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Abstract: Species distribution models have been used for various purposes, such as conserving
species, discovering potential habitats, and obtaining evolutionary insights by predicting species
occurrence. Many statistical and machine-learning-based approaches have been proposed to construct
effective species distribution models, but with limited success due to spatial biases in presences
and imbalanced presence-absences. We propose a novel species distribution model to address these
problems based on bootstrap aggregating (bagging) ensembles of deep neural networks (DNNs). We
first generate bootstraps considering presence-absence data on spatial balance to alleviate the bias
problem. Then we construct DNNs using environmental data from presence and absence locations,
and finally combine these into an ensemble model using three voting methods to improve prediction
accuracy. Extensive experiments verified the proposed model’s effectiveness for species in South
Korea using crowdsourced observations that have spatial biases. The proposed model achieved more
accurate and robust prediction results than the current best practice models.

Keywords: species distribution model; deep neural network; ensemble model; bootstrap

1. Introduction

Biodiversity is an indispensable asset for sustainable human life. Although biodi-
versity is vital to balance natural ecosystems, it has declined dramatically over the past
few centuries [1,2]. Humans have consumed biological resources as raw food material,
industrial products, and pharmaceutical resources [3–5], and their indiscriminate use, as
well as and rapid environmental changes, have adversely affected biodiversity preserva-
tion [6]. For instance, changes in agricultural forms, residential development, and logging
over the past decades have led to a 68% decline in the number of mammals, birds, reptiles,
and amphibians worldwide between 1970 and 2016 [7]. Negative biodiversity changes
can destroy stable ecosystem balances, and many ecologists have proposed strategies to
efficiently maintain ecosystem balance, such as species protection laws and habitat preser-
vation [8–10]. Many ecologists have addressed the importance of habitat preservation for
species protection, because it is very difficult to restore a habitat’s original condition once it
is destroyed. Various studies characterized habitats associated with species survival and
predicted species viability in new locations [11–13]. Species distribution models (SDMs),
also known as ecological niche models, habitat models, and range mapping, predict species
distributions based on observational data for the species and the related environment.
SDMs have become standard tools for ecological studies [14–17], greatly helping to un-
derstand the suitability of a particular species to a habitat and derive possible habitat
candidates. Methodologies for constructing SDMs are typically classified into presence-
only (PO) [18–20] and presence-absence (PA) [21–24] based SDMs. PO-based SDMs were
widely used before the advent of PA-based SDMs, since they did not require absence data
and provide a simple and fast assessment of environmental suitability at a given location,
e.g., the surface range envelop (SRE) [25] and Bioclim [26] methods. PO-based models
for constructing the environmental suitability model (ESM) were considered useful in
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terms of the intuitive understanding of a niche; they provide slightly different answers to
ecological questions than those of the typical PA-based SDMs. That is, PO-based models
have focused primarily on understanding the potential distribution of species from niches.
In contrast, typical PA-based SDMs have focused much more on the realized distribution in
the evaluation process [27,28]. Therefore, since these two models have different purposes,
it is not appropriate to compare them quantitatively.

Recently, PA-based SDMs have emerged with the development of machine learning
(ML) technology, making it possible to reflect relationships between various parameters in
the prediction. Consequently, SDM capabilities have improved dramatically and provided
a new perspective on ecological research. Starting with the generalized linear model (GLM)
and generalized additive (GAM) model, various ML methods—such as maximum entropy
(MAXENT), random forest (RF), and generalized boosted regression (GBM)—have been
used to construct SDMs. [29–35]. Moreover, by incorporating the PA approach (PA-ML
SDMs), SDM models can have their own feature learning process and model optimization
strategy. Most works on PA-ML SDMs focused on selecting the ML model that best suits
their purpose and finding the best configuration to improve the prediction performance of
the realized distribution of a given species.

However, some critical issues remain to be addressed to achieve meaningful predic-
tions using PA-ML SDMs. Typical PA-ML SDMs rarely considered strategies to generate
pseudo-absence data, with most approaches generating pseudo-absence randomly. Thus,
the pseudo-absence level was out of balance with the presence data, which negatively
affected predictive performance. The neglect of the spatial distributions of PA data col-
lected from citizen science databases can lead to bias because SDM prediction is strongly
dependent on the spatial distribution of PA data. Species observations collected by citizen
scientists are often biased and more aligned with citizen preferences than scientific objec-
tives [36,37]. For instance, observation data tend to be prevalently collected near urban
areas, where many citizen scientists live. Deep neural networks (DNNs) have achieved
superb performance in diverse domains, including classification, translation, and predic-
tion when enough data is available for model training. Even in SDM, DNNs could be
used effectively to identify potential habitats [38] compared to traditional SDM approaches
and overcome their shortcomings in prediction when sufficient data are available [39].
Moreover, the effectiveness of DNNs on SDM was evaluated based on various data sample
sizes and layer configurations [40].

However, there are several critical issues that most previous DNN-based works on
SDM have not considered: (1) Which method is more suitable for generating pseudo-
absence data in the SDM process, (2) How to obtain enough observation data with relaxed
spatial bias and generate a well-balanced dataset for SDM training, and (3) How to config-
ure DNN to further improve SDM performance compared to the existing SDM approaches.
In order to address these issues, in this paper, we propose a novel SDM model using a
bootstrap aggregating (bagging) DNN ensemble. The main contributions of this paper are
as follows.

1. We present three methods that generate pseudo-absence data to create PA datasets
from various citizen science databases [41–44].

2. We investigate several bias-minimizing methods, including selecting valuable envi-
ronmental features and generating bootstraps from PA datasets. We use variance
inflation factor (VIF) analysis to select suitable environmental features and use ran-
dom sampling with replacement to generate multiple bootstraps.

3. We predict species distribution using our ensemble DNNs trained with generated
bootstraps, three voting methods, and repeated cross-validation to ensure reliable
results. The generated models were compared to state-of-the-art practical SDMs using
five evaluation metrics.

The remainder of this paper is organized as follows. Section 2 describes the ma-
jor steps required to construct the proposed model, and Section 3 shows experimental
results to evaluate prediction performance and predicted species distribution
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visualizations. Section 4 provides an extensive discussion of the findings of the study,
and Section 5 concludes the paper.

2. Methods

Figure 1 shows the proposed model’s overall structure. The model comprises three
components: dataset construction, bootstrap generation, and ensemble model construction.
We first describe how to construct the dataset, including species observation data, environ-
mental variables, and pseudo-absence data. Then we explain how to generate bootstraps,
considering PA data balancing, and finally we discuss how to train multiple DNNs and
combine them to predict a particular species’ distribution.
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Figure 1. Proposed species distribution models (SDM) structure.

2.1. Dataset Construction

For dataset construction, we considered four least concern (LC) grade species and
one endangered (EN) grade species that are considered indicator species for South Korea’s
ecosystem, with known different habitat characteristics, as shown in Table 1. The obser-
vation data of target species including Hynobius leechii [45], Cyanopica cyanus [46], Platalea
minor [47], Hypsipetes amaurotis [48], and Hyla japonica [49] were collected from the GBIF
database. Hynobius leechii, known as the Korean salamander, is a species of salamander com-
monly found on the Korean peninsula which typically inhabits forested hills and wetlands.
Cyanopica cyanus mainly lives in Eastern Asia, including China, Korea, and Japan, and lives
in coniferous and broad-leaved forests. Platalea minor, known as the Black-faced spoonbill,
inhabits the marine coastal zone, the marine intertidal zone, and sea cliffs. Platalea minor
is mainly observed in Macau, Hong Kong, Taiwan, Vietnam, and South Korea in winter.
Hypsipetes amaurotis typically lives in the Far East of Russia, northeastern China, Japan,
and the Korean Peninsula. Hypsipetes amaurotis prefer tropical forests, but can adapt to
urban and rural environments. Hyla janoica, called the Japanese tree frog, is widespread
in Japan, China, northern Mongolia, the Russian Far East, and Korea. Hypsipetes amauro-
tis lives in mixed and deciduous broad-leaved forests, wetlands, and river valleys with
shrubs. This study is based on the observation data of the target species in South Korea,
shown in Figure 2.
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Table 1. Target species characteristics.

Scientific
Name

Sample
Image

IUCN Red List
Grade 1

Total
Observations in

South Korea

Total Presences
after Spatial Bias

Removal

Suitable
Habitats

Hynobius leechii
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Several studies have shown that a sufficient level of species observation data must be
obtained for a reasonable SDM performance [50,51]. Therefore, we collected observational
data from four popular citizen science databases: GBIF, VertNet, BISON, and Naturing.
As discussed above, species observational data in citizen databases are usually spatially
biased. Hence, we used the spatial thinning (ST) algorithm in the “spThin” package [52] to
alleviate data bias, which returns a refined dataset with the maximum number of presences
for a given thinning distance when run for sufficient iterations. ST identifies several new
subsets from a set of presences that meet the minimum nearest neighbor distance (NND)
constraint. The specific procedure is as follows: (1) A thinning distance x is determined by
the user. (2) Pair-wise distances between all presences are calculated. (3) For each presence,
the number of presences within distance x is identified. (4) The presence with the highest
number of neighboring presences within the NND is determined. (5) One of the presences
identified in Step 4 is randomly removed. (6) Steps 3 to 5 are repeated until no presence in
the dataset has a nearest neighbor closer than x. In this study, we set the thinning distance
to 10 km by considering the target area and the locations of species observation data.

The places where the species were observed were closely related to environmental
factors. In particular, land condition, season, and climate have a strong influence on species
migration or habitat determination. The climatic condition is generally an important factor
in determining the habitat in which a species can live, and the distribution of species can be
derived based on this at various spatial resolutions. In addition, most species’ occurrence
patterns are highly influenced by temperature and moisture, which are associated with
precipitation along the topography. Therefore, it is believed that the distribution of a
given species is closely related to topographic and climatic conditions. As all five species
have different suitable habitat types, and the sustainable living of each species relies
heavily on the land type, we selected the land types as predictors, which elaborately
represent the state of the land with a high spatial resolution. As a result, we considered
19 bioclimatic variables from the WorldClim dataset [53] and 14 land cover variables from
GlobCover 2009 [54] as input variables. We used 30 arcsec grid bioclimatic variables
corresponding to approximately 1 km resolution for small region predictions across South
Korea. The GlobCover 2009 dataset was converted from ENVISAT’s medium resolution
imaging spectrometer data with approximately 300 m resolution for each spatial grid. We
configured all layers’ resolutions to 3000 × 3000 pixels and cropped all layers to the entire
South Korean territory, represented by (125.000, 38.083), (129.583, 38.083), (125.000, 33.166),
and (129.583, 33.166). Cropped layers were georeferenced based on the World Geodetic
System (WGS84). Table 2 summarizes the 33 environmental variables used as input.

We used the variance inflation factor (VIF) to avoid over-fitting,

VIFi =
1(

1− R2
i
) , i = 1, . . . , p (1)

where R2
i is the coefficient of determination for xi on the other independent variables, and

p is the number of independent variables. VIF estimates the impact of the collinearity of xi
on the other independent variables.

VIF is calculated through linear regression, where the regression coefficient R2
i ∈ [0,1],

with R2
i = 0 if there is no multi-collinearity between the input variables, and vice versa.

VIF > 10 represents a strong collinearity, which will adversely affect the modeling results.
We performed a stepwise selection of environmental variables using VIF. Because VIF
values change after each variable is removed, it is not sufficient to use the entire set of
environmental variables in the initial comparison. Therefore, we eliminated environmental
variables with strong collinearity using a stepwise process to recalculate the remaining
input variable’s VIF value after eliminating variables with VIF > 10 [55]. For instance, we
calculated the VIF value for each variable, removed the variable with the highest VIF value,
and then recalculated all VIF values with a new set of variables until all values were below
the threshold.
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Table 2. Input variables employed.

Variable Name Description Data Type Spatial Resolution

Climate_01 Annual mean temperature Continuous 30 s

Climate_02 Mean diurnal range Continuous 30 s

Climate_03 Isothermality Continuous 30 s

Climate_04 Temperature seasonality Continuous 30 s

Climate_05 Max temperature of warmest month Continuous 30 s

Climate_06 Min temperature of coldest month Continuous 30 s

Climate_07 Temperature annual range Continuous 30 s

Climate_08 Mean temperature of wettest quarter Continuous 30 s

Climate_09 Mean temperature of driest quarter Continuous 30 s

Climate_10 Mean temperature of
warmest quarter Continuous 30 s

Climate_11 Mean temperature of coldest quarter Continuous 30 s

Climate_12 Annual precipitation Continuous 30 s

Climate_13 Precipitation of wettest month Continuous 30 s

Climate_14 Precipitation of driest month Continuous 30 s

Climate_15 Precipitation seasonality Continuous 30 s

Climate_16 Precipitation of wettest quarter Continuous 30 s

Climate_17 Precipitation of driest quarter Continuous 30 s

Climate_18 Precipitation of warmest quarter Continuous 30 s

Climate_19 Precipitation of coldest quarter Continuous 30 s

GlobCover_01 Rainfed croplands Boolean 300 m

GlobCover_02 Mosaic cropland
(50–70%)/vegetation (20–50%) Boolean 300 m

GlobCover_03 Mosaic vegetation
(50–70%)/cropland (20–50%) Boolean 300 m

GlobCover_04 Closed (>40%) broadleaved
deciduous forest (>5 m) Boolean 300 m

GlobCover_05 Closed (>40%) needle leaved
evergreen forest (>5 m) Boolean 300 m

GlobCover_06 Open (15–40%) needle leaved
deciduous or evergreen forest (>5 m) Boolean 300 m

GlobCover_07
Closed to open (>15%) mixed
broadleaved/needle leaved

forest (>5 m)
Boolean 300 m

GlobCover_08 Mosaic forest or shrubland
(50–70%)/grassland (20–50%) Boolean 300 m

GlobCover_09 Mosaic grassland (50%–70%)/forest
or shrubland (20%–50%) Boolean 300 m

GlobCover_10 Closed to open (>15%)
herbaceous vegetation Boolean 300 m

GlobCover_11 Sparse (<15%) vegetation Boolean 300 m

GlobCover_12 Artificial surfaces and associated
areas (urban areas >50%) Boolean 300 m

GlobCover_13 Bare areas Boolean 300 m

GlobCover_14 Water bodies Boolean 300 m



Remote Sens. 2021, 13, 1495 7 of 29

2.2. Pseudo-Absence and Bootstrap Generation

To generate effective pseudo-absence data, we focused on how to balance the presence
and absence data, and where to generate pseudo-absence data. Although PA data should be
balanced for effective training, most previous studies have hardly considered this balance
when creating datasets. This class imbalance has hindered the predictive performance for
ML algorithms and can be alleviated by keeping the PA ratio intermediate [56].

Many SDM studies have shown that the locations implied by generated pseudo-
absence data can affect SDM predictive performance [56–58]. Randomly generated pseudo-
absence data is commonly used to construct SDMs, but this is not always best for all
cases [58]. Hence, we investigated random generation (RG), random generation with
exclusion buffer (RGEB), and random generation with environmental profiling (RGEP)
to find a stable pseudo-absence generation method utilizing the “mopa” package from
the R software repository [59]. This package provides designing tools for several factors
that influence SDM uncertainty, such as pseudo-absence generation, statistical analysis
of selected predictors, and climate projections widely accepted in the species distribution
modeling process. RG generates pseudo-absence data randomly across the entire area of
interest, whereas RGEB adjusts distances between pseudo-absence data using an exclu-
sion buffer. Several empirical studies have recommended the exclusion buffer = 10 km
around each presence location to avoid grids containing both presence and pseudo-absence
data [52–54]. Therefore, we also adopted a 10 km exclusion buffer when generating random
pseudo-absences. RGEP defines the environmental range in which pseudo-absences are
sampled. Inappropriate environmental areas can be inferred by one class support vector
machines (OCSVMs). An OCSVM, which is one of the unsupervised learning algorithms,
is trained only on normal data. In this study, the OCSVM learns the valid boundaries of
presences, so any point outside the boundary can be considered a valid site when gen-
erating pseudo-absences. Therefore, pseudo-absence locations generated by RGEP are
not environmentally similar to presence locations. We have attached the pseudo-absence
generation code using the “mopa” package in the Supplementary Materials. Figure 3b–d
show pseudo-absence data generated by RG, RGEB, and RGEP, respectively, from the
corresponding presence data in Figure 3a.

We subsequently applied bootstrap sampling considering the PA balance. Bootstrap
sampling is a resampling method that samples independently with replacement from a
sample dataset with the same sample size and performs inferences among these resampled
data. Bootstrap sampling reduces biases and strengthens prediction model generalizabil-
ity [60,61]. Prediction model robustness can be improved by training using bootstraps and
combining them, which is known as bootstrap aggregating or bagging. Many studies have
shown advantages from bagging [60–62]. We generated 10 times more pseudo-absence
data than presence data using three pseudo-absence data generating methods, as shown in
Figure 3b–d, and selected the same number of pseudo-absence data points as the number
of presences, allowing for resampling with replacement. Bootstrap samples were generated
using the “boot” R package [62]. We included the code for generating bootstraps using the
“boot” package in the Supplementary Materials. Thus, we obtained N bootstrap samples
suitable for training machine learning models.
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2.3. Ensemble Approach for Model Construction

Recent deep learning developments have enabled new SDM possibilities. Since DNN-
based SDMs have already shown better performance than various traditional
models [38,63,64], we combined multiple DNNs constructed using bootstraps to max-
imize prediction performance, which is known as ensemble modeling. Figure 4a shows the
proposed DNN model structure for species distribution predictions. The model comprises
three layers, similar to typical DNN models, with the input layer receiving environmental
variables corresponding to PA locations. Hidden layers perform a weighted summation
of the inputs followed by a non-linear transformation. The output layer produces final
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predictions derived from softmax, which transforms all network activations into a series of
values that can be interpreted as probabilities. The sum of the probabilities of all classes
must amount to 1.
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To optimize the DNN, we calculated optimal hyper-parameters using grid search [59,60],
which includes an infinite number of grid search iterations, five cross-validations, four
hidden layers (with 250, 200, 150, and 100 neurons each), a batch size of 75, a learning
rate of 0.001, and 10,000 epochs with early stopping. Other hyper-parameters are L2
regularization, to prevent the overfitting of DNN, adaptive moment estimation (Adam)
optimization, to update the weights of the DNN model iteratively based on training data,
the rectified linear unit (ReLU) activation function, to overcome the vanishing gradient
problem, and the cross entropy error loss function, to calculate the difference between two
probability distributions. These hyperparameters were determined empirically because
they provided the best performance during cross-validation.

To initialize the weights for neuron inputs, we used the he-normal (HE) initialization.
Each DNN model Di was trained until the optimization process was done. Our trained
DNN model was used to produce the probability of presence and absence for a species.
The more suitable the regions in the study area for a particular species’ habitat, the closer
the probability is to 1, and vice versa.
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Subsequently, we built an ensemble model based on the trained models to improve
generality and predictive performance. The ensemble technique reduces over-fitting and
provides a better predictive performance than a single model, and has been widely used
for ecological modeling [63,64]. Figure 4b presents the schematic of the ensemble model
construction process. Each DNN model Di trained by bootstrap sample i performs a five-
fold cross-validation. Then, each Di is evaluated by the true skill statistic (TSS) value that
is used as the weight in ensemble modeling. The trained DNNs, which can be regarded
as sub-models, were combined using majority (MV), weighted majority (WMV), and
weighted soft (WSV) voting schemes. MV is a simple and effective combination method
to solve classification problems, and we denoted class label outputs for sub-model Di as
c-dimensional binary vectors,

[di,1, ...di,c] ∈ {0, 1}c (2)

where i = 1, . . . , N; di,c = 1 or 0 depending on whether sub-model di,c correctly chooses c
or not; and N is the number of sub-models. The majority voting rule gives an ensemble
decision ŷ for class prediction.

ŷ = maxc
j=1

N

∑
i=1

di,j (3)

WMV assigns a weight to each sub-model and aggregates their prediction results.
The underlying concept is that an outstanding sub-model will have a relatively high
weight, ≈ 1, whereas weaker sub-models will have a relatively lower weighted
value, ≈ 0. Weight wi can be assigned to the ith sub-model using the normalized true skill
statistic for each sub-model, i.e., the average from a five-fold cross-validation. TSS is a
reliable evaluation metric for SDM performance. Hence, we used a normalized TSS for
the weight,

wi = NormalizedTSSi =
TSSi − Min(TSS)

Max(TSS)−Min(TSS)
, (4)

with the final prediction:

ŷ = argmax
j

N

∑
i=1

wi ∗ di,j (5)

Assuming the ensemble model is well calibrated for predicting species distribution, a
weighted soft voting scheme can be applied to combine the sub-models. Class labels are
determined based on the predicted probability p for each classifier,

ŷ = argmax
j

N

∑
i=1

wi ∗ pi,j (6)

2.4. Evaluation Approach

Five evaluation metrics were employed to assess SDM performance: area under
the curve (AUC), sensitivity, specificity, kappa statistic K, and true skill statistic TSS,
which have been widely used for ecological studies [56–58]. Table 3 shows the confusion
matrix summarizing correspondence between observations and predictions in terms of
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).
We used 0.5 as the threshold to calculate TP, TN, FP, and FN, which are widely used in
SDM evaluation.

Table 3. Confusion matrix for SDM evaluation.

Predicted Present Predicted Absent

Actually present True positive False negative
Actually absent False positive True negative
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AUC represents how well the model discriminates presence from pseudo-absence
data, where AUC closer to 1 implies better discrimination performance. Sensitivity, also
called hit rate, measures how well the model infers presence data,

Sensitivity =
TP

TP + FP
(7)

Specificity indicates how well a model can infer absence data,

Specificity =
TN

FN + TN
(8)

Kappa statistic K measures the extent to which the agreement between observed and
predicted is higher than that expected by chance alone,

K =

(
TP+TN

n

)
− (TP+FN)(TP+FP)+(FP+TN)(TN+FN)

n2

1− (TP+FN)(TP+FP)+(FP+TN)(TN+FN)
n2

(9)

Therefore, K can alleviate overestimating accuracy. TSS is defined from the standard
confusion matrix components and represents matches and mismatches between observa-
tion and predictions,

TSS = Sensitivity + Specificity− 1 (10)

TSS is often used as an alternative to AUC, and is probably the best model performance
summary. Table 4 shows the evaluation criteria for AUC, K, and TSS metrics to evaluate
SDM performance.

Table 4. Evaluation criteria for SDM performance metrics

AUC K TSS

Excellent ≥ 0.9 ≥ 0.9 ≥ 0.8
Good 0.8− 0.9 0.8− 0.9 0.6− 0.8
Fair 0.7− 0.8 0.7− 0.8 0.4− 0.6

Poor or no predictive ability ≤ 0.7 ≤ 0.6 ≤ 0.4

3. Experimental Results
3.1. Experimental Setting

The prediction performance for the proposed model was compared with the current
best practice SDMs on several public datasets. Datasets were balanced using three data
generation methods to solve the bias problem for most observation datasets, and their ef-
fectiveness was evaluated. Table 5 shows that the comparison SDMs included classification
tree analysis (CTA), shallow neural network (SNN), flexible discriminant analysis (FDA),
and multivariate adaptive regression splines (MARS), GLM, GBM, RF, SRE, and MAXENT.
All models were implemented using “BIOMOD2” in R, a popular tool for ecological mod-
eling [61]. Training strategies and selected parameters are also shown in Table 5. Three
prediction models were considered depending on the ensemble method: MV-based DNNs
for the ensemble (MV-EDNN), WMV-based DNNs for the ensemble (WMV-EDNN), and
WSV-based DNNs for the ensemble (WSV-EDNN). These were built using the Scikit-learn
Python package [65], with 80% of the target species observations as training and 20% as test
sets. We used the “BIOMOD_Modeling” function in the “BIOMOD2” R software package
to evaluate and calibrate the range of species distribution models techniques run over a
given species [64]. In the Supplementary Materials, we included the calibration results of
all prediction model and target species, as shown in Figures S1–S5. Our calibration process
was performed with an 80% random subpart of the given species’ presence-absence dataset.
To validate the prediction models, we used a five-fold cross-validation with five-time
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evaluation runs and recorded their average results. We included our experimental code in
the Supplementary Materials.

Table 5. Training strategies and selected parameters for the prediction models.

Prediction
Model

Training Strategies and
Selected Parameters

Modeling
Software

GLM
Quadratic regression

Akaike information criterion for environmental
layer selection

BIOMOD2 (R)

GBM Bernoulli distribution, 2500 trees, 7 depths, 5 terminal
nodes, 0.001 learning rate BIOMOD2 (R)

CTA Categorical classification, default tree parameter
(auto-optimized by BIOMOD2) BIOMOD2 (R)

SNN Single hidden layer, auto-optimized neuron size,
200 iterations BIOMOD2 (R)

FDA MARSs method BIOMOD2 (R)

MARS Simple piecewise linear, 0.001 threshold,
backward pruning BIOMOD2 (R)

RF Maximum 500 trees, default number of variables at each
split (auto-optimized by BIOMOD2), 5 nodes BIOMOD2 (R)

SRE 0.025 quantile for environmental variable selection BIOMOD2 (R)

MAXENT
Maximum 200 iterations, linear and quadratic variables,

default parameters for threshold and hinge
(auto-optimized by BIOMOD2)

BIOMOD2 (R)

DNN 4 hidden layers, using dropout, 10,000 iterations with
early stopping, ReLU, ADAM optimizer

Scikit-learn
(Python)

MV-EDNN 10 bootstraps, 5-fold cross validation of each bootstrap Scikit-learn
(Python)

WMV-EDNN 10 bootstraps, weights using TSS evaluation, 5-fold cross
validation of each bootstrap

Scikit-learn
(Python)

WSV-EDNN 10 bootstraps, weights using TSS evaluation, 5-fold cross
validation of each bootstrap

Scikit-learn
(Python)

3.2. Pseudo-Absence Generation Strategy Effects

This section compares various SDM performances under three pseudo-absence gener-
ation strategies. Although RG is popularly used to generate pseudo-absence data for SDM,
we also tested RGEB and RGEP to find the best method to improve predictive power. We
set the presence and pseudo-absence ratio for the training and test sets to 0.5, with 80%
and 20% dataset split, respectively. Tables 6–8 show average estimation results for the three
generation methods for all target species.

Table 6. SDM Performance using random generation (RG).

SDM Type
Mean Evaluation Metric

Sensitivity Specificity AUC K TSS

GLM 0.346 0.988 0.850 0.335 0.335

SNN 0.404 0.991 0.836 0.395 0.396

MARS 0.364 0.995 0.871 0.360 0.360
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Table 6. Cont.

SDM Type
Mean Evaluation Metric

Sensitivity Specificity AUC K TSS

RF 0.778 0.993 0.890 0.771 0.771

GBM 0.482 0.996 0.878 0.479 0.479

MAXENT 0.517 0.926 0.822 0.444 0.444

SRE 0.705 0.727 * 0.716 * 0.432 0.433

CTA 0.630 0.989 0.878 0.620 0.620

FDA 0.375 0.988 0.835 0.363 0.363

DNN 0.589 0.676 * 0.653 * 0.235 0.266

MV-EDNN 0.896 0.900 0.898 0.796 0.797

WMV-
EDNN 0.892 0.906 0.899 0.798 0.799

WSV-EDNN 0.889 0.907 0.898 0.795 0.796
Maximum achieved for each case is shown in bold text, * = Outlier, AUC = Area under the curve, K = Kappa
statistic, TSS = True skill statistic.

Table 7. SDM performance using RGEB.

SDM Type
Mean Evaluation Metric

Sensitivity Specificity AUC K TSS

GLM 0.589 0.987 0.936 0.576 0.576

SNN 0.645 0.992 0.909 0.638 0.638

MARS 0.584 0.986 0.938 0.570 0.570

RF 0.933 0.993 0.959 0.930 0.932

GBM 0.610 0.991 0.950 0.604 0.604

MAXENT 0.591 0.994 0.845 0.585 0.585

SRE 0.591 0.991 0.716 * 0.585 0.585

CTA 0.710 0.721 * 0.938 0.431 0.431

FDA 0.792 0.990 0.919 0.786 0.786

DNN 0.570 0.982 0.849 0.552 0.552

MV-EDNN 0.756 0.937 0.979 0.627 0.693

WMV-
EDNN 0.977 0.954 0.979 0.931 0.931

WSV-EDNN 0.975 0.957 0.979 0.932 0.933
Maximum achieved for each case is shown in bold text, * = Outlier, AUC = Area under the curve, K = Kappa
statistic, TSS = True skill statistic.
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Table 8. SDM performance using RGEP.

SDM Type
Mean Evaluation Metric

Sensitivity Specificity AUC K TSS

GLM 0.633 0.911 0.927 0.674 0.544

SNN 0.681 0.921 0.922 0.755 0.602

MARS 0.638 0.933 0.937 0.702 0.571

RF 0.932 0.97 0.951 0.94 0.902

GBM 0.691 0.925 0.952 0.758 0.616

MAXENT 0.655 0.927 0.854 0.693 0.582

SRE 0.72 0.788 * 0.776 * 0.614 0.508

CTA 0.733 0.971 0.943 0.68 0.704

FDA 0.714 0.924 0.915 0.688 0.638

DNN 0.688 0.918 0.88 0.642 0.606

MV-EDNN 0.952 0.954 0.965 0.949 0.906

WMV-
EDNN 0.977 0.971 0.966 0.958 0.948

WSV-EDNN 0.985 0.973 0.964 0.957 0.958
Maximum achieved for each case is shown in bold text, * = Outlier, AUC = Area under the curve, K = Kappa
statistic, TSS = True skill statistic.

Most SDMs showed a significant prediction performance improvement under RGEB
and RGEP compared with RG. Although RG is the simplest and most common method to
generate pseudo-absences, RGEB and RGEP provided a better predictive ability improve-
ment, resulting in more reliable prediction maps for species distribution.

Figure 5 compares the prediction performance for the three generation methods using
a five-fold cross validation. RGEP provided a better performance and variance for all
metrics compared with RG and RGEB, with mean sensitivity = 0.681, 0.589, and 0.645,
respectively. In the case of specificity, RGEB and RGEP methods reduced false absence
predictions, i.e., narrower specificity box ranges than RG. Considering AUC, K, and TSS,
RGEB and RGEP methods provided a better prediction ability for most SDMs than RG.
Thus, RGEP was the most effective overall method in terms of performance improvement.

3.3. SDM Stability for Unbalanced Datasets

This section investigates the SDM prediction stability for different presence to pseudo-
absence ratios. Training sets were organized by randomly selecting 0.8× n× π presences
and 0.8× n× (1− π) absences from the full dataset excluding test data, where n and π

represent dataset size and class ratio, respectively. We used 0.2× n× 0.5 as test presence
and absence. Table 9 shows the evaluation results for SDM target species with respect to π

using a five-fold cross-validation and mean evaluation metrics.
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Table 9. SDM evaluation metrics for various presence to pseudo-absence ratios (π ).

π
SDM
Type Sensitivity Specificity AUC K TSS

0.5

GLM 0.633 0.911 0.927 0.674 0.544

SNN 0.681 0.921 0.922 0.755 0.602

MARS 0.638 0.933 0.937 0.702 0.571

RF 0.932 0.970 0.951 0.940 0.902

GBM 0.691 0.925 0.952 0.758 0.616

MAXENT 0.655 0.927 0.854 0.693 0.582

SRE 0.720 0.788 0.776 0.614 0.508

CTA 0.733 0.971 0.943 0.680 0.704

FDA 0.714 0.924 0.915 0.688 0.638

DNN 0.688 0.918 0.88 0.642 0.606

MV-
EDNNs 0.952 0.954 0.965 0.949 0.906

WMV-
EDNNs 0.977 0.971 0.966 0.958 0.948

WSV-
EDNNs 0.985 0.973 0.964 0.957 0.958
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Table 9. Cont.

π
SDM
Type Sensitivity Specificity AUC K TSS

0.4

GLM 0.625 0.932 0.92 0.674 0.557

SNN 0.669 0.932 0.915 0.757 0.601

MARS 0.625 0.942 0.931 0.708 0.567

RF 0.930 0.972 0.955 0.948 0.902

GBM 0.668 0.937 0.945 0.751 0.605

MAXENT 0.628 0.942 0.850 0.694 0.57

SRE 0.714 0.801 0.779 0.507 0.515

CTA 0.722 0.973 0.949 0.675 0.695

FDA 0.645 0.942 0.910 0.692 0.587

DNN 0.662 0.922 0.878 0.614 0.584

MV-
EDNNs 0.944 0.958 0.961 0.945 0.902

WMV-
EDNNs 0.965 0.978 0.972 0.952 0.943

WSV-
EDNNs 0.962 0.975 0.971 0.957 0.937

0.33

GLM 0.589 0.965 0.92 0.648 0.554

SNN 0.621 0.965 0.916 0.723 0.586

MARS 0.615 0.952 0.934 0.693 0.567

RF 0.933 0.958 0.954 0.941 0.921

GBM 0.632 0.942 0.934 0.734 0.574

MAXENT 0.607 0.962 0.849 0.668 0.569

SRE 0.711 0.81 0.734 0.528 0.521

CTA 0.727 0.981 0.913 0.668 0.708

FDA 0.635 0.952 0.911 0.669 0.587

DNN 0.626 0.957 0.876 0.602 0.583

MV-
EDNNs 0.942 0.970 0.963 0.936 0.912

WMV-
EDNNs 0.947 0.986 0.963 0.946 0.932

WSV-
EDNNs 0.945 0.985 0.963 0.949 0.930
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Table 9. Cont.

π
SDM
Type Sensitivity Specificity AUC K TSS

0.25

GLM 0.553 0.972 0.921 0.632 0.525

SNN 0.608 0.973 0.916 0.711 0.581

MARS 0.609 0.965 0.934 0.666 0.574

RF 0.926 0.985 0.950 0.942 0.911

GBM 0.620 0.950 0.935 0.716 0.570

MAXENT 0.585 0.970 0.855 0.668 0.555

SRE 0.690 0.822 0.778 0.557 0.512

CTA 0.710 0.991 0.938 0.651 0.701

FDA 0.630 0.977 0.915 0.651 0.607

DNN 0.621 0.975 0.864 0.598 0.595

MV-
EDNNs 0.925 0.982 0.963 0.921 0.907

WMV-
EDNNs 0.935 0.989 0.964 0.950 0.924

WSV-
EDNNs 0.929 0.989 0.964 0.940 0.918

0.20

GLM 0.521 0.985 0.919 0.589 0.506

SNN 0.601 0.991 0.924 0.673 0.592

MARS 0.568 0.990 0.932 0.618 0.558

RF 0.925 0.998 0.963 0.937 0.922

GBM 0.601 0.994 0.934 0.676 0.595

MAXENT 0.535 0.988 0.845 0.614 0.523

SRE 0.684 0.835 0.777 0.477 0.519

CTA 0.625 0.995 0.947 0.651 0.620

FDA 0.605 0.986 0.914 0.612 0.591

DNN 0.584 0.986 0.852 0.527 0.57

MV-
EDNNs 0.910 0.992 0.968 0.918 0.902

WMV-
EDNNs 0.911 0.992 0.969 0.938 0.903

WSV-
EDNNs 0.913 0.992 0.968 0.936 0.905

Maximum achieved for each case is shown in bold text, AUC = Area under the curve, K = Kappa statistic,
TSS = True skill statistic.

Figure 6a shows that the highest results for all the evaluation metrics were achieved
for balanced class ratio, i.e., π = 0.5. The average sensitivity for most SDMs decreased
as π decreased, and vice versa for specificity. The three proposed models, MV-EDNNs,
WMV-EDNNs, and WSV-EDNNs, achieved the best overall prediction performance for
0.2 < π < 0.5. The bagging-based SDMs’ (the three proposed and RF models) performance
reduced as π decreased from 0.5 to 0.2. Sensitivity decreased considerably, except for
bagging-based SDMs, as π changed from 0.5 to 0.2, whereas specificity showed a relatively
large increase for GLM, CTA, SNN, GBM, and MAXENT SDMs (Figure 6b).

Figure 6c–e show that although GLM, SNN, MARS, GBM, MAXENT, SRE, CTA, and
DNN achieved a relatively high AUC, they had a relatively low K and TSS performance.
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Thus, these SDMs were good at predicting pseudo-absences, but were not good at predict-
ing presences. AUC has been a standard method to assess predictive distribution model
accuracy. However, it is highly affected by a well-predicted absence rate. All SDMs except
bagging-based SDMs exhibited significantly decreased K as π decreased to 0.2, whereas
bagging-based SDMs exhibited very little K reduction as π decreased. Thus, bagging-based
SDMs outperformed typical SDMs as the species datasets became more unbalanced.

3.4. Impact of the Ensemble Size

This section investigates the impact of the ensemble size for constructing SDM effi-
ciently. The ensemble size refers to how many bootstrap trained sub-models were combined
to build the final prediction model. Combining multiple sub-models does not always im-
prove prediction performance; hence, it is important to find optimal combinations in terms
of processing time and cost. Therefore, we measured sensitivity, specificity, AUC, K, and
TSS for increasing the ensemble size from 2 to 40 for five species (Hynobius leechii, Cyanopica
cyanus, Platalea minor, Hypsipetes amaurotis, and Hyla japonica). As above, we used a five-fold
cross-validation for MV-EDNN, WMV-EDNN, and WSV-EDNN, and average evaluation
scores to assess the impact of the ensemble size.

Figure 7 shows that although there is some difference depending on the species,
performance improved as the ensemble size increased up to a certain point, with relatively
little further improvement beyond that, e.g., maximum K and TSS = 0.891 and 0.890,
respectively, for Hynobius leechii when ensemble size = 27 (Figure 7a). Thus, an appropriate
ensemble size can provide a better performance than individual models in most cases.
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3.5. Case Study

We selected the Platalea minor’s distribution to verify the prediction outcomes. Platalea
minor, also known as black-faced spoonbill, lives mainly in Korea, Hong Kong, and Taiwan
and is designated as “endangered” in the IUCN red-list (see Table 1). The species has also
been designated as a Natural Monument (No. 205-1) by the Cultural Heritage Adminis-
tration of Korea and is classified as endangered species I by the Ministry of Environment
of Korea [66]. This species is the rarest of those considered here, with less than 2700 indi-
viduals observed in Hong Kong and Taiwan during the winter season. Platalea minor was
mainly observed on the west coast of the Korean Peninsula from June to August, which is
closely related to their breeding season [66,67], and suitable habitats include marine coastal
zones, estuaries, tidal flats, and fishponds. The bird is as tactile feeder, walking slowly and
stirring the water with its beak to catch its prey. Therefore, tidal flats and marine coastal
zones provide suitable foraging areas, combining shallow and turbid water. Platalea minor
collect sticks, etc., from nearby trees or pastures to build their nests, and the distribution of
observation data reflected their foraging and breeding habitats well [66].

Figure 8 shows that the observations of Platalea minor in South Korea were more
prevalent in and around the Incheon Bay (IC), Seosan Bay (SS), Gunsan Bay (GS), and Jeju
Coastal (JJ) regions. The endangered species has a limited habitat and hence a relatively
narrow range of observations. We used observations from IC, SS, and JJ as the training set
and observations from GS as the test set, with RGEP pseudo-absence generation.
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Figure 8. Platalea minor observations in South Korea.

Figure 9 shows the distribution prediction results for Platalea minor. WMV-EDNNs
achieved the best performance (Sensitivity = 0.976, TSS = 0.958) compared with other SDMs
(Sensitivity = 0.699 ± 0.108, TSS = 0.842 ± 0.094). Although the performance of RF was
slightly poorer than that of WMV-EDNN, it exhibited excellent prediction performance
(Sensitivity = 0.932, TSS = 0.931), considering it employed bootstrapping. Thus, when
using observation data with spatial biases collected in a narrow range (e.g., observation
data of Platalea minor), typical SDMs showed a relatively lower prediction performance
than bootstrap-based approaches.
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4. Discussion

The key to maintaining biodiversity is to preserve the habitats of endangered or
threatened species, or to find alternative habitats that are more likely to survive. According
to the IUCN report, it is estimated that as many as one million species are predicted to be
on the verge of extinction over the next decades. Therefore, a practical countermeasure
with a high probability of success is urgently needed. In this study, we showed that
well-trained DNNs and their ensemble have achieved better prediction performance than
typical machine learning methods such as GLM, GAM, CTA, SNN, FDA, MARS, RF, SRE,
and MAXENT, which are widely used for species distribution prediction. Our proposed
model can be used to find alternative habitats for endangered species, and can be regarded
as a long-term species conservation strategy.

In general, species’ presence and absence data are needed to build an SDM. If reliable
real absence data are not available, one alternative to obtaining absence data is to generate
pseudo-absences. Several studies have suggested that pseudo-absence data should be
confined to locations that are clearly not suitable for species habitats [56,68]. However,
for large study areas, it takes a very long time to individually identify such sites for each
species, and it is much more difficult to verify the ecological aspect. Therefore, we believe
that an effective pseudo-absence generation strategy is required to construct a practical
SDM. By implementing RG, RGEB, and RGEP, we have found that the RGEP method is the
best pseudo-absence generation method when true-absence data are not available. In the
modeling process, the bootstrapping approach is robust to changes in prevalence, so this
approach is worth considering if the acquisition of presence data is limited. Finally, we
used crowdsourced datasets to obtain data necessary for our SDM construction, which can
cause some biases in the observation data and prediction results. As far as we know, this
is an inevitable limitation when using crowdsourced data. In future studies, we plan to
develop standard procedures for SDM that include the reduction of observational bias, the
selection of the best environmental variables, and self-optimization.

5. Conclusions

Many ecological models have been devised for various purposes, including biodiver-
sity conservation, rare species protection, and habitat suitability assessment. However,
current SDMs suffer from critical limitations, such as data imbalance and spatial bias.
Therefore, we proposed a bootstrap aggregating (bagging) deep neural network (DNN)
ensemble species distribution model. Specifically, we collected sufficient observations
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from various citizen science databases, generated bootstraps to train DNNs, and finally
combined the DNNs using MV, WMV, and WSV techniques to provide stable ensemble
prediction models.

We compared the models with other SDMs to verify the proposed approach’s ef-
fectiveness using five evaluation metrics. WMV-EDNNs achieved a stronger and more
stable prediction performance than the other two ensemble models and existing SDMs for
diverse scenarios.

Platalea minor species distribution was visualized using map overlays to show pre-
diction results intuitively. Although Platalea minor observations had a spatially biased
distribution in the dataset, WMV-EDNN models achieved a superior predictive perfor-
mance compared with current SDMs. Thus, bagging-ensemble-based SDMs achieved
robustness prediction performance, although the observation dataset was spatially biased
and unbalanced.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13081495/s1, Table S1: Selected environmental parameters using stepwise VIF algorithm
runs (VIF < 10), Figure S1: Calibration results for Hynobius leechii distribution, Figure S2: Calibration
results for Cyanopica cyanus distribution, Figure S3: Calibration results for Platalea minor distribution,
Figure S4: Calibration results for Hypsipetes amaurotis distribution, Figure S5: Calibration results for
Hyla japonica distribution.
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