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* Correspondence: sylwia_szporak@sggw.edu.pl

Abstract: The aim of this study is to evaluate the effectiveness of the identification of Natura 2000
wetland habitats (Alkaline fens—code 7230, and Transition mires and quaking bogs—code 7140)
depending on various remotely sensed (RS) data acquired from an airborne platform. Both remote
sensing data and botanical reference data were gathered for mentioned habitats in the Lower (LB) and
Upper Biebrza (UB) River Valley and the Janowskie Forest (JF) in different seasonal stages. Several
different classification scenarios were tested, and the ones that gave the best results for analyzed
habitats were indicated in each campaign. In the final stage, a recommended term of data acquisition,
as well as a list of remote sensing products, which allowed us to achieve the highest accuracy mapping
for these two types of wetland habitats, were presented. Designed classification scenarios integrated
different hyperspectral products such as Minimum Noise Fraction (MNF) bands, spectral indices and
products derived from Airborne Laser Scanning (ALS) data representing topography (developed in
SAGA), or statistical products (developed in OPALS—Orientation and Processing of Airborne Laser
Scanning). The image classifications were performed using a Random Forest (RF) algorithm and a
multi-classification approach. As part of the research, the correlation analysis of the developed remote
sensing products was carried out, and the Recursive Feature Elimination with Cross-Validation (RFE-
CV) analysis was performed to select the most important RS sub-products and thus increase the
efficiency and accuracy of developing the final habitat distribution maps. The classification results
showed that alkaline fens are better identified in summer (mean F1-SCORE equals 0.950 in the UB area,
and 0.935 in the LB area), transition mires and quaking bogs that evolved on/or in the vicinity of
alkaline fens in summer and autumn (mean F1-SCORE equals 0.931 in summer, and 0.923 in autumn
in the UB area), and transition mires and quaking bogs that evolved on dystrophic lakes in spring
and summer (mean F1-SCORE equals 0.953 in spring, and 0.948 in summer in the JF area). The study
also points out that the classification accuracy of both wetland habitats is highly improved when
combining selected hyperspectral products (MNF bands, spectral indices) with ALS topographical
and statistical products. This article demonstrates that information provided by the synergetic use
of data from different sensors can be used in mapping and monitoring both Natura 2000 wetland
habitats for its future functional assessment and/or protection activities planning with high accuracy.

Keywords: remote sensing; hyperspectral; Airborne Laser Scanning; data fusion; Random Forest;
Recursive Feature Elimination with Cross-Validation; seasonal change; alkaline fens; transition mires
and quaking bogs; wetlands; Natura 2000
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1. Introduction

Wetlands for many years were treated all over the world as wastelands [1]. Currently,
it is already well recognized how significant a role they play by providing various ecosys-
tem services [2,3]. They shape local and regional water relations, retain water, reduce the
volume of maximum and minimum flows, participate in the process of water purification
and regeneration, play a significant role in the carbon and nitrogen cycle, and shape the
microclimate of the environment by increasing air humidity. Wetlands are a refuge for
many rare plants, animals, and increase biodiversity. Wetlands provide more ecosystem
services than any other terrestrial ecosystem on Earth [4–6]. Despite their significant role,
they are one of the most threatened ecosystems, suffering from continuous degradation
and loss [7].

Increasing destruction, deterioration, and fragmentation of wetlands has forced the
search for effective protection solutions. A result is an increasing number of monitoring,
conservation, and restoration programs as well as research studies that focus on changes in
the quantity and quality of wetland habitats at the global, regional, or local level. In order
to assure the long-term survival of Europe’s most valuable and threatened species and habi-
tats, the European Union established in 1992 under the Habitats Directive (the European
Union Council 92/43/EEC Directive, or Habitats Directive [8]) the EU-wide ecological
network of protected areas—Natura 2000. The habitats protected by the Habitats Directive
are listed in its Annex 1, and wetland habitats cover over 40 types. Among them, bogs,
mires (habitat code: 7140), and fens (habitat code: 7230), with their ability to accumulate
and store dead organic matter, are one of the most valuable and important due to their role
in global carbon balance. Unfortunately, these two habitats are also one of the most sensi-
tive to environmental changes. Protection of these habitats needs to be based on effective
planning that requires the use of high accuracy data presenting their present distribution.

Monitoring of Natura 2000 sites is carried out in already defined protected areas [9–11]
and is associated with the monitoring of species (both fauna and flora). The data collected
include the habitat range and distribution, characteristics of the vegetation occurring in
the habitat, and the selected abiotic elements relevant for the assessment of its condi-
tion, conservation status, and future prospects of the habitat. In many cases, research is
conducted every year (mainly one visit to a given site of unevenly distributed reference
plots), but observations made every five or six years also have a relatively large share
e.g., Article 17 requires the Member States to report every six years about the progress
made with the implementation of the Habitats Directive considering status and trends of
habitats and species. Time-consuming fieldwork is followed by data processing, analysis,
and preparation of maps and reports. The whole procedure is also relatively expensive.
Consequently, evaluation and monitoring of wetland habitats are limited to accessible and
small areas [12,13]. For these reasons, the development of effective monitoring methods
for wetland habitats is critical. Today’s level of development of remote sensing enables
mapping of Natura 2000 wetland habitats more effectively through the synergistic use of
both approaches: Field monitoring and remotely sensed one. The development of new
multi- and hyperspectral sensors, increase in the availability of remote sensing (RS) data,
the appearance of innovative technologies like Synthetic Aperture Radar (SAR), or airborne
LiDAR has significantly improved the quality of habitat delineation, their functional as-
sessment, and change detection analysis in different scales. The use and dissemination of
diverse RS products in habitat reconnaissance improved the effectiveness of traditionally
conducted monitoring, also limiting the impact of subjective assessment. For some time
now, the fusion of RS data analysis and field surveying with close cooperation between
the remote sensing specialists and ecologists or botanists is a recommended approach that
delivers the most precise results (EEA Technical report, 2014, [14]).

What unfortunately is still missing is associated mainly with the lack of standard-
ization of RS methods and tools used for a given habitat. It is necessary to develop a
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methodology that will be practical and implementable. Methods of habitat identification
should be reliable, objective, repeatable, efficient, and economically viable. Neither the
past nor the current practices of habitats monitoring have been well-reviewed in Europe,
as it was also marked by Lengyel et al., 2008 [11] almost a decade ago. In addition, each of
the Natura 2000 habitats has its own unique features, which also need the development
of specific guidelines defining the principles of monitoring within them in accordance
with the Habitat Directive (92/43/EEC; European Commission, 1992, [8]). For this reason,
research showing methodology for identifying and monitoring specific habitats using
remote sensing is important because it allows assessing capabilities and limitations of RS
techniques in a particular type of habitat. Vanden Borre et al. (2011) [15] disclosed and
summarized the real data needs behind the legal requirements for Natura 2000 habitat
monitoring and reporting, analyzed opportunities and constraints for remote sensing,
and featured bottlenecks and pathways to resolve them.

Amongst the most recent developments in applying RS data for mapping wetland
habitats are examples of biochemical and biophysical parameters of wetland species and
vegetation physiognomy and geomorphology studies using Airborne Laser Scanning data
(ALS). Hyperspectral remote sensing can detect distinct spectral signatures variations
across several hundred discrete bands, thereby providing more information on structure
and biochemistry than any multispectral imagery. Moreover, if acquired from the flight
ceiling, it has very high spatial resolution, allowing us to delineate more precisely the
extent of different habitats and capture transition areas between them. This is particu-
larly important, as the use of RS data with low spatial resolution in wetland areas due
to mixed pixels of heterogeneous vegetation increases the uncertainty of classification
results. In turn, he benefits of using ALS data is focused mainly on characterization of the
horizontal and vertical structure of the vegetation with high altimetry accuracy [16,17] or
on microtopography [18]. Despite many possibilities, LiDAR sometimes fails, especially
in areas with very dense vegetation of wetlands where it is impossible for the laser to
completely penetrate the canopy [16,19–22]. Similarly, aquatic vegetation also tends to
be problematic when saturated ground conditions or less dense erectophilic vegetation is
present [23]. The specific hydrological conditions of wetland areas determine the type of
data used for analysis. Therefore, SAR data is becoming more popular due to the differen-
tiation of textural and moisture attributes of the target related to its dielectric properties
as soil moisture characteristics, surface water, and inundated emergent vegetation [6],
as well as fusion ALS data with hyperspectral [24] or thermal data [25], are used in order
to reduce the restrictions resulting from the use of only one data source. Data fusion
integrates information acquired from different sensors to produce a dataset that contains
more detailed information than the sources alone [26,27]. This approach is recommended
in analyses within wetlands, as it results from the fact that in a simplified way, wetlands
can be defined by two main criteria: Geomorphological—gradient of the land surface,
and vegetal—vegetation types and structure [28]. Therefore, a combination of different
ALS products with optical imagery for mapping wetlands and taking into account these
criteria is important [29–33]. Currently, we see that RS techniques providing an enormous
resource of spectral, structure, or texture information for natural habitats are becoming
more widely available, but there is, nevertheless, a lack of studies disassembling these data
into factors indicating these most important features from the point of view of a specific,
unique habitat.

Note, however, that from the analysis point of view, not only the type of data and
optimal features are important, but also the processing tools and methods. Until recently,
the most commonly used methods in the mapping of various wetland habitats were a
decision tree—DTC [34–36] and maximum likelihood—MLC classifications [31,37–41],
as well as Object-Based Image Analysis—OBIA [32,42–46]. However, in recent years, other
computer-assisted advanced analytical tools are becoming more popular in wetland habi-
tats mapping. Machine learning methods such as Support Vector Machines—SVM [47],
Artificial Neural Network—ANN [48,49], Random Forest—RF [12,25,50–52], and tech-
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niques such as feature selection [24] have been developed, allowing us to manage a huge
amount of RS data. These tools allow us to enhance information extraction and significantly
increase the interpretation possibilities by exploring the spectral and spatial information.
Using all the features of the analyzed dataset might increase the computational cost as well
as error rate due to correlations between features [53]. Automatic classification procedures
employing RF and feature selection were successfully implemented in the research of Zlin-
szky et al., 2015 [54], Marcinkowska-Ochtyra et al., 2019 [55], and Demarchi et al., 2020 [24],
where ALS data were used to emerge relevant features for grasslands. To our knowledge
for the studied wetlands, there are far too few analyses using such possibilities. They are
extremely significant for decision-makers who must have up to date precision information
on the occurrence of these habitats. They must also be aware of the accuracy with which
these data were developed. The accuracy they can expect determines the possibility of
implementing a given RS method in the procedure of identification and monitoring of
wetland habitats.

The aim of this study was to develop remote sensing methods for identifying non-
forest wetland natural habitats of alkaline fens (code 7230 in Natura 2000 terminology)
and transitions mires and quaking bogs (code 7140) currently requiring agricultural use
in order to maintain or restore its ecosystem services and biodiversity. The evaluation
of identification effectiveness was performed in different seasonal stages depending on
various airborne remotely sensed data using Random Forest (RF) classification algorithm
in a multi-classification approach and Recursive Feature Elimination with Cross-Validation
(RFE-CV). The task was carried out in several stages including preliminary site reconnais-
sance, planning, and acquisition of remote sensing and botanical data, data archiving,
processing, identification of wetland habitats using several classification scenarios and
development of maps of their occurrence in a given area. In addition, it was determined in
which period of the growing season the studied habitats are classified best and why and
which RS products are recommended. Several various experimental scenarios were tested
in three periods of the growing season (Spring, Summer, and Autumn).

2. Materials and Methods
2.1. Study Areas and Examined Habitats

The research was carried out in Poland (Figure 1), on two endangered wetland habitats
of Natura 2000: Alkaline fens and transition mires and quaking bogs (habitat codes: 7230
and 7140, respectively, the Council Directive 92/43/EEC, [8]).

Alkaline fens consist of peat-forming plant communities that originated in areas con-
stantly fed by groundwater usually rich in calcium carbonate. The water table is shallow
all year round, and regular inundation is observed. The habitat is found in the ice-marginal
valleys, vast flat-bottomed post-glacial depressions, terrestrialized lakes in northern Poland,
but also on slopes in highland and mountain regions where groundwater discharges. Veg-
etation cover is shaped mainly by a species-rich and thick moss layer (e.g., Campylium
stellatum (Hedw.) C.E.O. Jensen, Bryum pseudotriquetrum (Hedw.) P.Gaertn., B.Mey. and
Scherb., Hamatocaulis vernicosus (Mitt.) Hedenas, Limprichtia cossonii (Schimp.) L.E. An-
derson, H.A. Crum and W.R. Buck, Fissidens adianthoides Hedw., Scorpidium scorpioides
(Hedw. (Limpr.)), and low sedges (e.g., Carex lasiocarpa Ehrh., C. davalliana L., C. diandra
Schrank, C. chordorhiza L., C. buxbaumii Wahlenb., C. panicea L., C. hostiana DC) mainly of
Scheuchzerio-Caricetea fuscae (Nordh. 1937) R. Tx. class. Other typical plant species often
associated with the habitat and predominant in the vegetation cover are Comarum palustre
L., Menyanthes trifoliata L., Thelypteris palustris Schott. Numerous rare and protected species
are also spotted in the habitat: Dactylorhiza incarnata L., D. majalis Rchb. f.) P.F. Hunt and
Summerh 1965, Epipactis palustris (L.) Crantz, Liparis loeselii (L.) Rich., Parnassia palustris L.,
Pinguicula vulgaris L., Primula farinosa L., Swertia perennis L., Tofieldia calyculata (L.) Wahlenb.,
Pedicularis sceptrum-carolinum L. [56]. Currently, in most cases alkaline fens are not mown
in Poland, but in the past, extensive mowing (once a year) was quite common, particularly
on drained mires located in large river valleys.
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Figure 1. Location of alkaline fens and transition mires and quaking bogs (habitat codes: 7230 and
7140, respectively, the Council Directive 92/43/EEC, [8]), the Natura 2000 research areas in the
Biebrza River Valley (Upper Biebrza—UB; Lower Biebrza—LB), and the Janowskie Forest (JF).

Due to changes in water supply, management regime, or trophic status, plant com-
munities related to alkaline fens often contain numerous species of other synecological
groups such as rushes (Phragmitetea R. Tx. et Prsg 1942), grass species, and other meadow
plants (Molinio-Arrhenatheretea R.Tx. 1937), shrub and forest species (Alnetea glutinosae
Br.-Bl. et R. TX. 1943), and plants of transition mires and bogs (Oxycocco-Sphagnetea (NORD-
HAGEN 1936) R. TX. 1937). The occurrence of forest species, expansive eutrophic rushes,
and herbaceous plants is particularly disturbing and leads to habitat degradation. As most
wetlands in Poland are drained, and thus destroyed, larger spatial former alkaline fen
complexes are nowadays heterogeneous in terms of water regime, trophic conditions,
and vegetation cover. In most cases, a groundwater supply (soligenous) typical for alkaline
fens is recognized only in the best developed and preserved parts.

Research for alkaline fens was carried out in the Biebrza River Valley (Natura 2000
site—PLH200008) on two research areas in the Upper and Lower Biebrza River Valley
(Figure 1), which are one of the best-preserved wetland habitats in Poland. The area
located in the Upper Biebrza River Valley has well-preserved patches of alkaline fens of
mesotrophic character [57] due to thick peat layer, abundant water supply, stable water
condition, and a not very efficient drainage system. The area in the Lower Biebrza River
Valley has habitat patches more often overgrown with reed beds, tall sedges, and herbs
thus are slightly affected by extensive drainage established already in the 19th century,
and on the other hand by eutrophic water entering the area during regular floods in the
springtime. The important factor responsible for the current state of the alkaline fens is
the relatively shallow peat layer and the occurrence of numerous mineral islands covered
nowadays by shrubs and trees.

Transition mires and quaking bogs are peat-forming communities developed in per-
manently waterlogged areas, fed by waters of the lower trophy, found on overgrowing
dystrophic lakes or areas with ombrogenous water supply. The habitat is usually saturated
with water, and the level of groundwater is close to the surface. In Poland, they occur in
the northern and eastern part of the country, and are related to lake lands. Vegetation cover
is formed mainly by a thick layer of various Sphagnum L. species (e.g., Sphagnum fallax
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Klinggr., S. recurvum P.Beauv., S. magellanicum Brid., S. rubellum Wils., S. warnstorfii Russow)
as well as low sedges (e.g., Carex lasiocarpa Ehrh, C. rostrata Stokes, C. limosa L.), cotton-
grasses (Eriophorum angustifolium Honck., Eriophorum latifolium Hoppe), Rhynchospora alba
(L.) Vahl., and Andromeda polifolia L. that form patches of a different physiognomy. Thus,
the habitat itself used to be internally diverse in terms of species composition, vegetation
structure, but also share of bare peat soil and open water. Important plant indicators of the
habitat are also cranberries Oxycoccus palustris L., Calla palustris L., which often predomi-
nates and various sundews Drosera L. sp. The significant share of trees (e.g., Pinus sylvestris
L., Betula pubescens Ehrh) and shrubs (e.g., Ledum palustre L., Vaccinium uliginosum L.) is
also a typical feature for the transitional mires. Due to oligotrophy and water conditions,
the habitat is usually excluded from agricultural use, although it occurs in the rural land-
scape in some regions quite often. Changes in water regime and natural or anthropogenic
eutrophication induce disturbances and cause rapid degradation of the habitat.

Research for transition mires and quaking bogs was carried out in the Uroczyska
Lasów Janowskich (Natura 2000 site—PLH060031) in southern Poland and in the Biebrza
River Valley, where various types of plant communities occur. In the first location transi-
tional mires developed on terrestrialized dystrophic lakes overgrown by Sphagnum carpet.
In the second location, the habitat evolves on alkaline fens where alimentation by relatively
nutrient-rich groundwater was cut and plant communities now rely only on nutrient-poor
rainwater.

2.2. Remote Sensing Data

The HySpex VNIR-1800 and SWIR-384 hyperspectral cameras and a RIEGL LMS
scanner (Riegl Laser Measurements Systems GmbH, Horn, Austria) were used in this study.
The VNIR camera (FOV:17–34◦; spectral sampling: 3.26 nm) allowed us to record data
in 0.4–1.0 µm, while the second SWIR camera (FOV: 16–32◦; spectral sampling: 5.45 nm)
in 1.0–2.5 µm spectral range (Norsk Elektro Optikk, Oslo, Norway, [58]) with a spatial
resolution of 1 m. Due to the fact that images from both cameras were acquired at the
same time and a part of the spectral ranges overlap, the data from both were combined to
create an image consisting ultimately of 470 spectral bands. The hyperspectral images were
radiometrically, geometrically, and atmospherically corrected. Geometric and atmospheric
corrections were performed using PARGE and ATCOR 4 software accordingly (ReSe
Applications LLC, Switzerland, [59,60]) and validated using ASD FieldSpec 4 spectral
measurements (ASD Inc., Longmont, CO, USA, [61]).

Hyperspectral data were also subjected to Minimum Noise Fraction transforma-
tion [62] as well as used to calculate 65 Spectral Indices implemented in ENVI 5.3 soft-
ware (see ENVI’s user guide for a detailed listing, https://www.l3harrisgeospatial.com,
(accessed on 1 October 2019) [63]).

The laser scanner data were gathered with a point-cloud density of 7 points/m2.
The LiDAR data processing included trajectory alignment, extraction, filtration, point
cloud classification, and creation of height models. The point cloud orientation was
performed using the RiProcess package in Riegl software (Horn, Austria, [64]) and cloud
classification using TerraSolid software (TerraSolid Ltd., Finland, [65]). ALS point cloud
data were used to generate several different topographic, vegetation, and intensity products
with 1 m spatial resolution to match optical data. Statistical products were calculated
in OPALS software (Orientation and Processing of Airborne Laser Scanning; Vienna,
Austria, [66]). It consists of 83 discrete and 42 added full-waveform (FWF) raster products
representing statistics such as maximum, median, mean, minimum, range, root mean
square, and variance of normalized height, amplitude, echo ratio, pulse width, and point
density on ground, vegetation or all point classes, as well as exposure, sigma, slope
performed on digital height models (DTM—Digital Terrain Model and DSM—Digital
Surface Model), and vegetation cover [67]. Topographic products were calculated using
SAGA software (Hamburg, Germany, [68]) and included Topographic Wetness Index
(TWI), Topographic Position Index (TPI), Direct Insolation (DirI), Duration of Insolation

https://www.l3harrisgeospatial.com


Remote Sens. 2021, 13, 1504 7 of 34

(DurI), Diffuse Insolation (DiffI), Total Insolation (TI), Multiresolution Index of Valley
Bottom Flatness (MRVBF), Multi-resolution Ridge Top Flatness (MRRTF), and Modified
Catchment Area (MCA). Airborne data were acquired three times per year during the
growing season (Table 1) to account for plant seasonal change (in June, July/August and
September/October).

Table 1. Dates of field botanical surveys and flight campaigns.

Name of the Research Area Area
Data Acquisitions

Data Type Spring Summer Autumn

Upper Biebrza (UB) 22 km2 REMOTELY SENSED 22.06.2017 12.08.2017 14.09.2016
BOTANICAL 30.06.2017 19.08.2017 03.09.2016

Lower Biebrza (LB) 37 km2 REMOTELY SENSED 27.06.2017 09.08.2017 14.09.2016
BOTANICAL 28.06.2017 16.08.2017 06.09.2016

Janowskie Forest (JF) 44 km2 REMOTELY SENSED 02.06.2017 19.07.2017 09.09.2017
BOTANICAL 07.06.2017 27.07.2017 05.10.2017

2.3. Botanical Reference Data

The data collection process was preceded by a stage of a preliminary survey of the
area including analysis of archival materials, as well as reconnaissance in the field focused
on gaining a general overview of the area considering habitat types, their diversity, current
state, land cover, but also of technical and/or logistic problems that could be faced with
during gathering botanical reference data. This allowed planning of data acquisition
locations. The reference botanical data were collected close to the time when the airborne
imagery was taken (Table 1, Figure 2).

Figure 2. Location of reference botanical data for each wetland habitat in the Upper Biebrza (UB: Alkaline fens—upper left,
and transition mires and quaking bogs—upper right), the Lower Biebrza (LB: Alkaline fens—lower left) and the Janowskie
Forest (JF: Transition mires and quaking bogs—lower right).
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Data were gathered in three types of land cover. In patches representing the exam-
ined wetland habitats, in patches of vegetation constituting the background vegetation,
and in patches with other land cover types such as water reservoirs, bare soils, and forests.
The background reference data represented patches of plant communities that did not
show any features of the examined habitats. Data were collected in reference polygons in
the shape of a circle with a radius of 3 m evenly distributed in the area considering their
floristic and phytosociological diversity (Figure 3).
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Reference polygons were established using a measuring device equipped with a GNSS
receiver with a measurement accuracy of 0.2 m (Spectra Precision GPS Mobile Mapper 120;
Spectra Geospatial, Westminster, CA, USA) in representative places, homogeneous in terms
of vegetation type and plant community structure, without obvious disturbances (no places
with visible traces of tractors, freshly mowed, places of old stacks or storage of biomass,
flooded with water, etc.). Particular attention was paid to the fact that within the reference
there were no trees and shrubs above 1.5 m in height, and the polygons were not in the
vicinity of high objects that might shade their surface during the day (forests, escarpments,
etc.). The scope of data collected included the date of the measurement, the reference
training area radius, habitat type and subtype, their conservation status, plant community,
land use, the cover of herbaceous plants, bryophytes, bare soil, open water table, and dead
organic matter. In addition, the quality of the data obtained in the field was checked using
homogeneity analysis based on t-SNE (t-distributed stochastic neighbor embedding) [69].
The aim was to capture the situation when the reference polygons of a wetland habitat
clearly stood out from others, e.g., due to different species composition, as well as cases
where the polygons strongly referred to other types of habitats.

2.4. Classification and Accuracy Assessment

In this research, the identification of wetland habitats was carried out using the RF
classifier (Figure 4). RF algorithm is a combination of tree predictors such that each tree
depends on the values of a random vector sampled independently and with the same
distribution for all trees in the forest [70]. The effectiveness of the RF classifier for land-
cover classification was proven by Rodriguez-Galiano et al., 2012 [71], among many other
authors. Additionally, the calculated accuracy and the ability to check the impact of
particular variables on the results were the decisive factors of choosing the RF algorithm.
The algorithm copes well with the data of many dimensions (expressed in the number of
variables used for the classifier training) and is relatively resistant to the phenomenon of
excessive adaptation to the training set.
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In order to assess the suitability of individual remote sensing products in the iden-
tification of the examined habitats, several classification scenarios were developed, and
the Recursive Feature Elimination with Cross-Validation was employed (Table 2). The sce-
narios included hyperspectral bands, MNF transformation bands, spectral indices, OPALS
statistical and SAGA topographic products derived from ALS data. The selection of a
number of bands in SC2 was based on the analysis of eigenvalues, where low values repre-
sented higher noise in the analyzed dataset. SC3 includes the first 3 MNF transformation
bands covering more than 95% information of the original hyperspectral dataset.

Table 2. Data sets used in a given classification scenario. MNF: Minimum Noise Fraction.

Level Scenario Data Set

Level 1
SC1 430 bands of hyperspectral image
SC2 30 MNF
SC3 3 MNF

Level 2

SC4 30 MNF + CHM (Base scenario)
SC5 Base scenario + 83 OPALS Statistical products

SC5 * Base scenario + 83 OPALS + 42 OPALS FWF Statistical products
SC6 Base scenario + 9 SAGA Topographic products
SC7 Base scenario + 65 Spectral Indices

Level 3 SC8 Recursive Feature Elimination with Cross-Validation
* Available for selected campaigns.

The key spectral features for analyzed wetlands were identified by performing analy-
ses on the hyperspectral dataset with 430 bands (SC1). Obtained accuracies were compared
with hyperspectral data after the Minimum Noise Fraction transformation—MNF (SC2,
SC3), which is a common dimension reduction technique allowing to reduce autocorrelation
between bands and remove noise [62].

Classifications in the first three scenarios (SC1, SC2, and SC3; Table 2) were performed
using a multi-classification approach (50 classifications). Their goal was to check which
data set is an indispensable basic product among the three available ones as well as
to check whether the results of a randomly selected set of training and validation data
correspond to each other. In each classification scenario, the botanical reference data were
randomly split into a 50/50 proportion of training and validation sets, assigning equal
numbers of reference polygons to each class for model training and validation. After the
selection of the base data set, further classifications were carried out using the selected set
of data supplemented with statistical, topographic, or spectral vegetation indices products
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(scenarios from SC4 to SC7, Table 2). The aim of these experiments was to assess which of
the additional products would improve the identification results of the analyzed habitats
and whether the fusion of hyperspectral data and ALS significantly improved the accuracy
of classification. In this step, the seasonal stage in which both habitats are best identified
was also determined.

The last stage of research covered the RF multi-classifications with RFE-CV (SC8,
Table 2) in the selected optimal period of the growing season for given habitat mapping
with choosing the final set of features. The final distribution maps were developed on the
basis of the best results.

The assessment of the accuracy of identification of the examined habitats was carried
out using standard procedures used in remote sensing based on statistical measures, as well
as by analyzing the spatial differentiation of classification maps by the botanists. The sta-
tistical evaluation of the accuracy of the results was carried out based on the validation
set. The basis for the quantitative evaluation of the classification accuracy was the error
matrix. Multi-classifications were performed automatically in Python 3.7. This approach
has significantly increased the efficiency of analyses. As an auxiliary measure of assessing
the statistical significance of differences in the accuracies, the Wilcoxon signed-rank test
(α = 0.05) was performed. This is a non-parametric test disregarding data’s distribution.
The test assumes that there is no difference between the medians of the tested datasets.

3. Results

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. Results at Level 1 of Classification Scenarios

The analysis at level 1 showed that better results were achieved using the first 30 MNF
transformation bands (SC2) than for all hyperspectral bands together (SC1). Similarly,
choosing the first three MNF transformation bands (SC3) gave worse results than selecting
the first thirty (SC2). Most information on the original image is of course contained in the
first three bands of MNF transformation. However, the use of only the first three bands or
their manual selection does not bring satisfactory results due to some subtle differences in
coverage that are also visible in other seemingly content-free bands such as the humidity
of the habitat. The results presented in Table 3 and Figure 5 showed that the highest mean
values of Overall Accuracy—OA, Kappa, F1-SCORE, Producer’s Accuracy—PA, and User’s
Accuracy—UA coefficients were found by using 30 first MNF transformation bands (SC2).
The SC1 gave the worst results (classification of 430 hyperspectral bands). Additionally,
the Errors of Commission—EC and Errors of Omission—EO were the lowest in most
cases in scenario 2 for both wetland habitats and background class in all research areas.
The analysis indicated that the best results were given using the set of data from scenario
2 (30 MNF). Therefore, this raster dataset was chosen for further classifications in level 2.
Additional analysis of the date of data acquisition showed that the best results for alkaline
fens were found for summer (F1-SCORE equals 0.931 in the UB area and 0.914 in the LB
area) with the lowest EC and EO (Table 3). Full vegetation growth in summer (August)
emphasizes physiognomic differentiation of alkaline fens (dominance of low sedges and
well developed layer of Bryophyta) and their characteristics in comparison with other plant
communities (e.g., sedge meadow, reed, hydrophilous tall herb communities—Filipendulion
Segal 1966) and land cover categories (e.g., grain crops, forests). On the other hand, for the
transition mires and quaking bogs, the results were more diverse in terms of the date of
data acquisition and area. The best results were observed in spring for JF area (F1-SCORE
equals 0.954) and in summer/autumn for UB area (F1-SCORE equals 0.901/0.907). Plant
communities of transitional mires and quaking bogs of JF area are typically developed.
There are patches with large coverage of Sphagnum, clumped Eriophorum, and low sedges.
Acquiring the images from beginning of June allowed us to capture moss layer as well as
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clumps of characteristically fruiting Eriophorum latifolium L., Rhynchospora alba (L.) Vahl.,
and patches in initial stages of succession. In the case of Biebrza Valley, transitional mires
and quaking bogs developed on alkaline fens, which in turn make them show a larger share
of low sedges, and the Sphagnum layer is less exposed, while characteristically clumped
Eriophorum latifolium L. is not present. Moreover, spring images were acquired a month
after the Janowskie Forests were recorded. That is why the patch differentiation is seen
in summer in full growth and in autumn, when moss layer and Sphagnum that make it
undergo discoloration. Additionally, the F1-SCORE for summer and autumn in the JF area
was higher than in the UB area and equaled, respectively, 0.942 and 0.943. This is probably
due to a different nature of the same habitat in both areas and differences in development
resulting from the stage of the growing season in which a given habitat is located (location
of habitats in different parts of the country in the north–south direction). Research areas in
Biebrza Valley (UB and LB) are located in north–eastern Poland where the growing season
is significantly shorter. In spring vegetation start to grow two week after the rest of the
country on average. Plant dying phase also starts later, but lasts shorter at the same time.

Table 3. Results of multi-classification (50 classifications per scenario) on randomly selected botanical reference data for
wetland habitats in the UB, LB, and JF areas in scenarios from 1 to 3.

Scenario
Spring Summer Autumn

SC1 SC2 SC3 SC1 SC2 SC3 SC1 SC2 SC3

Area Stats Class * Alkaline Fens

UB

OA 0.854 0.921 0.822 0.890 0.927 0.868 0.865 0.917 0.837
Kappa 0.707 0.842 0.644 0.780 0.853 0.734 0.727 0.832 0.670

F1-SCORE H 0.854 0.922 0.825 0.896 0.931 0.878 0.848 0.906 0.817
UA H 0.851 0.912 0.815 0.883 0.914 0.850 0.843 0.899 0.804
PA H 0.858 0.932 0.835 0.910 0.950 0.907 0.853 0.913 0.831
EC H 0.149 0.088 0.185 0.117 0.086 0.150 0.157 0.101 0.196
EO H 0.142 0.068 0.165 0.090 0.050 0.093 0.147 0.087 0.169

F1-SCORE B 0.852 0.920 0.819 0.883 0.921 0.856 0.879 0.926 0.853
UA B 0.857 0.931 0.830 0.899 0.943 0.891 0.884 0.932 0.865
PA B 0.849 0.910 0.808 0.869 0.901 0.825 0.875 0.920 0.842
EC B 0.143 0.069 0.170 0.101 0.057 0.109 0.116 0.068 0.135
EO B 0.151 0.090 0.192 0.131 0.099 0.175 0.125 0.080 0.158

LB

OA 0.857 0.873 0.808 0.848 0.882 0.799 0.796 0.861 0.770
Kappa 0.660 0.692 0.542 0.644 0.725 0.532 0.539 0.686 0.485

F1-SCORE H 0.898 0.910 0.863 0.890 0.914 0.854 0.848 0.896 0.827
UA H 0.864 0.862 0.826 0.862 0.889 0.832 0.812 0.864 0.803
PA H 0.935 0.965 0.904 0.919 0.940 0.877 0.888 0.930 0.854
EC H 0.136 0.138 0.174 0.138 0.111 0.168 0.188 0.136 0.197
EO H 0.065 0.035 0.096 0.081 0.060 0.123 0.112 0.070 0.146

F1-SCORE B 0.761 0.779 0.676 0.754 0.810 0.677 0.688 0.789 0.657
UA B 0.841 0.906 0.760 0.814 0.866 0.722 0.760 0.855 0.701
PA B 0.697 0.684 0.611 0.703 0.763 0.640 0.631 0.734 0.619
EC B 0.159 0.094 0.240 0.186 0.134 0.278 0.240 0.145 0.299
EO B 0.303 0.316 0.389 0.297 0.237 0.360 0.369 0.266 0.381

Area Stats Class Transition Mires and Quaking Bogs

UB

OA 0.898 0.952 0.841 0.936 0.962 0.907 0.918 0.957 0.865
kappa 0.677 0.849 0.509 0.799 0.877 0.712 0.769 0.879 0.616

F1-SCORE H 0.740 0.879 0.609 0.839 0.901 0.770 0.823 0.907 0.703
UA H 0.785 0.928 0.626 0.859 0.936 0.765 0.846 0.938 0.730
PA H 0.702 0.836 0.594 0.820 0.869 0.775 0.802 0.878 0.680
EC H 0.216 0.072 0.374 0.141 0.064 0.235 0.154 0.062 0.270
EO H 0.298 0.164 0.406 0.180 0.131 0.225 0.198 0.122 0.320

F1-SCORE B 0.936 0.970 0.900 0.960 0.976 0.942 0.947 0.972 0.912
UA B 0.924 0.958 0.895 0.955 0.968 0.944 0.939 0.963 0.903
PA B 0.949 0.983 0.906 0.966 0.985 0.940 0.954 0.982 0.922
EC B 0.076 0.042 0.105 0.045 0.033 0.056 0.061 0.037 0.097
EO B 0.051 0.017 0.094 0.034 0.015 0.060 0.046 0.018 0.078
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Table 3. Cont.

Scenario
Spring Summer Autumn

SC1 SC2 SC3 SC1 SC2 SC3 SC1 SC2 SC3

JF

OA 0.924 0.963 0.865 0.910 0.953 0.893 0.917 0.957 0.835
Kappa 0.842 0.923 0.721 0.813 0.903 0.780 0.824 0.908 0.655

F1-SCORE H 0.905 0.954 0.834 0.888 0.942 0.871 0.890 0.943 0.791
UA H 0.897 0.934 0.807 0.883 0.932 0.847 0.896 0.934 0.760
PA H 0.914 0.974 0.864 0.894 0.953 0.898 0.883 0.953 0.824
EC H 0.103 0.066 0.193 0.117 0.068 0.153 0.104 0.066 0.240
EO H 0.086 0.026 0.136 0.106 0.047 0.102 0.117 0.047 0.176

F1-SCORE B 0.937 0.969 0.887 0.924 0.961 0.909 0.934 0.965 0.864
UA B 0.944 0.983 0.908 0.929 0.968 0.929 0.930 0.971 0.888
PA B 0.931 0.956 0.866 0.920 0.953 0.890 0.938 0.959 0.842
EC B 0.056 0.017 0.092 0.071 0.032 0.071 0.070 0.029 0.112
EO B 0.069 0.044 0.134 0.080 0.047 0.110 0.062 0.041 0.158

* H—wetland habitat class; B—background class (other than wetland habitat land cover types). Bold font emphasizes results for habitat class.
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Figure 5. Boxplots of the F1-SCORE values of alkaline fens and transition mires and quaking bogs in the
UB, LB, and JF areas divided into the campaigns corresponding to the period of the growing season.
Each box includes the median (central line), mean (red font), the 25th and 75th percentile (the edges
of the box), extreme data points (whiskers), outliers (dots), and statistical significance (stars).
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Analyzing distribution maps of alkaline fens and transition mires and quaking bogs in
autumn, it was found to be overestimated and highly dispersed—recognized even in some
crops (Figures 6 and 7). It is connected to accumulation of dead, dry biomass in natural and
semi-natural communities, and also to the phase of agriculture cycle on surrounding areas.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 35 
 

 

 
Figure 6. An Example of comparison of classification results for alkaline fens in the UB area in 
spring, summer, and autumn campaigns for three scenarios in level 1 (SC1, SC2, and SC3). 

 
Figure 7. An Example of comparison of classification results for transition mires and quaking bogs 
in the UB area in spring, summer, and autumn campaigns for three scenarios in level 1 (SC1, SC2, 
and SC3). 

  

Figure 6. An Example of comparison of classification results for alkaline fens in the UB area in spring,
summer, and autumn campaigns for three scenarios in level 1 (SC1, SC2, and SC3).

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 35 
 

 

 
Figure 6. An Example of comparison of classification results for alkaline fens in the UB area in 
spring, summer, and autumn campaigns for three scenarios in level 1 (SC1, SC2, and SC3). 

 
Figure 7. An Example of comparison of classification results for transition mires and quaking bogs 
in the UB area in spring, summer, and autumn campaigns for three scenarios in level 1 (SC1, SC2, 
and SC3). 

  

Figure 7. An Example of comparison of classification results for transition mires and quaking bogs in
the UB area in spring, summer, and autumn campaigns for three scenarios in level 1 (SC1, SC2, and SC3).



Remote Sens. 2021, 13, 1504 14 of 34

3.2. Results at Level 2 of Classification Scenarios

In the next step (Level 2—see Table 2), scenarios from 4 to 7 were tested. It was exam-
ined whether the additional sets of data in relation to the base scenario (SC4) increase the
accuracy of the classification in three campaigns (spring, summer, autumn). The analysis in
this step was done similarly by performing 50-fold randomization of training and valida-
tion polygons in the proportion of 50/50 for each examined habitat. Statistical results are
presented in Table 4, Figure 8, and their graphic representation (for both wetland habitats)
is shown in Figures 9 and 10 for a fragment of the Upper Biebrza Valley (the UB area).

Table 4. Results of multi-classification (50 classifications per scenario) on randomly selected botanical reference data for
wetland habitats in the UB, LB and JF areas in scenarios from 4 to 7.

Scenario
Spring Summer Autumn

SC4 SC5 SC5 * SC6 SC7 SC4 SC5 SC5 * SC6 SC7 SC4 SC5 SC5 * SC6 SC7

Area Stats Class * Alkaline fens

UB

OA 0.923 0.880 0.916 0.942 0.919 0.925 0.930 0.926 0.944 0.923 0.926 0.927 N/A 0.937 0.898
Kappa 0.845 0.761 0.833 0.885 0.837 0.849 0.859 0.851 0.888 0.845 0.850 0.853 N/A 0.873 0.795

F1-SCORE H 0.923 0.881 0.918 0.943 0.919 0.929 0.934 0.930 0.948 0.927 0.916 0.918 N/A 0.929 0.886
UA H 0.917 0.880 0.903 0.939 0.914 0.913 0.922 0.918 0.935 0.914 0.911 0.912 N/A 0.921 0.869
PA H 0.929 0.882 0.934 0.947 0.925 0.947 0.947 0.942 0.961 0.942 0.922 0.925 N/A 0.939 0.904
EC H 0.083 0.120 0.097 0.061 0.086 0.087 0.078 0.082 0.065 0.086 0.089 0.088 N/A 0.079 0.131
EO H 0.071 0.118 0.066 0.053 0.075 0.053 0.053 0.058 0.039 0.058 0.078 0.075 N/A 0.061 0.096

F1-SCORE B 0.922 0.880 0.914 0.942 0.918 0.919 0.925 0.921 0.940 0.918 0.934 0.935 N/A 0.944 0.908
UA B 0.929 0.881 0.932 0.945 0.924 0.939 0.940 0.935 0.956 0.934 0.939 0.940 N/A 0.951 0.923
PA B 0.916 0.878 0.898 0.938 0.912 0.901 0.911 0.908 0.926 0.902 0.929 0.930 N/A 0.936 0.894
EC B 0.071 0.119 0.068 0.055 0.076 0.061 0.060 0.065 0.044 0.066 0.061 0.060 N/A 0.049 0.077
EO B 0.084 0.122 0.102 0.062 0.088 0.099 0.089 0.092 0.074 0.098 0.071 0.070 N/A 0.064 0.106

LB

OA 0.878 0.882 0.889 0.876 0.899 0.881 0.903 0.790 0.908 0.798 0.876 0.875 N/A 0.800 0.857
Kappa 0.705 0.719 0.737 0.704 0.761 0.723 0.773 0.513 0.786 0.524 0.727 0.722 N/A 0.556 0.684

F1-SCORE H 0.914 0.917 0.921 0.912 0.928 0.913 0.929 0.848 0.933 0.854 0.906 0.905 N/A 0.847 0.892
UA H 0.868 0.877 0.883 0.873 0.896 0.889 0.904 0.827 0.912 0.825 0.875 0.869 N/A 0.818 0.858
PA H 0.965 0.960 0.963 0.956 0.963 0.940 0.956 0.870 0.956 0.886 0.940 0.944 N/A 0.879 0.929
EC H 0.132 0.123 0.117 0.127 0.104 0.111 0.096 0.173 0.088 0.175 0.125 0.131 N/A 0.182 0.142
EO H 0.035 0.040 0.037 0.044 0.037 0.060 0.044 0.130 0.044 0.114 0.060 0.056 N/A 0.121 0.071

F1-SCORE B 0.789 0.801 0.814 0.790 0.833 0.809 0.843 0.664 0.852 0.668 0.820 0.816 N/A 0.708 0.791
UA B 0.908 0.898 0.908 0.888 0.909 0.863 0.901 0.705 0.899 0.728 0.882 0.888 N/A 0.762 0.859
PA B 0.699 0.724 0.739 0.714 0.769 0.763 0.793 0.630 0.810 0.618 0.768 0.756 N/A 0.663 0.734
EC B 0.092 0.102 0.092 0.112 0.091 0.137 0.099 0.295 0.101 0.272 0.118 0.112 N/A 0.238 0.141
EO B 0.301 0.276 0.261 0.286 0.231 0.237 0.207 0.370 0.190 0.382 0.232 0.244 N/A 0.337 0.266

Area Stats Class Transition Mires and Quaking Bogs

UB

OA 0.951 0.928 0.949 0.963 0.948 0.961 0.961 0.958 0.971 0.959 0.959 0.954 N/A 0.966 0.946
KAPPA 0.847 0.776 0.838 0.882 0.837 0.877 0.874 0.866 0.908 0.867 0.885 0.870 N/A 0.905 0.848

F1-SCORE H 0.877 0.821 0.869 0.905 0.869 0.900 0.899 0.891 0.926 0.892 0.912 0.900 N/A 0.927 0.884
UA H 0.931 0.847 0.927 0.945 0.919 0.933 0.943 0.937 0.951 0.926 0.950 0.949 N/A 0.963 0.918
PA H 0.830 0.799 0.819 0.870 0.824 0.871 0.859 0.851 0.903 0.862 0.876 0.856 N/A 0.895 0.853
EC H 0.069 0.153 0.073 0.055 0.081 0.067 0.057 0.063 0.049 0.074 0.050 0.051 N/A 0.037 0.082
EO H 0.170 0.201 0.181 0.130 0.176 0.129 0.141 0.149 0.097 0.138 0.124 0.144 N/A 0.105 0.147

F1-SCORE B 0.970 0.955 0.968 0.977 0.968 0.976 0.976 0.974 0.982 0.974 0.973 0.970 N/A 0.978 0.965
UA B 0.956 0.948 0.954 0.967 0.955 0.968 0.965 0.963 0.976 0.966 0.962 0.956 N/A 0.967 0.954
PA B 0.984 0.962 0.983 0.987 0.981 0.984 0.987 0.986 0.988 0.983 0.985 0.985 N/A 0.989 0.975
EC B 0.044 0.052 0.046 0.033 0.045 0.032 0.035 0.037 0.024 0.034 0.038 0.044 N/A 0.033 0.046
EO B 0.016 0.038 0.017 0.013 0.019 0.016 0.013 0.014 0.012 0.017 0.015 0.015 N/A 0.011 0.025
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Table 4. Cont.

Scenario
Spring Summer Autumn

SC4 SC5 SC5 * SC6 SC7 SC4 SC5 SC5 * SC6 SC7 SC4 SC5 SC5 * SC6 SC7

JF

OA 0.962 0.964 0.963 0.962 0.960 0.953 0.949 0.953 0.955 0.946 0.960 0.955 0.955 0.960 0.955
Kappa 0.921 0.925 0.923 0.920 0.916 0.903 0.895 0.903 0.908 0.888 0.915 0.905 0.904 0.914 0.904

F1-SCORE H 0.953 0.955 0.954 0.952 0.950 0.942 0.938 0.943 0.946 0.933 0.947 0.941 0.941 0.947 0.941
UA H 0.931 0.936 0.933 0.932 0.933 0.928 0.920 0.931 0.932 0.922 0.940 0.937 0.931 0.936 0.933
PA H 0.976 0.975 0.976 0.974 0.967 0.957 0.958 0.955 0.960 0.945 0.955 0.945 0.951 0.959 0.949
EC H 0.069 0.064 0.067 0.068 0.067 0.072 0.080 0.069 0.068 0.078 0.060 0.063 0.069 0.064 0.067
EO H 0.024 0.025 0.024 0.026 0.033 0.043 0.042 0.045 0.040 0.055 0.045 0.055 0.049 0.041 0.051

F1-SCORE B 0.969 0.970 0.969 0.968 0.967 0.960 0.957 0.960 0.962 0.955 0.968 0.964 0.963 0.967 0.964
UA B 0.984 0.983 0.984 0.982 0.978 0.971 0.971 0.969 0.973 0.963 0.973 0.966 0.970 0.975 0.969
PA B 0.954 0.957 0.954 0.954 0.955 0.950 0.943 0.952 0.952 0.947 0.963 0.962 0.957 0.960 0.958
EC B 0.016 0.017 0.016 0.018 0.022 0.029 0.029 0.031 0.027 0.037 0.027 0.034 0.030 0.025 0.031
EO B 0.046 0.043 0.046 0.046 0.045 0.050 0.057 0.048 0.048 0.053 0.037 0.038 0.043 0.040 0.042

* Both discrete and FULL-waveform data. Bold font emphasizes results for habitat class.
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Figure 8. Boxplots of the F1-SCORE values of alkaline fens and transition mires and quaking bogs in 
the UB, LB, and JF areas divided into the campaigns corresponding to the period of the growing 
season. Each box includes the median (central line), mean (red font), the 25th and 75th percentile 
(the edges of the box), extreme data points (whiskers), outliers (dots), and statistical significance 
(stars). 

Figure 8. Boxplots of the F1-SCORE values of alkaline fens and transition mires and quaking bogs in the
UB, LB, and JF areas divided into the campaigns corresponding to the period of the growing season.
Each box includes the median (central line), mean (red font), the 25th and 75th percentile (the edges
of the box), extreme data points (whiskers), outliers (dots), and statistical significance (stars).
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summer, and autumn campaigns for five scenarios in level 2 (SC4, SC5, SC5*, SC6, and SC7).

The best results for alkaline fens in the Upper Biebrza were obtained in summer
(mean F1-SCORE of 0.930 regardless of data used—Table 4). The classification scenario that
gave the best results was the scenario using the 30MNF, CHM, and SAGA topographic
products (SC6). The value of the mean F1-SCORE for this scenario was 0.940, by 0.017 higher
compared to the base scenario, and the difference was statistically significant. Statistically
not significant differences were found for data sets using ALS statistical products or
spectral indices (Figure 8). In the Lower Biebrza, the best results for alkaline fens were
obtained in spring and in summer (mean F1-SCORE of 0.918 and 0.895 in spring and summer,
respectively). However, statistically significant differences were obtained in the summer
each time they were compared with the base scenario (SC4)-effect of the optimum plant
growth including low sedges, moss layer on alkaline fens, and Magnocaricion Koch 1926
patches frequently grown over by reeds (in blooming stage). The differences in accuracy
in spring were statistically significant only in the case of a scenario with spectral indices
(SC7), which is probably related to the fact that in spring this area is usually flooded and
the vegetation protruding above the water and its spectral characteristics become more
important. Under such conditions, the use of ALS data unfortunately does not improve the
quality of the identification of the habitat. The use of SAGA topographic products (SC6)
in both areas in summer allowed us to increase the accuracy of classification compared
to the base scenario (SC4). Topographic products allowed to clearly distinguish different
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topographical features such as analyzed habitat, uplands, or mineral islands. In the Lower
Biebrza good results for summer were obtained using also SC5 and SC7 (mean F1-SCORE for
SC5 equals 0.917 and for SC7 equals 0.891), in both cases the differences were statistically
significant when compared to the base scenario (Figure 8). The lowest mean F1-SCORE and
the highest errors of omission were observed in autumn (which is connected to plants
dying and accumulation of dead, dry biomass resulting in lower differentiation between
plant communities found in Lower Biebrza Basin).
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Figure 10. An example of comparison of classification results for transition mires and quaking bogs
in the UB area in spring, summer, and autumn campaigns for five scenarios in level 2 (SC4, SC5, SC5*,
SC6, and SC7).

Choosing the best time of the growing season for data acquisition for alkaline fens
based on obtained statistical results and botanical assessment it can be stated that the
recommended time for this habitat is summer. This period of the growing season was
selected for analysis of alkaline fens at level 3 (Table 2), in which sub-products were selected
using the RFE-CV method. During the evaluation of the results, it was found that alkaline
fens in the UB area are more overestimated than in the LB area. Both areas differ in floristic
composition, vegetation structure, and the occurrence of dominant species which all have
an influence on the final results. In summer, in the UB area, slightly more patches of
alkaline fens were identified in places with birch and willow, as well as in patches with
moss layer, which refers rather to transition mires and quaking bogs (it’s due to the fact
that transitional mires in this region evolutionarily developed from alkaline fens so they
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can share some common traits). It was also found that it is possible to identify alkaline fens
even if it is used in an extensive or regular way, but the best results should be expected for
permanently unused areas with a high share of sedges (over 50%) and a well-developed
moss layer that references to alkaline fens (over 40%).

In the classification of transition mires and quaking bogs, the best results in the UB
area (Table 4) were obtained for summer and autumn (mean F1-SCORE equals 0.902 and
0.906, respectively, regardless of the scenario). It is connected to likeness to alkaline fens
(large share of low sedges), which are best identified in summer in optimum growth phase
on one hand and to autumn dying of sedges and better exposition of discoloring moss layer
on the other. Analyzing the accuracy of the classifications as well as the maps of habitat
distribution for both periods of the growing season, very similar results were obtained.
The scenario that gave the best results was scenario 6 (SC6) using 30MNF bands, CHM,
and SAGA topographic data regardless of the growing season (mean F1-SCORE of 0.919).
The differences in F1-SCORE accuracy between SC6 and SC4 were also statistically significant.
Analyzing distribution maps of transition mires and quaking bogs in spring, it was found
to be much more dispersed and inaccurate. The mean errors of omission and commission
calculated for all scenarios together were the highest here and equals 0.172 and 0.086,
respectively. Lowering the value of the mean F1-SCORE in relation to the base scenario (SC4)
for the remaining scenarios (i.e., excluding topographic one—SC6) in the UB area may
result from relatively not very clear boundaries between transition mires and quaking
bogs and neighboring alkaline fens. During the evaluation of the results it was found that
transition mires and quaking bogs in the UB area were correctly identified at places of their
occurrence, but in some cases recognized also in the forest, which is caused by the presence
of deciduous trees and shrubs in the seeding stage on plots where the reference botanical
data were gathered.

In the Janowskie Forest classification, results in terms of the time of data acquisition
and recommended scenario are ambiguous. Here, the presence of trees and bushes in the
seeding stage within habitat plays a much smaller role, and the range of the classified
habitat corresponds to reality in almost all cases. Additionally, transition mires and quak-
ing bogs are represented by very clearly distinctive patches of habitat both in relation to
neighboring habitats and surrounding areas like a forest. As it was mentioned earlier, tran-
sitional mires developed here on terrestrialized dystrophic lakes overgrown by Sphagnum
carpet and are of a different character to habitats evolved on or in the vicinity of alkaline
fens as in the Upper Biebrza. In the JF area, the best results (Table 4) were obtained in
the spring (mean F1-SCORE of 0.953 regardless of classification scenario), but differences in
accuracy were not statistically significant when compared to the base scenario (Figure 8).
Slightly worse statistical classification results were obtained in summer and autumn (mean
F1-SCORE of 0.940 and 0.943, respectively), of which those obtained in summer did not show
statistically significant differences in the accuracy, and those obtained in autumn did when
compared to the base scenario. The autumn results, despite similar statistical accuracy,
were too scattered with a pronounced “salt and pepper” effect. The statistically significant
differences observed here, unfortunately, did not result primarily from the change of remote
sensing products used in the classification, but from the large dispersion of the habitat.
In the case of the classification of transitional mires developed on terrestrialized dystrophic
lakes, data obtained in spring and summer provide better habitat distribution than those
obtained in autumn. Comparing the scenarios with each other (Table 4, Figure 8), it can
be concluded that the data set from scenario 4 is sufficient to identify this habitat, unless
there are other wetland habitats in the vicinity, as is the case in Upper Biebrza. Then, it is
recommended to use a data set that also takes into account topographic data (SC6).

Choosing the best time of the growing season for data acquisition for transition mires
and quaking bogs based on obtained statistical results and botanical assessment it can be
stated that the recommended time for this habitat is summer and autumn in case of habitats
evolved on or in the vicinity of alkaline fens and spring and summer in case of transition
mires developed on terrestrialized dystrophic lakes like those in Janowskie Forest.
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3.3. Results at Level 3 of Classification Scenarios—A Selection of Sub-Products

As part of the analyses, the Recursive Feature Elimination with Cross-Validation
(RFE-CV) was performed to select the most important RS sub-products for each habitat
that allow obtaining high accuracy classification results (Level 3—SC8, Table 2) in the
optimal phase of the growing season for their identification chosen in Level 2. RFE-CV is
an RFE algorithm adding cross-validation of results that produce averaged score of how
well the given feature performed within a classifier (e.g., Random Forest)—feature(s) with
the lowest score (importance) are then discarded. Selected features are assigned rank at the
end with lower values indicating more importance.

Before starting the Random Forest classifications with RFE-CV, the Spearman’s cor-
relation analysis of the available remote sensing data was carried out in order to exclude
from the analysis those features with a correlation coefficient above 0.8 and to increase the
accuracy of the obtained final results in relation to those obtained at level 2. This approach
allowed to reduce the analyzed datasets and focusing only on those sub-products that
carry the most relevant information about the identified habitats (Figures 11 and 12).
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The best results of Random Forest multi-classification with RFE-CV for alkaline fens
are presented in Table 5 and the sub-products used to obtain these results are presented
in Table 6. The sub-products were chosen based on final feature ranking results for given
habitat in both areas (in the UB and LB area). Table 6 is also a list of products recommended
for use in the identification of alkaline fens. The products that gave the best results include,
apart from the MNF set, selected ALS statistical products developed in OPALS (Canopy
Height Model, exposition—slope aspect in radians, normalized height minimum, point
density, standard deviation of the unit weight observation—sigmaZ and steepest slope in %
and variance), topographic products developed in SAGA describing morphology (MRRTF,
MRVBF), wetness (MCA, TPI, TWI,), and light availability (Diffl, Dirl, Durl, and TI), as well
as narrow-band spectral indices created using spectral bands from blue (470.5 nm), green
(508.9 nm, 531.2 nm, 550.4 nm, 569.6 nm), red (652.7 nm, 700.6 nm, 703.8 nm, 748.6 nm),
near-infrared (799.7 nm, 860.4 nm), and short-infrared (1653.4 nm) spectral range.

Table 5. The best classification results obtained using the Random Forest multi-classification approach with Recursive
Feature Elimination with Cross-Validation for alkaline fens in the UB and LB areas and transition mires and quaking bogs in
the UB and JF areas.

Alkaline Fens in the Biebrza River Valley (UB and LB Areas)

Area Data Acquisition Time OA Kappa UA PA F1-SCORE EC EO UA PA F1-SCORE EC EO
H H H H H B B B B B

UB Summer 0.946 0.892 0.935 0.966 0.950 0.065 0.035 0.960 0.925 0.942 0.040 0.075
LB Summer 0.910 0.790 0.910 0.961 0.935 0.090 0.039 0.911 0.806 0.855 0.089 0.194

Transition Mires and Quaking in the Upper Biebrza River Valley (UB Area)

Area Data Acquisition Time OA Kappa UA PA F1-SCORE EC EO UA PA F1-SCORE EC EO
H H H H H B B B B B

UB
Summer 0.973 0.914 0.962 0.901 0.931 0.038 0.099 0.976 0.991 0.983 0.024 0.009
Autumn 0.963 0.899 0.967 0.883 0.923 0.033 0.117 0.962 0.990 0.975 0.038 0.010

Transition Mires and Quaking in the Janowskie Forest (JF Area)

Area Data Acquisition Time OA Kappa UA PA F1-SCORE EC EO UA PA F1-SCORE EC EO
H H H H H B B B B B

JF Spring 0.962 0.921 0.934 0.973 0.953 0.066 0.027 0.982 0.955 0.968 0.018 0.045
Summer 0.957 0.912 0.936 0.961 0.948 0.065 0.039 0.973 0.955 0.960 0.027 0.045

Bold font emphasizes results for habitat class.
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Table 6. Recommended RS sub-products in the identification of alkaline fens.

Type of Data Set Feature Type Full Name Dataset Category References

Hyperspectral
Transformation

Products
30MNF Minimum Noise

Fraction
Hyperspectral

data
Dimension reduction

technique [62]

ALS Topograhic
Products

MRRTF Multiresolution Index of
the Ridge Top Flatness DTM Morphology [72]

DurI Duration of Insolation DSM Solar radiation
availability [73]

TPI Topographic Position
Index DTM Morphology [74]

DiffI Diffuse Insolation DSM Solar radiation
availability [73]

TWI Topographic Wetness
Index DTM Wetness [75]

MCA Modified Catchment
Area DTM Wetness [76]

MRVBF Multiresolution Index of
Valley Bottom Flatness DTM Morphology [72]

TI Total insolation DSM Solar radiation
availability [73]

DirI Direct Insolation DSM Solar radiation
availability [73]

Spectral Indices

ARI1 Anthocyanin Reflectance
Index 1

550.4 nm
700.6 nm Leaf Pigments [77]

ARI2 Anthocyanin Reflectance
Index 2

799.7 nm
550.4 nm
700.6 nm

Leaf Pigments [77]

CRI2 Carotenoid Reflectance
Index 2

508.9 nm
700.6 nm Leaf Pigments [77]

EVI Enhanced Vegetation
Index

860.4 nm
652.7 nm
470.5 nm

Greenness [78]

PRI Photochemical
Reflectance Index

531.2 nm
569.6 nm Light Use Efficiency [79,80]

MNDWI Modified Normalized
Difference Water Index

550.4 nm
1653.4 nm Wetness [81,82]

RENDVI
Red Edge Normalized
Difference Vegetation

Index

748.6 nm
703.8 nm Greenness [83,84]

ALS Statistical
Products

DTM Exposition, Slope,
SigmaZ, Variance LiDAR DATA Ground class [66]

DSM Exposition, SigmaZ,
Sigma0 LiDAR DATA ALL: Ground and

Vegetation class [66]

NormalizedZ_min Normalized height
minimum LiDAR DATA ALL: Ground and

Vegetation class [66]

NormalizedZ_var Normalized height
variance LiDAR DATA Vegetation class [66]

CHM Canopy Height Model LiDAR DATA Vegetation class [66]
Point density Number of pts/m2 LiDAR DATA Ground class [66]

The best results of Random Forest multi-classification with RFE-CV for transition
mires and quaking bogs in the UB area are presented in Table 5, and the sub-products
used to obtain these results are presented in Table 7. The sub-products were chosen based
on final feature ranking results. Table 8 is also a list of products recommended for use in
the identification of transition mires and quaking bogs. The products that gave the best
classification results include, apart from the MNF set, selected ALS statistical products
developed in OPALS (Canopy Height Model, exposition—slope aspect in radians, stan-
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dard deviation of the interpolated height—sigma0, standard deviation of the unit weight
observation—sigmaZ and steepest slope in %), topographic products developed in SAGA
describing morphology (MRRTF, MRVBF, TPI), wetness (TWI) and light availability (TI),
as well as narrow-band spectral indices created using spectral bands from blue (470.5 nm),
green (531.2 nm, 550.4 nm, 569.6 nm), red (652.7 nm, 700.6 nm), near-infrared (796.5 nm,
860.4 nm, 991.8 nm), and short-infrared (1642.6 nm, 1653.4 nm, 2000.5 nm, 2130.7 nm,
2201.2 nm) spectral range.

Table 7. Recommended RS sub-products in the identification of transition mires and quaking bogs in the Biebrza river
valley (UB area).

Type of DATA Set Feature Type Full Name Dataset Category References

Hyperspectral
Transformation

Products
30MNF Minimum Noise Fraction Hyperspectral

data
Dimension reduction

technique [62]

ALS Topograhic
Products

MRRTF Multiresolution Index of
the Ridge Top Flatness DTM Morphology [72]

TPI Topographic Position
Index DTM Morphology [74]

TWI Topographic Wetness
Index DTM Wetness [75]

MRVBF Multiresolution Index of
Valley Bottom Flatness DTM Morphology [72]

TI Total insolation DSM Solar radiation
availability [73]

ALS Statistical
Products

DTM Exposition, Slope, Sigma0,
SigmaZ

LiDAR
DATA Ground class [66]

DSM Exposition, Slope, Sigma Z LiDAR
DATA Vegetation class [66]

NormalizedZ_var Normalized height
variance

LiDAR
DATA Vegetation class [66]

CHM Canopy Height Model LiDAR
DATA Vegetation class [66]

Spectral Indices

ARI1 Anthocyanin Reflectance
Index 1

550.4 nm
700.6 nm Leaf Pigments [77]

PRI Photochemical Reflectance
Index

531.2 nm
569.6 nm Light Use Efficiency [79,80]

MNDWI Modified Normalized
Difference Water Index

550.4 nm
1653.4 nm Wetness [81,82]

NDMI Normalized Difference
Mud Index

796.5 nm
991.8 nm Wetness [85]

NMDI Normalized Multi-band
Drought Index

860.4 nm
1642.6 nm
2130.7 nm

Canopy Water Content [86,87]

IO Iron Oxide Ratio 652.7 nm
470.5 nm Geology [88,89]

DVI Difference Vegetation
Index

860.4 nm
652.7 nm Greenness [90]

CAI Cellulose Absorption
Index

2000.5 nm
2201.2 nm Necromass [91,92]
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Table 8. Recommended RS sub-products in the identification of transition mires and quaking bogs for transition mires and
quaking bogs in the Janowskie Forest (JF area).

Type OF Data Set Feature Type Full Name Dataset Category References

Hyperspectral
Transformation

Products
30MNF Minimum Noise Fraction Hyperspectral

data
Dimension reduction

technique [62]

ALS Topograhic
Products

MRRTF Multiresolution Index of
the Ridge Top Flatness DTM Morphology [72]

TPI Topographic Position
Index DTM Morphology [74]

TWI Topographic Wetness
Index DTM Wetness [75]

MRVBF Multiresolution Index of
Valley Bottom Flatness DTM Morphology [72]

TI Total insolation DSM Solar radiation
availability [73]

ALS Statistical
Products

DTM Exposition, Slope, Sigma0,
SigmaZ

LiDAR
DATA Ground class [66]

DSM Exposition, Slope LiDAR
DATA Vegetation class [66]

CHM Canopy Height Model LiDAR
DATA Vegetation class [66]

Spectral Indices

ARVI Atmospherically Resistant
Vegetation Index

799.7 nm
681.4 nm
444.9 nm

Greenness [93]

IO Iron Oxide Ratio 652.7 nm
470.5 nm Geology [88,89]

ARI2 Anthocyanin Reflectance
Index 2

799.7 nm
550.4 nm
700.6 nm

Leaf Pigments [77]

ARI1 Anthocyanin Reflectance
Index 1

550.4 nm
700.6 nm Leaf Pigments [77]

FM Ferrous Minerals Ratio 1648.0 nm
860.4 nm Geology [88,89]

The best results of Random Forest multi-classification with RFE-CV for transition
mires and quaking bogs in the JF area are presented in Table 5, and the sub-products used to
obtain these results are presented in Table 8. The sub-products were chosen based on final
feature ranking. Table 8 is also a list of products recommended for use in the identification
of transition mires and quaking bogs.

The products that gave the best classification results include, apart from the MNF set,
selected ALS statistical products developed in OPALS (Canopy Height Model, exposition—
slope aspect in radians, standard deviation of the interpolated height—sigma0, standard
deviation of the unit weight observation—sigmaZ and steepest slope in %), topographic
products developed in SAGA describing morphology (MRRTF, MRVBF, and TPI), wetness
(TWI), and light availability (TI), as well as narrow-band spectral indices created using
spectral bands from blue (444.9 nm, 470.5 nm), green (550.4 nm, 569.6 nm), red (652.7 nm,
681.4 nm, 700.6 nm), near-infrared (799.7 nm, 860.4 nm), and short-infrared (1648.0 nm)
spectral range.

From the statistical accuracy point of view, the obtained classification results using
Random Forest are also high, but not as overestimated as in the case of classification at
level 1 or 2, comparing the errors of commission and omission. Figures 13 and 14 present
the final results of wetland habitats identification using chosen sub-products.
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4. Discussion
4.1. Products and Classification Accuracies

The first preliminary analysis performed at level 1 and scenarios SC1, SC2, and SC3
has shown that better classification results were achieved using hyperspectral data after
MNF transformation (SC2) for both wetland habitats. This transformation algorithm based
on multivariate statistics is the most commonly used spectral feature extraction method [94].
In this research, a total of 470 hyperspectral bands were used. The processing of such a
huge data set is not very effective, especially if the multi-classification approach is used.
Limiting the amount of data as well as reducing the autocorrelation between spectral bands
is essential both in increasing the efficiency of data analyses as well as in getting results
with higher accuracy. Nevertheless, using this transformation technique and focusing only
on the first three bands covering more than 95% of information of the original hyperspectral
dataset does not give good results due to some subtle differences in coverage that are also
visible in other seemingly content-free bands such as the humidity of the habitat. Therefore,
careful analysis of eigenvalues is essential to select a representative data set from MNF
bands. In the case of the analyzed habitats, the best results were obtained by selecting the
first 30 MNF transformation bands.
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In the second level of the analysis, the fusion of hyperspectral data with airborne laser
scanning data was performed. In this step, different classification scenarios were compared
against the base scenario consisting of data after MNF transformation (SC2) and CHM.
The mere addition of CHM did not significantly improve the results of classifications in
relation to the scenarios at level 1 for both wetland habitats. Only in autumn, slightly
better results were obtained in terms of the obtained accuracy of the classification (F1-SCORE
was by 0.008 higher using CHM than 30MNF alone for alkaline fens and by 0.004 for
transition mires and quaking bogs). The results obtained at Level 2 showed that the
use of hyperspectral bands after MNF transformation together with SAGA topographic
products (SC6) for alkaline fens allowed to increase the accuracy of classification relative
to that obtained for the base dataset. Topographic products allowed for a more precise
determination of the boundaries of the habitat, which is located lower than adjacent
uplands or mineral islands present in the vicinity.

As shown by the analysis of transition mires and quaking bogs in the Upper Biebrza
and the Janowskie Forest this habitat should be analyzed separately. Despite the fact
that it is the same Natura 2000 habitat, the differences between them did not allow for
obtaining consistent results at level 2. In the Upper Biebrza, the habitat evolved on or in the
vicinity of alkaline fens, but in the case of the Janowskie Forest, the habitat developed on
terrestrialized dystrophic lakes. As for alkaline fens in the Upper Biebrza, the best results
were obtained using data from scenario 6 including MNF, CHM, and SAGA topographic
data. In turn, for the habitat in the Janowskie Forest, it was not possible to determine the
best data set at level 2. Regardless of the selected scenario, similar accuracy was obtained
and the habitat was classified correctly in all cases. The conclusion that emerges is that
for correct identification it is sufficient to use a basic data set including MNF and CHM
possibly fed with SAGA topographic products as the accuracies of the results obtained in
SC4 and SC6 are almost the same.

Random Forest multi-classification with RFE-CV was introduced in order to narrow
the list of remote sensing products needed in the identification process and to increase
the statistical and botanical accuracy assessments of the obtained results. Effective identifi-
cation of habitats that should be monitored on an ongoing basis should be based on a list
of recommended products that allow obtaining accurate maps of habitat distribution with
the smallest possible amount of data. This should significantly reduce the costs of data
acquisition, but also increase the efficiency of work in the future. The MNF transformation
bands in RFE-CV approach were of the highest feature rank in the classification process
of both wetland habitats. Nevertheless, the analysis showed that the inclusion of other
RS sub-products increased the accuracy of habitat identification over the results obtained
in Level 1 and 2. For both wetland habitats, the use of topographic features developed at
SAGA was of great importance. The morphometric features such as Multiresolution Indices
of the Ridge Top Flatness or Valley Bottom Flatness (MRRTF, MRVBF) and Topographic
Position Index (TPI) should be mentioned here as well as those representing wetness
relations (Topographic Wetness Index—TWI) or light availability (Total Insolation—TI).

The MRVBF index and complementary MRRTF index were developed to identify
lowness, depositional areas, and valley bottoms [72], i.e., areas where wetlands usually
occur. The TPI value is calculated for every raster cell as the difference between the central
cell’s elevation and the mean elevation of the neighborhood [95]. This index was proved to
be useful in identifying small depressional wetlands even in low relief areas [96]. In turn,
TWI describe the tendency of a raster cell to accumulate water and in wetland identification
process allowed distinguishing flat areas and river valley bottoms (high TWI values) and
steepest slopes where the river valley ends (upland) or mineral island is present (low TWI
values). TI represents the intensity of direct solar irradiation, which is higher in flat open
areas with low vegetation than in built-up areas or areas with high vegetation, like forests.
All these features, for the reasons mentioned above, also proved to be successful in our
research. In the identification of alkaline fens, other features describing the availability
of light are also useful (direct, diffuse insolation, duration of insolation) and Modified
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Catchment Area (MCA) developed in SAGA in order to better represent soil moisture
distribution or flooding [97].

Among the statistical products generated in the OPALS software, features such as
Canopy Height Model, exposition—slope aspect in radians, the standard deviation of the in-
terpolated height—sigma0, the standard deviation of the unit weight observation—sigmaZ,
and steepest slope in % were used in the identification of the studied wetland habitats.
In the identification of alkaline fens, it is worth mentioning also point density, normalized
height minimum, and variance; in the identification of transition mires and quaking bogs
in the UB area—normalized height variance, and in the JF area—amplitude variance. DTM
sigma0 feature allowed the distinguishing of reeds from other types of wetland vegetation
and DSM sigma0/sigmaZ, as well as normalized height variance—trees and/or shrubs.
The presence of reeds and shrubs entering the open alkaline fens is noticeable in ALS data.
This type of vegetation is best visualized with the use of raster datasets describing not only
spectral properties of vegetation, but also its structural characteristics such as height or
density [33,55]. DTM/DSM exposition and DTM slope features highlighted the mineral
islands and the upland areas. DTM point density highlighted flat areas like MRVBF and
MRRTF indices from SAGA.

Among the spectral indices in the identification of alkaline fens, the most important
role played greenness indices (EVI and RENDVI), leaf pigment indices (ARI1, ARI2, CRI2),
wetness index—MNDWI, and photosynthetic light use efficiency index—PRI. Transition
mires and quaking bogs that evolved on/or in the vicinity of alkaline fens are better
identified when using indices such as ARI1 (leaf pigment), PRI (light use efficiency),
CAI (necromass), MNDWI, NDMI, and NMDI (wetness or canopy water content indices)
and IO (geology). In turn, this habitat that evolved on dystrophic lakes is better recognized
using ARI1 and ARI2 (leaf pigment indices), ARVI (greenness index), IO, and FM (geology
indices). Greenness indices allowed us, first of all, to distinguish natural vegetation from
agricultural land areas. The leaf pigment indices showed mainly variation within the trees.
PRI used mainly in assessment of vegetation health in shrublands, forests, and agricultural
crops prior to senescence was found to be additionally useful here in the identification of
reed and manna grass. Indices such as Iron Oxide very clearly emphasized the areas located
higher (uplands and mineral islands) most often overgrown by different types of crops.
In the case of habitats with a high share of necromass (dried plant material), indices such as
CAI also become important. The use of RS sub-products recommended in the identification
of each of the wetland habitats allowed for obtaining better statistical accuracies and
higher botanical assessment, proving the usefulness of a methodology that uses a fusion
of optical and laser scanning airborne data and Random Forest algorithm with Recursive
Feature Elimination with Cross-Validation (RF RFE-CV). Similar conclusions about the
effectiveness of RF-RFE in the classification of natural habitats and feature selection were
also demonstrated by Demarchi et al., 2020 [24] for meadows and grassland habitats in the
Biebrza and Bug river valleys.

4.2. Optimal Term for Data Acquisition

Lower values of the F1-SCORE for alkaline fens in spring in the LB area in relation to
the UB area can result from the diversity of plant communities, even though alkaline fens
were well-developed here. In both areas, there are patches subject to overgrowth through
the reed, patches with low willow thickets, but also vast areas dominated by low sedges
(mainly Carex lasiocarpa) and a clearly developed layer of mosses. In spring, no signs of
agricultural use were present in both areas. Perhaps the impact on the differences in the
F1-SCORE values had a larger share among the dominant Carex elata common in the LB area,
and much less often on UB, but this requires further analysis where subclasses are being
used in the classification. Additionally, much more often in the area of LB patches with reed
domination were identified during field surveys. Among the differences that may affect
the values of the F1-SCORE, one may consider the different nature of the areas adjacent to the
peat plain with alkaline fens. In the case of UB, the neighboring areas are more diversified,
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as there are large forest complexes, arable lands, and built-up areas on the plateau, whereas
the peat plain is almost exclusively adjacent to extensive forest complexes in the LB area.
Another reason affecting the diversity of the F1-SCORE value is the impact of regular use
(both habitat and its surrounding)—differences in the way and time of agricultural use of
both areas. Very large areas are subject to annual mowing in the Lower Biebrza. In turn,
in the Upper Biebrza, the mowing has a smaller range; it takes place later and sometimes
every other year.

The best classification results of the habitat were obtained in summer compared to
the classification results obtained in spring or autumn. The issue of dominants among
which high sedge Carex elata is often found deserves special attention here. In the summer,
this sedge began to become discolored and due to this fact, the patches of alkaline fens
in which this sedge is dominant more clearly differ from the surroundings. Additionally,
important is the reed, quite common in the Biebrza River Valley, which in summer is
in its optimum stage of development. The field inventory shows that in the area of LB,
Phragmites australis has a large share and often occurs in relatively dense patches, but due
to regular use, the density of the reed, as well, as its height, is different here from place to
place. In the area of UB, encroachment of reed into alkaline fens is also observed, but this
process is not as clear as in the case of the LB area. An important element differentiating
both areas is also the share of dominant species of high sedges (next to Carex elata, Carex
appropinquata is also often noted), which is more common in the LB area. Alkaline fens
were classified properly in places where it occurs, but in surrounded areas intensively used
for agriculture as in the UB area was misclassified in some crops. This can be improved
by using a mask developed based on ALS data cutting off the plateau and mineral islands
where this habitat never occurs.

It should also be noted that in the studied wetland habitats, there are also species
present in other types of habitats and land cover. These species contribute to lowering the
accuracy of the classification. The results also allowed us to conclude that identification of
alkaline fens in autumn is also possible and gives similar results in relation to the results
obtained in summer when using SC6. This similarity arises from the fact that summer and
autumn campaigns in both areas were conducted in almost the same phenological stage of
vegetation in the Biebrza River Valley, due to the late date of image acquisition in summer.

Spring classification results of transition mires and quaking bogs for the JF and UB
areas differ due to reasons mentioned earlier, but also due to a different stage of vegeta-
tion development as well as different water conditions observed during data acquisition.
In the area of the UB, the vegetation was not fully developed, there was also no flooding
present, hence the layer of mosses was clearly visible. The transition mires and quaking
bogs are excluded from agricultural use so the vegetation development in both areas was
unaffected by human activity and the share of dead organic matter was large (~22% in
the Biebrza River Valley—UB and ~23% in the Uroczyska Lasy Janowskie—JF), which
could also influence the identification accuracy of the 7140 habitat. The internal structure
of the habitat did not show much variation. Patches were fragmented, small, and with
indistinct borders, often in a mosaic with alkaline fens (on the UB area), which was also
confirmed during field surveys. In the area of JF, the layer of mosses was observable due to
low vegetation development and water was quite often found on the surface.

In summer more plants showed discoloration in the UB area. The growing season in
the UB area is shorter than on the JF area. This, in the context of the monthly difference in
retrieving remote sensing data in both areas significantly affects the classification results
and possibilities of comparing and assessing them as the state of vegetation development
in both areas was different. In summer, on the UB and JF areas, the layer of mosses was
mostly covered by higher plants. In Biebrza river valley by Menyanthes trifoliata, Comarum
palustre, Carex lasiocarpa, Phragmites australis, Betula humilis, and Salix rosmarinifolia in many
places. In comparison with spring, the dead organic matter showed a much smaller cover
in the UB and JF areas. The lack of inundation caused higher mean values of the F1-SCORE
in the UB area compared to the spring campaign.



Remote Sens. 2021, 13, 1504 29 of 34

In contrast to the transition mires and quaking bogs of the Upper Biebrza River Valley,
the stagnant water was often found between the clusters of Eriophorum vaginatum in the
JF area, which may have influenced the slightly lower value of the F1-SCORE compared to
spring. An important aspect that could affect the difference in the value of the F1-SCORE is
a moss layer observable during field surveys in spring, which was not covered by other
plants. The summer or early autumn aspect was manifested by discoloration of some
species (e.g., Eriophorum angustifolium) or flowering (e.g., Rhynchospora alba) as noted by
expert botanists during field campaigns (Figure 15). In the JF and the UB areas, the water
conditions were also different due to higher precipitation on the JF in the previous months.
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Some authors indicated that the main unresolved issue for image analysis of wetland
areas was seasonal differences [39]. They pointed out that using more than one image for an
area doubles the resources and is not practical. Therefore, research on determining both the
scope of data acquisition and the date is particularly important. However, recent literature
asserts that fusion of multitemporal data can also be essential in habitat mapping allowing
to achieve higher classification accuracy than the use of data from a single collection [55].
Nevertheless, the results presented in this publication allow reducing the amount of remote
sensing data necessary to identify and monitor alkaline fens and transition mires and
quaking bogs to several selected raster products. They also showed that the optimal dates
for collecting data were summer for alkaline fens and spring and summer for transition
mires and quaking bogs. To sum up, the term for identifying both wetland habitats is
very important in order to better differentiate these habitats from adjacent areas and
other habitats, but also to prevent identification problems in the presence of inconvenient
conditions such as surface water presence in early spring.

5. Conclusions

The results showed that fusing hyperspectral and ALS topographical products highly
improve classification accuracy. The benefits of using such combination of data for discrim-
inating wetland habitats result from providing more detailed information about vegetation
features allowing the ability to better separate classes. The synergetic use of hyperspec-
tral and ALS data also improved discrimination of wetlands from other land cover types
present in the research area.

The analyses also allowed to limit the number of remotely sensed sub-products used
in the classification to only those necessary and sufficient for mapping alkaline fens and
transition mires and quaking bogs with high accuracy. This is equally important in terms
of time and efficiency of data processing where final maps should be used in operational
applications related to habitat occurrence, distribution, change analysis, and protection. Re-
cursive Feature Elimination with Cross-Validation enabled to choose the most informative
RS data sub-products from large RS data sets.
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RF algorithm also showed possible errors of commission for reed and some sedges—
Scheuchzerietalia palustris, Caricetalia nigrae, Phragmition, Magnocaricion, and some crops
(concerns alkaline fens) and sedges and grasslands—Caricetalia davalianae, Molinietalia (con-
cerns transition mires and quaking bogs). Errors of omissions typically concern transition
mires and quaking bogs in places where trees and shrubs enter the open area of wetland.

Alkaline fens are better identified in summer, transition mires and quaking bogs that
evolved on/or in the vicinity of alkaline fens in summer and autumn, and transition mires
and quaking bogs that evolved on dystrophic lakes in spring and summer. Therefore, it is
sufficient to collect data once or twice during the growing season when the plant growth
stage is optimal for identification. This limits the costs of procuring airborne data and
performing field surveys.

Remote sensing is an essential support tool in many preservation actions, nature
monitoring, and identification of threats. Identification of wetland habitats can be suc-
cessfully carried out by also employing data with lower spectral or spatial resolution.
The problem arises when more detailed information is needed, both in terms of quality
and quantity. Different wetland habitats with their unique requirements require vari-
ous preservation measures to maintain them in a proper condition. In a situation where
they occur in the same area, it is necessary to precisely define their boundaries or/and
transition zones to be able to plan appropriate conservation actions. In addition, high
spectral and spatial resolution data enables analyzes beyond the mere identification of their
location. Identification of their condition, plant treats, risk of wetland overdrying, as well
as encroachment of alien invasive plant species or the threat resulting from the secondary
succession, can be an example here. Therefore, it is crucial, in our opinion, to obtain data
of appropriate quality and accuracy to be able to monitor their condition and conduct
effective conservation management.

The RS products we propose for use during the identification process can also be
developed on the basis of data obtained by low-cost sensors. The MNF is a common
dimension reduction technique allowing reducing autocorrelation between bands and
remove noise, however, for multispectral imagery, the PCA can be used alternatively.
We have also pointed out several useful spectral indices that can be calculated using
multispectral or hyperspectral satellite imagery. The same applies to topographic data,
where the laser scanning data may come from government agencies, like data from the ISOK
program in Poland. It is, in addition, definitely worth checking the currently implemented
government projects that subsidize National Parks in obtaining aviation data. It is also
worth taking into account the fact of the dynamic development of UAV technology, where
the possibility of using hyperspectral and thermal cameras and even laser scanning is
becoming more and more available.

The presented methodology can be of key importance for the monitoring of wetland
habitats in high spatial resolution.

The study confirmed the high potential of airborne remote sensing methods in wetland
habitat mapping. However, the significance of field surveys for the accuracy of the results
should not be neglected.
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69. Halladin-Dąbrowska, A.; Kania, A.; Kopeć, D. The t-SNE Algorithm as a Tool to Improve the Quality of Reference Data Used in
Accurate Mapping of Heterogeneous Non-Forest Vegetation. Remote Sens. 2019, 12, 39. [CrossRef]

70. Breiman, L. Random Forests. In Machine Learning; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2001; Volume 45,
pp. 5–32.

71. Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a
random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [CrossRef]

72. Gallant, J.C.; Dowling, T.I. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resour. Res.
2003, 39, 1347–1360. [CrossRef]

73. Boehner, J.; Antonic, O. Land Surface Parameters Specific to Topo-Climatology. Dev. Soil Sci. 2009, 33, 195–226.
74. Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 1999, 143, 107–122.

[CrossRef]
75. Boehner, J.; Selige, T. Spatial prediction of soil attributes using terrain analysis and climate regionalisation. In SAGA—Analysis and

Modelling Applications; Boehner, J., McCloy, K.R., Strobl, J., Eds.; Goettinger Geographische Abhandlungen: Goettingen, Germany,
2006; pp. 13–28.

76. Boehner, J.; Koethe, R.; Conrad, O.; Gross, J.; Ringeler, A.; Selige, T. Soil Regionalisation by Means of Terrain Analysis and Process
Parameterisation. In Soil Classification 2001; Micheli, E., Nachtergaele, F.O., Jones, R.J.A., Montanarella, L., Eds.; European Soil
Bureau Research Report No.7, EUR 20398 EN; Office for Official Publications of the European Communities: Luxembourg, 2002;
pp. 213–222.

http://doi.org/10.5194/isprsarchives-XLI-B8-1293-2016
http://doi.org/10.3390/s18030829
http://doi.org/10.3390/rs70302991
http://doi.org/10.3390/rs11192264
https://bagna.pl/images/biblioteczka/z_Mazowsza_na_Polesie_i_Wilenszczyzne.pdf
www.hyspex.no
https://www.rese-apps.com
http://doi.org/10.3390/rs13061178
https://www.malvernpanalytical.com/en
https://www.malvernpanalytical.com/en
https://www.l3harrisgeospatial.com
www.riegl.com
https://terrasolid.com
https://opals.geo.tuwien.ac.at/html/stable/index.html
https://opals.geo.tuwien.ac.at/html/stable/index.html
http://doi.org/10.1016/j.isprsjprs.2008.09.007
http://www.saga-gis.org/en/index.html
http://doi.org/10.3390/rs12010039
http://doi.org/10.1016/j.isprsjprs.2011.11.002
http://doi.org/10.1029/2002WR001426
http://doi.org/10.1023/A:1009841519580


Remote Sens. 2021, 13, 1504 34 of 34

77. Gitelson, A.; Merzlyak, M.; Chivkunova, O. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant
Leaves. Photochem. Photobiol. 2001, 74, 38–45. [CrossRef]

78. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Per-formance
of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

79. Penuelas, J.; Baret, F.; Filella, I. Semi-Empirical Indices to Assess Carotenoids/Chlorophyll-a Ratio from Leaf Spectral Reflec-tance.
Photosynthetica 1995, 31, 221–230.

80. Penuelas, J.; Filella, I.; Gamon, J.A. Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol.
1995, 131, 291–296. [CrossRef]

81. McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J.
Remote Sens. 1996, 17, 1425–1432. [CrossRef]

82. Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery.
Int. J. Remote Sens. 2006, 27, 3025–3033. [CrossRef]

83. Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L.
and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292.
[CrossRef]

84. Sims, D.; Gamon, J. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf
Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [CrossRef]

85. Bernstein, L.S.; Jin, X.; Gregor, B.; Adler-Golden, S.M. Quick atmospheric correction code: Algorithm description and recent
upgrades. Opt. Eng. 2012, 51, 111719. [CrossRef]

86. Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite
remote sensing. Geophys. Res. Lett. 2007, 34, 20405. [CrossRef]

87. Wang, L.; Qu, J.J.; Hao, X. Forest fire detection using the normalized multi-band drought index (NMDI) with satellite measure-
ments. Agric. For. Meteorol. 2008, 148, 1767–1776. [CrossRef]

88. Segal, D. Theoretical Basis for Differentiation of Ferric-Iron Bearing Minerals, Using Landsat MSS Data. In Proceedings of the
Symposium for Remote Sensing of Environment 1982, 2nd Thematic Conference on Remote Sensing for Exploratory Geology, Fort
Worth, TX, USA, 6–10 December 1982; Environmental Research Institute of Michigan: Ann Arbor, MI, USA, 1982; pp. 949–951.

89. Drury, S.A. Image interpretation in geology. Geocarto Int. 1987, 2, 48. [CrossRef]
90. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150.

[CrossRef]
91. Daughtry, C. Discriminating Crop Residues from Soil by Short-Wave Infrared Reflectance. Agron. J. 2001, 93, 125–131. [CrossRef]
92. Daughtry, C.E.; Hunt, E.R., Jr.; McMurtrey, J., III. Assessing Crop Residue Cover Using Shortwave Infrared Reflectance.

Remote Sens. Environ. 2004, 90, 126–134. [CrossRef]
93. Kaufman, Y.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992,

30, 261–270. [CrossRef]
94. Liu, X.; Zhang, B.; Gao, L.; Chen, N. A maximum noise fraction transform with improved noise estimation for hyperspectral

images. Sci. China Ser. F Inf. Sci. 2009, 52, 1578–1587. [CrossRef]
95. Brasil. Decreto—Lei n◦ 227, de 28 de Fevereiro de 1967. Dá nova Redação ao Decreto-lei nº 1.985, de 29 de Janeiro de 1940

(Código de Minas). Brasília. 1967. Available online: http://www.planalto.gov.br/ccivil_03/Decreto-Lei/Del0227.htm (accessed
on 19 October 2020).

96. Riley, J.W.; Calhoun, D.L.; Barichivich, W.J.; Walls, S.C. Identifying Small Depressional Wetlands and Using a Topographic
Position Index to Infer Hydroperiod Regimes for Pond-Breeding Amphibians. Wetlands 2017, 37, 325–338. [CrossRef]

97. García-Rivero, A.E.; Olivera, J.; Salinas, E.; Yuli, R.A.; Bulege, W. Use of Hydrogeomorphic Indexes in SAGA-GIS for the
Characterization of Flooded Areas in Madre de Dios, Peru. Int. J. Appl. Eng. Res. 2017, 12, 9078–9086.

http://doi.org/10.1562/0031-8655(2001)074&lt;0038:OPANEO&gt;2.0.CO;2
http://doi.org/10.1016/S0034-4257(02)00096-2
http://doi.org/10.1111/j.1469-8137.1995.tb03064.x
http://doi.org/10.1080/01431169608948714
http://doi.org/10.1080/01431160600589179
http://doi.org/10.1016/S0176-1617(11)81633-0
http://doi.org/10.1016/S0034-4257(02)00010-X
http://doi.org/10.1117/1.OE.51.11.111719
http://doi.org/10.1029/2007GL031021
http://doi.org/10.1016/j.agrformet.2008.06.005
http://doi.org/10.1080/10106048709354098
http://doi.org/10.1016/0034-4257(79)90013-0
http://doi.org/10.2134/agronj2001.931125x
http://doi.org/10.1016/j.rse.2003.10.023
http://doi.org/10.1109/36.134076
http://doi.org/10.1007/s11432-009-0156-z
http://www.planalto.gov.br/ccivil_03/Decreto-Lei/Del0227.htm
http://doi.org/10.1007/s13157-016-0872-2

	Introduction 
	Materials and Methods 
	Study Areas and Examined Habitats 
	Remote Sensing Data 
	Botanical Reference Data 
	Classification and Accuracy Assessment 

	Results 
	Results at Level 1 of Classification Scenarios 
	Results at Level 2 of Classification Scenarios 
	Results at Level 3 of Classification Scenarios—A Selection of Sub-Products 

	Discussion 
	Products and Classification Accuracies 
	Optimal Term for Data Acquisition 

	Conclusions 
	References

