 0.00 98.70 0.20 0.30 0.00 0.00 0.00 0.00

2S1 0.20 0.00 0.00 0.00 99.80 0.00 0.00 0.00 0.00 0.00
BRDM2 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00

D7 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00
T62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00

ZIL131 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.70 98.30 0.00
ZSU23/4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

It can be observed that the recognition rates of the proposed multiview deep feature
learning networks with three and four views are all higher than 99.00% under SOC in
the ten classes problem. From the experimental results in Tables 3 and 4, we can see that
the multiview SAR images are with much classification information, and the proposed
multiview deep network is able to learn both the intra-view and inter-view classification
features of these multiview SAR images but only with a few raw SAR data for training
samples generation. Hence, we can come to a conclusion that the designed deep network
architecture based on the general processing framework can obtain satisfactory recognition
performances in the SOC ATR experiment.

Part of the input testing multiview SAR samples and their corresponding output
tensors in the last fully connected layer are mapped into 2D Euclidean space by the t-
distributed stochastic neighbor embedding (t-SNE) [56] algorithm to illustrate the good
classification performance of the multiview deep feature learning network. T-SNE is
a powerful dimension reduction algorithm, which can help us study the distribution
characteristics of the high-dimensional data in a visualized low-dimensional space.
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Figure 9 shows the results of 2D visualization example of the input testing multiview
SAR samples and their corresponding outputs in the last fully connected layer of the two
proposed networks. In Figure 9, the sample points with the same color belong to the same
target class. Figure 9a,b illustrate the input multiview SAR samples and the corresponding
output for a 3-view network instance, and Figure 9c,d show the input and output of the
multiview SAR samples for the 4-view network instance, respectively.

From Figure 9a,c, we can see that the visualization results of the original multiview
SAR samples are mixed together and difficult to be classified in practice. Nevertheless, after
being processed by the proposed network, both the intra-view and inter-view classification
features are learned, and the samples with the same class label get close, and the samples
from different classes separate from each other in the visualized low-dimensional space,
which makes them easy to be distinguished and leads to satisfactory recognition results.
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Figure 9. Visualization of input multiview SAR samples and their corresponding outputs in the last
layer of proposed networks. Sample points with the same color belong to the same target class. (a,b)
Input multiview SAR samples and corresponding output for 3-view network instance; (c,d) input
multiview SAR samples and corresponding output for 4-view network instance.

4.4. Results under EOC

SAR ATR performances will be influenced by many kinds of operating condition
variations in reality. Thus, we will do some experiments to assess the ATR performances
of the multiview deep network with complex test scenarios under EOC. Here, we first
evaluate the performance of the proposed deep network with the testing data with large
depression angle variation denoted as EOC-D. The selection of raw SAR images in this
experiment is listed in Table 5. In this test, four types of ground targets, 2S1, BRDM-2, T-
72sn-132 and ZSU-234, in the MSTAR data set with depression 17◦ are selected for training
samples generation. Thus, there are 20,951 and 19,075 multiview SAR image sequences for
three and four input view deep network instances training, respectively. In addition, four
types of targets as shown in Table 5 with depression 30◦ are used to generate the testing
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samples. Then, 2000 samples for each class are randomly selected for ATR performance
evaluation in this experiment.

Table 5. Raw SAR images selection under EOC-D.

Training Testing

Types 3-Views Instance 4-Views Instance Depression Types 3-/4-Views Instances Depression

2S1 100 75
17◦

2S1 288
30◦BRDM2 100 75 BRDM2 287

T72sn-132 78 58 T72-A64 288
ZSU23/4 100 75 ZSU23/4 288

The recognition results of the EOC-D test are shown in Table 6, and it can be seen that
the three and four input view network instances can obtain good recognition results. The
top recognition rate of the proposed network instance can reach more than 97.00%, and the
recognition rates for all instances are higher than 95.00%. From an EOC-D test, we can see
that the training data have a constant depression angle; however, the test results for the
multiview deep network can still have relatively stable recognition performances under a
large depression variation condition.

Table 6. Confusion Matrix of multiview deep convolutional neural networks under EOC-D.

Network Instances Class 2S1 BRDM2 T72-A64 ZSU23/4 Recognition Rate (%)

3-Views
2S1 99.05 0.35 0.55 0.05

95.61BRDM2 0.00 100.00 0.00 0.00
T72-A64 13.40 1.30 84.95 0.35
ZSU23/4 0.60 0.00 0.95 98.45

4-Views
2S1 96.40 0.10 3.50 0.00

97.12BRDM2 0.00 99.90 0.10 0.00
T72-A64 0.35 0.00 92.55 7.10
ZSU23/4 0.00 0.00 0.35 99.65

Next, we will evaluate the performances of the proposed network under different
target configurations and versions’ testing conditions. The targets for training and testing
have different components such as extra fuel tanks under the target configuration variation
(EOC-C) test, while the version variation (EOC-V) test includes some structure difference
among the training and testing targets, such as the rotation of the tank turret and so on. All
of these conditions will add difficulties to accurate recognition but could be encountered in
real applications.

In this experimental setup, there are four types of ground targets with depression 17◦

that are selected as raw SAR images, and their type and number for each instance are listed
in Table 7. Thus, 14,445 and 11,380 multiview SAR image sequences are generated for the
three and four input view instances training, respectively. The raw SAR images selection
for testing sample generation under EOC-C and EOC-V are also listed in Table 8. Then, we
randomly select 2000 samples for each target type variation from these generated testing
data for performance evaluations.

The recognition results of EOC-C and EOC-V of three and four input view networks
are shown in Tables 9 and 10. It is worth noting that the columns of the tables correspond to
the four predicted classes, and the rows in these two confusion matrices denote the actual
target type with configuration or version variations.

Table 7. Raw SAR images selection in the training phase under EOC-C and EOC-V.

Types 3-Views Instance 4-Views Instance Depression

BMP2sn-9563 78 59
17◦BTR70 78 59

T72sn-132 78 58
BRDM2 100 75
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Table 8. Raw SAR images selection in the testing phase under EOC-C and EOC-V.

Operating Condition Types Number Depression

EOC-C

BMP2sn-c21 429

17◦ and 15◦

BMP2sn-9566 428
T72sn-812 426
T72-A04 573
T72-A05 573
T72-A07 573
T72-A10 567

EOC-V

T72sn-s7 419

17◦ and 15◦
T72-A32 572
T72-A62 573
T72-A63 573
T72-A64 573

Table 9. Confusion Matrix of multiview deep convolutional neural networks under EOC-C.

Network Instances Class BMP2 BTR70 T72 BRDM2 Recognition Rate (%)

3-Views

BMP2sn-c21 98.55 0.05 1.25 0.15

96.49

BMP2sn-9566 93.00 0.15 6.15 0.70
T72sn-812 3.45 0.05 95.85 0.65
T72-A04 7.65 0.15 91.50 0.70
T72-A05 0.25 0.05 99.50 0.20
T72-A07 1.50 0.00 97.90 0.60
T72-A10 0.50 0.10 99.15 0.25

4-Views

BMP2sn-c21 99.05 0.00 0.85 0.10

97.84

BMP2sn-9566 97.40 0.35 2.20 0.05
T72sn-812 2.55 0.05 96.90 0.50
T72-A04 3.45 0.10 95.90 0.55
T72-A05 1.90 0.00 97.90 0.20
T72-A07 1.65 0.00 98.25 0.10
T72-A10 0.35 0.05 99.50 0.10

From Table 9, it can be observed that the recognition rates of the two network instances
are higher than 96.00% and 97.00%, respectively. It shows that our proposed multiview
network can achieve excellent ATR performance when the testing targets have different
configurations.

Table 10 shows the recognition performances of the two network instances under EOC-V
test. It can be seen that the proposed network with three input views can achieve a recognition
rate over 96.00% in this experiment. In addition, with the input views of the network
instance increasing to four, the recognition rate can rise to 99.00%. These experimental results
above have proven that the proposed multiview deep feature learning network can obtain
outstanding recognition performances under different ATR operating conditions.

Table 10. Confusion Matrix of multiview deep convolutional neural networks under EOC-V.

Network Instances Class BMP2 BTR70 T72 BRDM2 Recognition Rate (%)

3-Views

T72sn-s7 4.65 0.95 94.30 0.10

96.30
T72-A32 0.70 0.00 99.20 0.10
T72-A62 0.60 0.05 98.60 0.75
T72-A63 3.95 0.00 95.15 0.90
T72-A64 4.85 0.15 94.25 0.75

4-Views

T72sn-s7 0.20 0.00 99.75 0.05

99.10
T72-A32 0.15 0.00 99.75 0.10
T72-A62 0.40 0.05 98.95 0.60
T72-A63 1.55 0.10 98.35 0.00
T72-A64 0.75 0.00 98.70 0.55

4.5. ATR Performance Comparison

In this subsection, we compare the multiview deep feature learning network with six
other methods which have been widely cited or recently published in SAR ATR. These
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ATR methods for performance comparison are adaptive boosting (AdaBoost) [29], iterative
graph thickening (IGT) [20], conditional Gaussian model (CGM) [30], joint sparse repre-
sentation (JSR) [41], sparse representation-based classification (SRC) [42], and a multiview
deep convolutional neural network (MDCNN) [45]. AdaBoost constructs an effective
classifier as a linear combination of base classifiers for SAR ATR. IGT is a two-stage ATR
framework applied in SAR images based on probabilistic graphical models. CGM is a good
SAR ATR classification method based on conditional Gaussian models. In addition, JSR
and SRC are two novel multiview SAR ATR methods based on a sparse representation
theory, and MDCNN is a deep learning multiview SAR ATR method.

The recognition rates under SOC and EOC for each ATR method are listed in
Table 11, and the results of ATR methods for comparison are cited from the related
literature [20,30,41,42,45]. The proposed multiview deep feature learning networks with
three and four input views are denoted as 3-VDFLN and 4-VDFLN, respectively. In
addition, the ATR performance of the proposed deep network with just one view denoted as
1-VDFLN is also tested here as a classic counterpart. Table 11 shows that the accuracy rates
of all the ATR methods are higher than 92.00% under SOC, but the performances of those
SAR ATR methods are both different under SOC and EOC tests. It can be seen that, due to
extracting much classification information from multiview SAR images, the recognition
accuracy rates of the ATR methods with multiview inputs are generally higher than that
with single-view approaches, especially under EOC tests. The comparison experiment
results demonstrate that the proposed multiview deep feature learning networks have
superior recognition performance in both SOC and EOC tests over the six other SAR
ATR methods.

Table 11. Recognition performance of various SAR ATR methods.

ATR Methods
Recognition Rates (%)

SOC EOC-D EOC-C EOC-V

AdaBoost 92.00 78.00 - 82.00
IGT 95.00 80.00 - 85.00

CGM 97.18 79.00 81.22 80.00
JSR 94.69 96.50 - -
SRC 98.94 - 96.78 -

MDCNN 98.52 94.61 95.45 95.46
1-VDFLN 96.58 89.40 93.67 91.81
3-VDFLN 99.30 95.61 96.49 96.30
4-VDFLN 99.62 97.12 97.84 99.10

All of the above experiments have shown the outstanding recognition capabilities of
the proposed multiview deep feature learning network, and have manifested the reason-
ability and validity of the multiview SAR ATR processing framework as well.

5. Conclusions

A reasonable and valid ATR framework and an effective ATR method are the two
important issues incorporated into the multiview SAR ATR domain. In this paper, a new
processing framework for a multiview SAR ATR pattern has been presented firstly. Based
on this framework, a novel ATR method with a multiview deep feature learning network
has been presented and applied to multiview SAR ATR as well. Two kinds of crucial
classification features, i.e., the intra-view and inter-view features existing in the multiview
SAR images, have been learned thoroughly by our multiview deep neural network.

Extensive experimental results have shown that the proposed multiview SAR ATR
method can achieve excellent recognition performances. Its recognition rates with three and
four views can reach 99.30% and 99.62% under SOC in a ten classes problem, respectively.
In addition, it can achieve superior recognition performances compared to existing SAR
ATR methods under various operating conditions such as depression angles, configura-
tions, and version variations. These good recognition capabilities of the proposed neural
network have also demonstrated the reasonability and validity of the given multiview
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SAR ATR processing framework in this paper. The subsequent research mainly consists
of new multiview ATR networks design and performance tests under more complex op-
erating conditions. Additionally, we will study how to improve the multiview SAR ATR
performance with small training samples.
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