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Abstract: Satellite sensors have been extremely useful and are in massive demand in the under-
standing of the Earth’s surface and monitoring of changes. For quantitative analysis and acquiring
consistent measurements, absolute radiometric calibration is necessary. The most common vicarious
approach of radiometric calibration is cross-calibration, which helps to tie all the sensors to a common
radiometric scale for consistent measurement. One of the traditional methods of cross-calibration
is performed using temporally and spectrally stable pseudo-invariant calibration sites (PICS). This
technique is limited by adequate cloud-free acquisitions for cross-calibration which would require
a longer time to study the differences in sensor measurements. To address the limitation of tradi-
tional PICS-based approaches and to increase the cross-calibration opportunity for quickly achieving
high-quality results, the approach presented here is based on using extended pseudo invariant
calibration sites (EPICS) over North Africa. With the EPICS-based approach, the area of extent of
the cross-calibration site covers a large portion of the North African continent. With targets this
large, many sensors should image some portion of EPICS nearlydaily, allowing for evaluation of
performance with much greater frequency. By using these near-daily measurements, trends of the
sensor’s performance are then used to evaluate sensor-to-sensor daily cross-calibration. With the use
of the proposed methodology, the dataset for cross-calibration is increased by an order of magnitude
compared to traditional approaches, resulting in the differences between any two sensors being
detected within a much shorter time. Using this new trend in trend cross-calibration approaches,
gains were evaluated for Landsat 7/8 and Sentinel 2A/B, with the results showing that the sensors
are calibrated within 2.5% (within less than 8% uncertainty) or better for all sensor pairs, which is
consistent with what the traditional PICS-based approach detects. The proposed cross-calibration
technique is useful to cross-calibrate any two sensors without the requirement of any coincident
or near-coincident scene pairs, while still achieving results similar to traditional approaches in a
short time.

Keywords: Extended Pseudo Invariant Calibration Sites (EPICS); cross-calibration; trend-to-trend;
Landsat 8; Landsat 7; Sentinel 2A; Sentinel 2B

1. Introduction

A large number of satellites have been launched to observe and study the Earth’s
surface. As life on orbit goes on, these satellites are affected by degradation processes
throughout their operational life due to mechanical stress, cosmic and ultraviolet radiation,
outgassing, etc. [1,2]. This degradation of the satellite’s performance impacts the pre-
launch radiometric calibration of the satellite, which also continues to change over time.
Consequently, to acquire accurate and consistent measurements for quantitative analysis
and monitoring of the Earth from satellite imagery, continuous monitoring of radiometric
calibration is crucial. Various approaches have been performed to obtain calibration
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parameters after the satellite is launched. One standard approach is the use of an on-board
calibrator (OBC) device, which uses the on-board sources, such as lamps or a solar diffusers,
that directly provide a signal to the sensor to obtain frequent sensor calibration in flight [3].
Since not all the instruments are equipped with on-board sources, and even the ones with
built-in capabilities need monitoring, vicarious calibration is vitally important. A post-
launch calibration technique, called vicarious calibration, utilizes locations on the Earth as
a reference sources for monitoring and evaluating the satellite sensor’s calibration [3]. This
technique can be achieved through reflectance, radiance, or irradiance-based approaches of
in-situ measurements and modelling-based approaches such as Rayleigh, deep convective
clouds (DCC), deserts, etc. [4]. Measurements from stable and predictable Pseudo-Invariant
Calibration Sites (PICS) are most widely used to achieve vicarious calibration [5].

The most widely used vicarious calibration method is the technique referred to as
cross-calibration, in which the calibration of a reference sensor is transferred to another
less well calibrated sensor. This is done using a common ground target (coincident or
near coincident) scene pairs acquired by two sensors. The following sections explain the
requirements of the cross-calibration along with the limitations of the globally accepted
traditional cross-calibration approach in detail, and provide insights into the new approach
to cross-calibration.

1.1. Cross-Calibration and Its Requirements

As mentioned earlier, cross-calibration is a process that transfers the calibration of a
well-calibrated sensor to an uncalibrated sensor. To establish consistency between different
sensor measurements and to tie them into a common radiometric scale, cross-calibration
is a critical step [6]. The basic “ideal” requirement of cross-calibration is that two sensors
should observe the same target at the same time with the same viewing geometry. Even if
the sensors achieve these criteria, the response of the sensor can be significantly different
because of the difference in their relative spectral responses (RSRs). These differences
between the RSR must be characterized, for which a hyperspectral profile is needed; a
potential source of hyperspectral data is Hyperion [6,7].

1.2. PICS-Based Cross-Calibration of Sensors

For an ideal cross-calibration, any spot on the globe observed by both satellites at the
same time, and same-view geometry can be used. Since most of the surface of the Earth is
not stable enough for calibration, and it is very rare for two satellites to observe the same
target at the same time with the same angle, the angular differences between these two
sensors in the viewing and solar geometry should be corrected. If the cross-calibration
needs to be performed using the same target observed by two sensors on different days,
then the target should be a very stable site in all spatial, temporal and spectral aspects, or
there must be a way to correct the variabilities of the site over time. A site that matches
these criteria is referred to as PICS because they are spatially uniform, spectrally stable,
and time-invariant terrestrial sites that are used to monitor the long-term radiometric
calibration of optical satellite sensors. Twenty desert sites, 100 × 100 km2 in size, were
selected by Cosnefroy et al. [5] in North Africa and Saudi Arabia, which were then revisited,
and the relevant nature of the sites after 20 years was shown by Bacour et al. [8]. The
Committee on Earth Observation Satellites (CEOS) has endorsed six sites, namely, Algeria
3, Algeria 5, Libya 1, Libya 4, and Mauritania 1 and 2, among the selected sites, as the most
suitable sites for calibration. An automated approach of identifying stable locations on
Earth’s surface has also been developed, which found six sites in the Sahara Desert and
Middle East with the temporal uncertainty range of 2% in all channels and 3% in the SWIR
channel [9]. Bacour et al. have also suggested four new sites in Algeria, Sudan, Arabia,
and Namibia to be considered for future implementation. PICS has been commonly used
for the cross-calibration of two sensors, based on a “scene to scene” comparison where a
region of interest (ROI) is chosen. In this approach, coincident or near-coincident scene
pairs for the two sensors to be cross-calibrated are acquired, their RSR is matched and
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the cross-calibration is performed. The near coincident pairs are usually the scene pairs
that are 3 days apart, as, within this short temporal period, the Earth’s surface properties
are not considered to be changed and affected by the atmosphere. The Libya 4 Centre
National d’Etudes Spatiales (CNES) ROI has been shown to be stable over a six-day span
by Barsi et al. [10], and hence this Libya 4 ROI scene, acquired by two sensors within six
days, can be considered as near-coincident acquisition for cross-calibration.

1.3. Limitations of PICS-Based Approach

While the PICS-based approach allows us to expand cross-calibration to include not
only coincident, but also near-coincident, there are still some limitations. As the PICS-based
approach is based on a comparison of the same scene (coincident/near-coincident scene
pairs) acquired by the sensors from the PICS’ ROI, one of the main constraints of this
approach is in finding an adequate number of these scene pairs for effective calibration.
The two sensors used for cross-calibration have their own revisit cycle and, due to this, with
both the sensors capturing the same target without the cloud cover, it would take several
years to obtain a usable dataset for calibration. Cross-calibration of the Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) and Terra Moderate Resolution Imaging Spectroradiometer
(MODIS) was performed by Chander et al. [6] using Libya 4 with nine coincident acquisi-
tions (30 min apart) over a five-year time period. Farhad [11] obtained only eight coincident
scene pairs in three years to cross-calibrate the Landsat 8 Operational Land Ianager (OLI)
and Sentinel 2A Multispectral Instrument (MSI). Cross-calibration using a single coincident
scene pair can also be performed, as described by Pinto et al. [12], where OLI and the
China-Brazil Earth Resources Satellite (CBERS)-4 Multispectral Camera (MUXCAM) and
Wide-Field Imager (WFI) were cross-calibrated using a single scene pair (within 26 min
apart). However, better calibration with fewer errors can be achieved with a larger number
of datasets [13].

1.4. The New Approach of Cluster-Based Cross-Calibration

In order to obtain more data, PICS needs to be larger, so that they are acquired
more frequently by the satellite. For this, Vuppula [14] combined multiple PICS’ im-
ages from Landsat 8 into a single dataset called “Super PICS” and increased the data
frequency by three or four times using a technique called “PICS Normalization Process”.
Shrestha et al. [15] identified 19 distinct regions, “clusters,” with similar spectral character-
istics across North Africa, which potentially provide cloud-free imaging on a nearly daily
basis. Shrestha et al. [16] used “Cluster 13,” which also includes Libya 4, to cross-calibrate
Landsat 8 and Sentinel 2A with the data acquired in a year, where they found 11 coincident
cloud-free scene pairs and 108 near-coincident acquisitions. Cross-calibration using Libya 4
was also performed, where only four coincident scene pairs were obtained. Cluster-based
cross-calibration, therefore, increases the opportunities for cross-calibration, consistent
with the traditional PICS-based approach [16].

A new approach to performing a daily evaluation of sensor-to-sensor performance
using these continental-scale clusters is described in this paper. Daily coincident/near
coincident acquisitions of the two sensors are obtained, which are used to identify the
trends to evaluate their daily cross-calibration performance, also capturing their variability
at different timepoints. The cross-calibration obtained using the trends of the two sensors
is again validated with the traditional PICS-based approach. This analysis is performed
for different sets of sensors, including Landsat 8, Sentinel 2A, Sentinel 2B, and Landsat 7.
Cross-calibration for all the sensor’s combinations is performed, and the results for a few
of the combinations are compared with the traditional cross-calibration approach.

This paper is structured as follows. Section 1 gives a basic overview of the topic.
Section 2 gives the description of the sensors used. Section 3 describes the methodology
for the analysis. Section 4 shows the results of the new approach and analyzes the results
obtained. Section 5 validates the new trend-to-trend cluster-based approach with the
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traditional PICS-based cross-calibration approach. Section 6 discusses the results and the
future aspects of the research and Section 7 concludes the analysis.

2. Sensor Descriptions

Landsat and Sentinel MSI sensors have been acquiring data for many years and have
been frequently used for calibration purposes. Cross-calibration of each possible sensor pair
was performed using Landsat 8, Landsat 7, and Sentinel 2A and Sentinel 2B. A comparison
of all the sensors used for this work is shown in Table 1 as a summary.

2.1. Landsat 8 OLI

Landsat 8, launched on 11 February 2013, is a satellite consisting of the Operational
Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) instruments. It is located at
an altitude of 705 km on a sun-synchronous orbit, and completes its orbital cycle every
16 days. The OLI measures solar reflectance at spatial resolutions of 30 m in eight spectral
bands, and at the spatial resolution of 15 m in the panchromatic band. The focal plane
contains over 69,000 detectors are spread through 14 separate modules as designed in its
push-broom architecture, enabling it to image a large swath of 185 km corresponding to a
field of view of 15 degrees [17,18].

2.2. Landsat 7 ETM+

The Landsat-7Enhanced Thematic Mapper Plus (ETM+) has been acquiring images
since April 1999. It also images Earth with a repeating cycle of 16 days in eight spectral
bands, seven bands with a spatial resolution of 30 m, and the panchromatic band with a
resolution of 15 m [19]. Landsat 7 has had a problem with the scan line corrector (SLC)
since May 2003, causing scenes collected since then to have wedge-shaped data gaps [20].

2.3. Sentinel 2A/2B MSI

The Sentinel 2 mission is a constellation of two satellites phased at 180 degrees to each
other and placed at an altitude of 786 km in a sun-synchronous orbit. Sentinel 2A, launched
on 23 June 2015, and 2B, launched on 7 March 2017, consists of a multispectral instrument
(MSI) which is a push-broom sensor, measuring solar reflectance across 13 spectral bands
with spatial resolutions 10 m, 20 m, and 60 m. The two sensors together complete one
rotation of the Earth in 5 days. The MSI focal plane detectors are spread across 12 separate
modules, allowing it to image a 290 km swath width at 20.6◦ field of view [21,22].

Table 1. Comparison of Landsat enhanced thematic mapper plus (ETM)+, Landsat operational land manager (OLI) and
Sentinel multispectral imaging (MSI).

Charactersctic\Sensor Landsat ETM+ Landsat OLI MSI

Number of Bands
8 10 13

(1 pan, 6 multispectral, 1 thermal) (1 pan, 6 multispectral, 1 thermal) (All multispectral)

Spatial Resolution (m) 15, 30, 60 15, 30, 100 10, 20, 60
(pan, multispectral, thermal) (pan, multispectral, thermal) (All multispectral)

Swath width (km) 183 183 290

Orbit altitude (km) 705 705 786

Equatorial crossing time 10:00–10:15 10:00–10:15 10:30

Revisit frequency (days) 16 16 10

3. Methodology

A new method of cross-calibration using cluster has been proposed in this paper,
and this section explains the overall process followed for this approach. A comparison of
this extended pseudo invariant site (EPICS)-based approach of cross-calibration was also
done with the traditionally accepted PICS-based approach, for which an EPICS location
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comparable to a PICS location was selected. After the selection of the cluster, the data
observed for the same cluster through various satellites were processed for outlier removal
and correction and cross-calibration was achieved, described in the following sections.

3.1. EPICS Selection

Among the 19 distinct clusters identified by performing an unsupervised classification
of North Africa, Cluster 13 was selected for the cluster-based cross-calibration [15]. As
Cluster 13 is widely distributed across North Africa, it allows the satellite to cover the area
on a nearly daily basis, limiting the impact of any one portion of the globe, and therefore
increasing the number of scene pairs acquired for the sensors. This cluster is comparatively
more contiguous, exhibiting a spatial uncertainty of less than 5% across all bands, and
also includes Libya 4 and Egypt1 PICS sites, which provide greater hyperspectral data
used for compensating the spectral response differences in the sensors. Kaewmanee [23]
also used these sites to perform cross-calibration of sensors for the traditional PICS-based
approach, which makes it more reasonable to choose Cluster 13 to compare the results of
the two approaches of cross-calibration. Shrestha’s Classification was further evaluated
by Hasan et al. [24], using Landsat 8 OLI, Landsat 7 ETM+, Sentinel 2A, and Sentinel
2B MSI sensors’ data, which showed that, with the 16 world reference system-2(WRS-2)
Path/Row(s) intersecting Cluster 13 across North Africa, Landsat was able to acquire
daily cloud-free acquisitions. These 16 path/row(s) data were stable and comparable to
traditional PICS, which meant that the pixels within these paths/row(s) were considered.
Out of 16 path/row(s), data from path/row 178/47 were discarded, since this site is
affected by storms and showed instability in the acquired images. Cluster 13 pixels over
North Africa for the remaining 15 paths/rows, along with the footprints of Landsat 8 and
Sentinel 2A, are shown in Figure 1.
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Figure 1. Cluster 13 pixels across North Africa. The red color represents Cluster 13 pixels, the yellow
box represents Sentinel image footprint and the images lying on the Cluster 13 pixels are the Landsat
8 images for 15 path/row(s).

3.2. Process

After the selection of the cluster, the data of the selected cluster from two sensors
for cross-calibration were acquired and filtered for cloud pixels. Digital Number (DN)
values given by Landsat and the TOA reflectance form Sentinel Level 1 product data were
converted and scaled, respectively, to obtain the top of atmosphere (TOA) reflectance
values for each sensor. One of two sensors was selected as a reference sensor for calibrating
the other one and the spectral response of these two sensors was matched by calculating
the spectral band adjustment factor (SBAF) and applying it on the sensor undergoing
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calibration. After the SBAF correction, both the sensors were normalized to minimize the
bidirectional reflectance distribution function (BRDF) effect, and the data trend for both the
sensor was determined and the cross-calibration gain was estimated, which is described
as follows.

3.2.1. Cloud Filtering and Outlier Removal

OLI and ETM+ image data were acquired and the images with more than 40% cloudy
and shadowed pixels were discarded for further analysis, similar for the MSI (Sentinel2A
and Sentinel 2B) image data. For Landsat 7 and Landsat 8, band quality assessment (BQA)
data were used to create a binary mask to filter out the outliers and, for Sentinel data, a
binary cloud mask was implemented for each resolution. A few images which behaved as
outliers were further filtered by visual inspection. Out of the 16 path/row(s) suggested
by Hasan [24], path/row 178/47 was discarded, as images for this path/row showed
persistent storms. Cluster 13 zone-specific binary masks were created, as explained by
Hasan, and pixels of the filtered images that did not lie on Cluster 13 pixels within the
selected 15 path/row(s) were excluded.

3.2.2. Conversion of Image Data to TOA Reflectance

OLI and ETM+ image data were converted to TOA reflectance using the rescaling
coefficients obtained in the metadata file, as given by Equation (1)

ρλ =
Mρ ×Qcal + Aρ

cos(θSZA)
(1)

where ρλ is the Landsat level 1 product TOA reflectance with solar zenith angle cosine
correction; Mρ and Aρ are the band-specific multiplicative and additive scaling factors,
respectively, obtained from the metadata file; Qcal is the quantized and calibrated standard
product pixel value (DN); and θSZA is the solar zenith angle per pixel, as extracted from
the associated product solar angle band.

Similarly, the reflectance for the filtered MSI images was calculated by using Equation (2)

ρλ =
Qcal

k
(2)

where ρλ is the MSI Level 1 product TOA reflectance, Qcal is the quantized and calibrated
standard product pixel value (DN), and k is the reflectance scaling factor (quantization
value) obtained from the metadata file.

3.2.3. Estimation of Spectral Band Adjustment Factor

Each of the sensors has a different spectral response, which needs to be compensated
by some factor so that the reflectance of any of the two sensors can be compared with each
other. The compensating factor for cross-calibration is described in this section.

The satellite sensors used for cross-calibration have different spectral responses even
when the sensors look at the same target through similar spectral regions. These differences
in spectral response can contribute to a systematic band offset when cross-calibration is
performed. Therefore, compensation for these differences should be accounted for better
cross-calibration, for which we require prior knowledge of the spectral signature of the
target. This compensating factor is known as the spectral band adjustment factor (SBAF),
which considers the spectral profile of the target and the relative spectral response (RSR) of
the sensor [6].

In this work, six different combinations of cross-calibration were used. For each
combination, one sensor was chosen as a “reference” sensor, which was assumed to be
well-calibrated, and another as the sensor “to be calibrated”. The SBAF was applied to the
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latter sensor to match its spectral response with the response of the reference sensor, and is
given by

SBAF =
ρλ(re f )

ρλ(cal)
=

∫
ρλh RSRλ(re f ) dλ∫

RSRλ(re f ) dλ∫
ρλh RSRλ(cal) dλ∫

RSRλ(cal) dλ

(3)

where ρλ(re f ) and ρλ(cal) are, respectively, the simulated TOA reflectances for the reference
sensor and the sensor to be calibrated; ρλh is the hyperspectral profile of the surface; and
RSRλ(re f ) and RSRλ(cal) is the relative spectral response of the reference sensor and the
sensor to be calibrated.

The simulated TOA reflectance was obtained by integrating the RSR of the multispec-
tral sensor with the hyperspectral profile of the target at each sampled wavelength, as
shown in Equation (3).

The TOA reflectance of the sensor to be calibrated was converted to the corresponding
reflectance of the reference sensor using Equation (4)

ρ′λ (cal) = ρλ × SBAF (4)

where ρ′λ (cal) is the TOA reflectance of the sensor to be calibrated which is equivalent to
the TOA reflectance of the reference sensor, and ρλ is the original TOA reflectance of the
sensor to be calibrated.

The spectral profile of the target is derived from EO-1 Hyperion hyperspectral data ac-
quired from United States Geological Survey (USGS) EarthExplorer (https://earthexplorer.
usgs.gov, accessed on 1 December 2018) over Cluster 13, and pixels containing more than
10 percent of cloud pixels are discarded, along with t images with a 5 degrees look angle or
greater, as described by Shrestha et al. [25]. A total of 213 hyperspectral images were ob-
tained and were drift-corrected, along with absolute gain and bias correction [26]. Figure 2
shows the hyperspectral profiles extracted from Hyperion to estimate the hyperspectral
profile of Cluster 13, where the yellow dots represent the mean hyperspectral signature.
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ranges of Coastal Aerosol, Blue, Green, Red, NIR, SWIR 1, and SWIR 2bands.

The SBAF corrected data were further normalized using the 15 coefficients quadratic
model derived from four angles, which were also used to normalize the TOA reflectance of
all the sensors, as described in the next section.

https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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3.2.4. Bidirectional Reflectance Distribution Function Normalization

The TOA reflectance of the Earth’s surface varies with respect to the solar and viewing
geometry as the surface of the Earth is non-Lambertian in nature. This effect is referred to
as the Bidirectional Reflectance Distribution Function (BRDF) effect, which is contributed
by the solar position that changes significantly over the season. The effect also increases as
the field of view of the sensor increases and can also occur due to variations in orientation
among the multiple sensors imaging the same target with the same solar position. Although
OLI, ETM+, and MSI, with a narrower field of view, have lesser BRDF effects, this needs to
be normalized for further analysis.

An absolute calibration BRDF model deriving linear and quadratic functions of the
solar zenith angle was developed [27] using Libya 4. To fully account for the complexity of
the BRDF effects, the BRDF model was developed including all the four angles as derived
by Farhad et al. [28] This model converts the view and solar angles from a spherical
coordinate basis to a linear Cartesian basis and obtains a TOA reflectance of the surface
as a continuous function of independent variables. Kaewmanee [29] further extended
the model developed by Farhad et al., using an interaction term, which characterized the
BRDF model well, with better uncertainty after normalization. This 15-coefficient quadratic
model has been used for this work, which is given by Equation (5)

ρmodel = β0 + β1Y2
1 + β2X2

1 + β3Y2
2 + β4X2

2 + β5X1Y1 + β6X1Y2 + β7X2Y2 + β8X2Y1
+β9Y1Y2 + β10X1X2 + β11X1 + β12Y1 + β13X2 + β14Y2

(5)
where β0, β1, β2, . . . . are the model coefficients. Y1, X1, Y2, X2 are Cartesian coordinates
representing the planar projections of the solar and sensor angles originally given in
spherical coordinates.

Y1 = sin(SZA) ∗ sin(SAA) (6)

X1 = sin(SZA) ∗ cos(SAA) (7)

Y2 = sin(VZA) ∗ sin(VAA) (8)

X2 = sin(VZA) ∗ cos(VAA) (9)

where SZA, SAA, VZA, and VAA are the solar zenith, solar azimuth, view zenith, and view
azimuth angles, respectively. The BRDF-normalized TOA reflectance for each sensor was
calculated using Equation (10)

ρBRDF−normalized =
ρobs

ρmodel
× ρre f (10)

Here, ρobs is the observed mean TOA reflectance from each scene. ρmodel is the model-
predicted TOA reflectance, and ρre f is the TOA reflectance with respect to a set of “reference”
solar and sensor position angles; for this analysis, the reference SZA, SAA, VZA, and VAA
angles were chosen from the common geometry of all the sensors.

3.2.5. Data Smoothening and Trend Identification Using Modified Savitzky–Golay Filter

The proposed approach aims to utilize the cluster to understand the differences
between the two sensors acquiring the data on a day-to-day basis. For this, the trend line of
the data was determined after all the correction and normalization processes by applying
the modified Savitzky–Golay filter. The Savitzky–Golay filter is a time-domain technique
of data smoothing by low-pass filtering proposed by Savitzky and Golay, which is based
on local least-squares polynomial approximation [30]. The polynomial function is given by
Equation (11)

f (x) = c0 + c1x + c2x2 . . . cnxn (11)

where n is the degree of the polynomial and c is the set of coefficients. The filter fits a
polynomial to the sets of data in a specified window and produces an output which is the
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value of the polynomial in the central point of the window. For the next point, the window
shifts by one day, and the process is repeated.

A moving window size of 60 days and polynomial fit of order 3 was chosen for this
work, as it gave the best approximation of the data trend over time. The overall trend of
the TOA reflectance of each sensor was determined and changes in trend and shifts in
momentum were observed. The Savitzky–Golay filter has the peak preservation property
and generates the data trend which helps to examine the patterns of the data throughout
the specific period. Thus, the obtained trends were used to calculate the cross-calibration
gain of the two sensors, as explained in the next step.

3.2.6. Trend-to-Trend Cross-Calibration Gain

When the measurements of two sensors corrected for SBAF and BRDF were obtained,
the sensor calibration difference was evaluated using the sensor trends, which are simply
obtained as the trend ratio of the two sensors, as given by Equation (12)

GainXcal(i)λ
=

ρ∗1(i)λ

ρ∗2(i)λ

(12)

where GainXcal(i)λ
is the cross-calibration gain for ith day, ρ∗1(i)λ

and ρ∗2(i)λ
are TOA re-

flectance for the two sensors for ith day after the application of the modified Savitzky–
Golay filter.

3.2.7. Uncertainty Analysis

The cross-calibration accuracy of two sensors can be influenced by several sources of
uncertainty acquired from the inherent variability in the sensors and data itself, or from
the process and techniques involved in the measurement. This step accounts for these
various sources of uncertainty for effective cross-calibration. For this analysis, uncertainty
associated with variability of site and sensor over time, SBAF uncertainty, and BRDF
uncertainty were considered as the primary sources of uncertainty. This section shows the
process used to determine each source of uncertainty.

For the temporal uncertainty (σ2
temporal), the temporal variability of the site and the

temporal drift of the sensor were considered. The standard deviation of the mean TOA
reflectance of each scene from each path/row was calculated for OLI and ETM+ sensors,
and also for each tile of MSI images. The temporal uncertainty was then estimated as the
mean of the obtained standard deviation for each sensor.

To calculate the uncertainty due to the non-uniformity of the site (variability between
WRS path/row within Cluster 13), also known as the spatial uncertainty (σ2

spatial), the
temporal standard deviation of the whole cluster (σtemporal_cluster) data was calculated,
which would consist of the temporal component as well as the spatial variability of the site.
The temporal component (σ2

temporal) from this calculated standard deviation (σ2
temporal_cluster)

was excluded, as shown in Equation (13).

σ2
spatial = σ2

temporal_cluster − σ2
temporal (13)

The uncertainty that occurred due to the BRDF model applied on the dataset for
normalization was also considered, which is the root mean square error (RMSE) of the
model to predict the surface. The difference between the measured TOA reflectance and
the TOA reflectance predicted by the model is the BRDF error, as given by Equation (14).
The BRDF error was calculated for each data point, and then the root mean square of these
errors was estimated as the BRDF uncertainty (σ2

BRDF).

BRDFerror = ρobs − ρmodel (14)
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Here, ρobs is the observed mean TOA reflectance from each scene. ρmodel is the model-
predicted TOA reflectance.

The SBAF uncertainty was determined by calculating the standard deviation of
213 SBAF values derived from the hyperspectral data of Cluster 13.

The overall uncertainty of the gain, including the calibration uncertainty (σ2
calibration)

of each sensor, was calculated by using Equation (15), and each source of uncertainty
calculated for the sensor pairs is further discussed in Section 4.4.

σtotal =
√

σ2
temporal + σ2

spatial + σ2
SBAF + σ2

BRDF + σ2
calibration (15)

4. Results

This section shows the result of each step explained in the methodology. Cross-
calibration of each pair of the sensor was performed and is shown here. First, this compares
the SBAF values derived for each pair of cross-calibration and shows how SBAF signifi-
cantly adjusts the two sensor’s RSR mismatch. Then, the outcome of the implementation
of the full BRDF model is discussed. Then, the following subsection shows the trends
identified with the implementation of the modified Savitzky–Golay filter to cross-calibrate
the two sensors. Finally, it gives the summary of the cross-calibration gains for each pair of
sensors, along with the uncertainty associated with the cross-calibration gains.

4.1. Spectral Band Adjustment Factor for Cluster 13

Sets of SBAFs were estimated from 213 hyperspectral profiles derived from Cluster
13, and the average SBAF estimated for each pair of the sensors is as shown in Figure 3.
The SBAF values shown are the compensating factor for all the sensors to be calibrated
according to the reference sensor.
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The SBAFs values derived for MSI-A and MSI-B are closer to unity, since the relative
spectral response of these sensors is very similar, as seen in Figure 4. There is a small
deviation of about 1.3% for the SWIR 2 band because there is a relative shift in the RSR of
MSI-A and MSI-B sensors for SWIR 2 bands when compared to the other bands. Similarly,
the SBAF values obtained for Landsat 8 OLI paired with Sentinel 2A exhibited similar SBAF
values when compared to the SBAF for OLI and MSI-B pair, since the RSR mismatch of
MSI A and MSI B with OLI is similar for the corresponding bands. It can be observed from
the RSR plot for Landsat 8 OLI and Sentinel MSI that the blue, green, and red bands have a
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relative shift in RSR, because of which the SBAF for these two bands highly deviates from
the unity, up to 3%. A larger deviation from unity is observed for the pairs involving the
Landsat 7 ETM+ sensor. When comparing the RSR of the Landsat 8 OLI sensor and Landsat
7 ETM+ sensor, for NIR, SWIR1 and SWIR 2 channel, the spectral response of ETM+ is
significantly wider than the OLI sensor. The RSR of ETM+ is wider when compared to all
the other remaining sensors, which caused the SBAF values to highly deviate from one.
This high deviation is observed in the NIR band, which is as large as 9% for all the sensor
pairs with Landsat 7. Additionally, the error bars for these bands are larger because of the
RSR shift and width mismatch of RSR between the two sensors.

The calculated SBAF was applied to all the corresponding sensors that were to be
calibrated, to match them with their respective reference sensor. As an example, the SBAF-
corrected mean TOA reflectance of Landsat 7, to match it with Sentinel 2A, is shown in
Figure 5. The observed mean TOA reflectance of Landsat 7 represented by the blue symbol
slightly deviates from the observed TOA reflectance of Sentinel 2A, which is represented
by the black symbol. Particularly, when comparing this to the NIR band, the mean TOA
reflectance of Landsat 7 does not cross the error bars of the mean TOA reflectance of
Sentinel 2A and differs by 0.05 reflectance units. Similarly, there is a difference in the SWIR
2 band by 0.02 reflectance units. These differences are due to the RSR mismatch of the
two sensors, which is compensated by SBAF. After the SBAF correction, the mean TOA
reflectance of Landsat 7 represented by red dots is similar to the TOA reflectance of Sentinel
2A. The mean values are within the error bars, which shows that the RSR mismatch has
been compensated by the implementation of the spectral band adjustment factor.
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Figure 4. Relative Spectral Response (RSR) of Landsat 7 ETM+, Landsat 8 OLI, Sentinel 2A MSI, Sentinel 2B MSI and the
derived hyperspectral profile of Cluster 13.
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Figure 5. Comparison of TOA reflectance of Landsat 7 before and after the SBAF correction for the
cross-calibration combination of Sentinel 2A and Landsat 7. (The error bars represent the standard
deviation, k = 2).

4.2. BRDF Normalization of the TOA Reflectance of the Sensor

Since the directional effect is related to the target, a single BRDF model was used
to predict Cluster 13. For this, a set of common reference angles was selected in such
a way that the TOA reflectance of the sensors is scaled to a common level. Thus, the
selected reference solar zenith, solar azimuth, view zenith, and view azimuth angles are
30
◦
, 130

◦
, 3

◦
and 105

◦
, respectively. These angles were used to determine the polar

projections of the view and solar angles to calculate the reference reflectance of the dataset.
Similarly, the model-predicted TOA reflectance was calculated using the angles of the
corresponding scene. Figure 6 demonstrates an example of the BRDF model, predicting
the TOA reflectance where the BRDF model predicting the TOA reflectance of the Sentinel
2A for the NIR band is shown. It can be seen from the figure that the model predicts the
data well, with the mean residual error of −0.0672%. For all the sensor data, the model
predicted the nature of the target well, with residual errors very close to zero.
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Figure 6. Comparison of the observed top of atmosphere (TOA) reflectance and the TOA reflectance
predicted by the BRDF model.

After the generation of the model, the BRDF-normalized TOA reflectance was obtained
by scaling the reference reflectance. Figure 7 shows how the directional effects of the site
were improved after applying the model on the data by comparing the observed TOA
reflectance and the normalized TOA reflectance for Sentinel 2A, the NIR band. It can be
observed from the figure that the seasonal oscillatory pattern of the TOA reflectance of
Sentinel has substantially reduced.
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Figure 7. Comparison of the observed TOA reflectance and the bidirectional reflectance distribution
function (BRDF)-normalized TOA reflectance of Sentinel 2A.

4.3. Data Trend Identification with Daily Coincident Acquisitions

Figures 8 and 9 show the TOA reflectance of daily coincident observation obtained
from Landsat 8 and Sentinel 2A for the red band, which is represented by red dots. These
data represent the trend line detected by the Savitzky–Golay filter and the data interpolated
every day throughout the 5 years. The detected trend follows the corrected TOA reflectance
data of Landsat 8 and Sentinel 2A, represented by the black dots. With the proper window
size of 60 and the polynomial order of 3, some of the outliers have been filtered out,
maintaining the original trend of the data.
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Figure 10 shows a comparison of the trends of Landsat 8 and Sentinel 2A for all the
bands. Since Sentinel 2A accounted for the compensation of RSR mismatch with Landsat 8
after SBAF correction, the TOA reflectance of the two sensors is expected to be similar for
the same target.
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As expected, TOA reflectance for both of the sensors follows a similar pattern, and
they also lie on top of each other, especially in coastal aerosol, green and NIR band. Landsat
8 and Sentinel 2A are believed to be well-calibrated sensors and, therefore, an excellent
agreement can be seen between these two sensor’s data trends. The best agreement is
seen in the green band, where the TOA reflectance of the two sensors lies approximately
within 0.2%.

Even after the application of the smoothing filter, and using the methodology on a
day-to-day basis, some data spreads are detected in the trend line because of the lower
amount of data contained within the specified window for interpolation. Few outliers
within the sliding window contributed to some high and low peaks in the trend. This
can be seen more clearly in the SWIR 2 channel in the middle of every year, for both
of the sensors, where the trend line has a low peak because of the few low datapoints
within the Savitzky–Golay window. There are variations in the order of 2 to 3 reflectance
units observed throughout the year on the cluster, which are captured by both the sensors.
Therefore, the two sensors are closely tracking each other using data from a different
portion of the continent.
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Similar trends were captured with the use of a modified Savitzky–Golay filter for all
the sensors, and for all the bands. The trends of all the sensors were then used to detect the
differences between the sensor pairs.

4.4. Cross-Calibration Gain with Their Uncertainties

The instantaneous ratio of the trends in the sensor data was obtained for each pair
of OLI, ETM+, and MSI sensors, and the obtained values are shown in this section. The
cross-calibration gain for different combinations of sensors is estimated, which is shown in
Figures 11–16. The cross-calibration gain is centered around one, and the sensors for each
pair agree to better than 2.5% for all the bands. Landsat 8 and Sentinel 2A were considered
as highly calibrated sensors and, with this approach, the difference between these two
sensors is found to be within 1% for all the bands. Similarly, the difference between the
twin satellite sensors MSI-A and MSI-B is found to be within 1%, since these two sensors
are identical sensors orbiting in the same orbit. The cross-calibration results of Landsat 8
and Sentinel 2B show that these two sensors agree to better than 1% in all the bands, except
for the blue band, which is around 2%. Furthermore, the cross-calibration of the ETM+
sensor with the other three sensors shows agreement within 2.5%.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 26 
 

 

 
Figure 11. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Sentinel 2A MSI. The 
shaded region is the uncertainty for individual bands. 

 
Figure 12. The trend-to-trend cross-calibration gain of Sentinel 2A MSI and Sentinel 2B MSI. The 
shaded region is the uncertainty for individual bands. 

 
Figure 13. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Sentinel 2B MSI. The 
shaded region is the uncertainty for individual bands. 

Figure 11. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Sentinel 2A MSI. The
shaded region is the uncertainty for individual bands.

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 26 
 

 

 
Figure 11. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Sentinel 2A MSI. The 
shaded region is the uncertainty for individual bands. 

 
Figure 12. The trend-to-trend cross-calibration gain of Sentinel 2A MSI and Sentinel 2B MSI. The 
shaded region is the uncertainty for individual bands. 

 
Figure 13. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Sentinel 2B MSI. The 
shaded region is the uncertainty for individual bands. 

Figure 12. The trend-to-trend cross-calibration gain of Sentinel 2A MSI and Sentinel 2B MSI. The
shaded region is the uncertainty for individual bands.



Remote Sens. 2021, 13, 1545 16 of 25

Remote Sens. 2021, 13, x FOR PEER REVIEW 16 of 26 
 

 

 
Figure 11. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Sentinel 2A MSI. The 
shaded region is the uncertainty for individual bands. 

 
Figure 12. The trend-to-trend cross-calibration gain of Sentinel 2A MSI and Sentinel 2B MSI. The 
shaded region is the uncertainty for individual bands. 

 
Figure 13. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Sentinel 2B MSI. The 
shaded region is the uncertainty for individual bands. 
Figure 13. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Sentinel 2B MSI. The
shaded region is the uncertainty for individual bands.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 26 
 

 

 
Figure 14. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Landsat 7 ETM+. The 
shaded region is the uncertainty for individual band. 

 
Figure 15. The trend-to-trend cross-calibration gain of Sentinel 2A MSI and Landsat 7 ETM+. The 
shaded region is the uncertainty for individual bands. 

 
Figure 16. The trend-to-trend cross-calibration gain of Sentinel 2B MSI and Landsat 7 ETM+. The 
shaded region is the uncertainty for individual bands. 

Figure 14. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Landsat 7 ETM+. The
shaded region is the uncertainty for individual band.

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 26 
 

 

 
Figure 14. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Landsat 7 ETM+. The 
shaded region is the uncertainty for individual band. 

 
Figure 15. The trend-to-trend cross-calibration gain of Sentinel 2A MSI and Landsat 7 ETM+. The 
shaded region is the uncertainty for individual bands. 

 
Figure 16. The trend-to-trend cross-calibration gain of Sentinel 2B MSI and Landsat 7 ETM+. The 
shaded region is the uncertainty for individual bands. 

Figure 15. The trend-to-trend cross-calibration gain of Sentinel 2A MSI and Landsat 7 ETM+. The
shaded region is the uncertainty for individual bands.



Remote Sens. 2021, 13, 1545 17 of 25

Remote Sens. 2021, 13, x FOR PEER REVIEW 17 of 26 
 

 

 
Figure 14. The trend-to-trend cross-calibration gain of Landsat 8 OLI and Landsat 7 ETM+. The 
shaded region is the uncertainty for individual band. 

 
Figure 15. The trend-to-trend cross-calibration gain of Sentinel 2A MSI and Landsat 7 ETM+. The 
shaded region is the uncertainty for individual bands. 

 
Figure 16. The trend-to-trend cross-calibration gain of Sentinel 2B MSI and Landsat 7 ETM+. The 
shaded region is the uncertainty for individual bands. 

Figure 16. The trend-to-trend cross-calibration gain of Sentinel 2B MSI and Landsat 7 ETM+. The
shaded region is the uncertainty for individual bands.

The shaded region on the graphs shows the uncertainty for each band. As mentioned
earlier, different sources of uncertainty were computed and, as an example, the sources of
uncertainty calculated for the cross-calibration of Landsat 8 and Sentinel 2A are shown in
Table 2. For this cross-calibration pair, the major contributor to the type A uncertainty is
the BRDF model uncertainty, which is around 3.5% for the coastal aerosol and blue band.
Since BRDF normalization primarily considers the ground-level effects, the changes in the
sky are not modeled as well; thus, normalization is not as effective in the blue channel
contributing to the larger uncertainty source in these channels. This case is similar to all
the other sensor pairs. The uncertainty in the SBAF values is lower, no more than 0.3%.
The temporal and the spatial uncertainty of the cluster is similar for all the sensor pairs.
The temporal uncertainty changes with the temporal standard deviation of the sensor for
other cross-calibration pairs. The overall uncertainty is also affected by the calibration
uncertainty for each cross-calibration pair. For OLI and MSI-A pair, the total uncertainty
was within 6%.

Table 2. Sources of uncertainty for the cross-calibration of Landsat 8 and Sentinel 2A.

Sources of Uncertainty Type
Bands

CA Blue Green Red NIR SWIR1 SWIR2

Temporal uncertainty (%)

A

2.04 1.96 1.39 1.46 1.01 1.16 2.58
Spatial uncertainty (%) 2.70 2.74 1.26 1.76 0.87 1.88 1.43
SBAF uncertainty (%) 0.01 0.29 0.28 0.11 0.05 0.03 0.09
BRDF uncertainty (%) 3.40 3.39 1.87 2.28 1.33 2.29 2.98

MSI calibration
uncertainty (%) B

2.5 2.5 2.5 2.5 2.5 2.5 2.5

OLI calibration
uncertainty (%) 2 2 2 2 2 2 2

Total (%) 5.77 5.76 4.18 4.56 3.72 4.52 5.28

Similarly, for other sensor combinations, the highest uncertainty is observed in shorter
wavelengths, which were within 6–8%. The uncertainty for the cross-calibration of Landsat
7 is higher because of the calibration uncertainty of Landsat 7, which is around 5% [31].
Additionally, the SWIR channel has a higher uncertainty, similar to the shorter wavelength
bands, since the TOA reflectance for the two sensors varies in this bands. NIR band has the
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lowest uncertainty among all the bands for all the combinations, which range from 3 to 7%.
The gains, along with their uncertainties, are summarized in Table 3.

Table 3. The trend-to-trend cross-calibration summary.

Cross Calibration Bands CA Blue Green Red NIR SWIR1 SWIR2

L8 vs. S2A
Gain 1.0005 1.0123 1.0029 0.9968 1.0005 1.0111 1.0116

Uncertainty (%) 5.77 5.76 4.18 4.56 3.72 4.52 5.28

L8 vs. S2B
Gain 0.9970 0.9805 0.9933 0.9993 1.0055 1.0074 1.0096

Uncertainty (%) 5.77 5.76 4.18 4.56 3.72 4.52 5.28

S2A vs. S2B
Gain 1.0109 1.0042 1.0042 1.0105 1.0115 1.0029 1.0072

Uncertainty (%) 5.95 5.99 4.83 4.75 4.21 4.86 6.33

L8 vs. L7
Gain - 1.0007 1.0092 1.0206 1.0070 1.0322 1.0009

Uncertainty (%) - 7.20 6.01 6.29 5.92 6.35 6.87

S2A vs. L7
Gain - 0.9902 1.0072 1.0231 1.0064 1.0209 0.9906

Uncertainty (%) - 7.41 6.50 6.44 6.25 6.60 7.70

S2B vs. L7
Gain - 0.9847 1.0032 1.0146 0.9956 1.0176 0.9838

Uncertainty (%) - 7.36 6.50 6.44 6.26 6.66 7.66

Despite the larger uncertainties, the overall cross-calibration gain is within an accuracy
of 2.5%. Additionally, the ratio of the trends of the data from a different portion of North
Africa shows the differences in the satellite, not the differences which contributed to looking
at different parts of the continent, since the variations in the sites are captured by both
the sensors.

5. Validation of the New Cluster-Based Approach

This section validates the new approach of the trend-to-trend cross-calibration by
comparing this approach with the traditionally accepted PICS-based cross-calibration.
The cross-calibration of Landsat 8 and Sentinel 2A is shown as an example, since these
sensors are highly effective for data interoperability. Kaewmanee [23] performed the cross-
calibration of Landsat 8 and Sentinel 2A using Libya 4 CNES ROI, with coincident and near-
coincident scene pairs deriving the hyperspectral profile of Libya 4 without considering
the drift and bias correction of the Hyperion data. For the validation purposes, this work
utilizes the result of the traditional PICS-based approach performed by Kaewmanee after
updating the hyperspectral data using the same Libya 4 CNES ROI, comparing it with the
new cluster-based approach. The results of the traditional PICS used for the comparison
are obtained via communication with the author.

For the cross-calibration of Landsat 8 and Sentinel 2A, the data from both the satellites
were considered, since the launch of Sentinel 2A. The total number of cloud-free acquisitions
obtained for Landsat 8 was 1142 and for sentinel 2A was 1582. The TOA reflectance of each
sensor was determined and the SBAF was calculated for MSI, considering Landsat 8 as the
reference sensor for the cross-calibration.

5.1. Spectral Band Adjustment Factor for Libya 4 ROI and Cluster 13

For the PICS-based approach using Libya 4, sets of SBAF were derived using
360 hyperspectral data profiles, and, for Cluster 13, sets of SBAFs were estimated from
213 hyperspectral profiles. Since Libya 4 is a part of Cluster 13, similar results of the hyper-
spectral profile are expected. Therefore, SBAF values retrieved from similar hyperspectral
profiles are also expected to be similar. The average SBAF estimated for both approaches is
shown in Figure 17.
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The SBAFs derived from the hyperspectral signature of Libya 4 and Cluster 13 are
similar to each other. The SBAF values of coastal aerosol, NIR, SWIR1, and SWIR2 bands
are close to 1, since their RSRs are similar to each other. For blue, green, and red bands, a
relative shift in RSR can be observed, meaning that the SBAF for these two bands highly
deviates from unity. Comparing the SBAF obtained from Libya 4 ROI and Cluster 13, the
SBAF values are equal for all the bands, except for the blue and green band, where the
observed differences in the two approaches are around 0.37% and 0.30%. These differences
could be due to the differences in the hyperspectral profile of Libya 4 ROI and Cluster 13,
and also due to the width difference of the RSR. Additionally, the error bars for blue, green,
and red bands are larger because of the RSR shift and width mismatch of RSR between the
two sensors. The coefficient of variation of red bands is similar for both Cluster 13 and
Libya 4, which was approximately 1.11%, whereas, for the green band, the coefficient of
variation for Cluster 13 is 0.29%, and for Libya 4 ROI was 0.2%.

5.2. Cluster-Based Trend Totrend Cross-Calibration vs. Traditional PICS-Based Cross-Calibration
Gain along with the Associated Uncertainty

Using the trend of the TOA reflectance of the two sensors, as shown in Figure 10, the
cross-calibration gain was calculated as the ratio of the OLI TOA reflectance trend to the
MSI TOA reflectance trend. The resulting gain values are shown in Figure 18. Since Libya 4
is included within Cluster 13, the cluster-based trend-to-trend cross-calibration gain ratio
is similar to the PICS-based coincident scene pair approach. The gain values derived from
the traditional PICS-based cross-calibration seem to have more stability throughout time.
Additionally, the uncertainty of Libya 4 is less than that of Cluster 13, which causes lower
scatteredness in the gain derived from Libya 4. However, the cross-calibration gain seems
to follow a similar pattern, lying on top of each other. The cross-calibration gain for blue,
green, red, and NIR band has gain values near unity, since the TOA reflectance of the two
sensors for these bands have a better agreement. The cross-calibration gain derived from
Libya 4 and Cluster 13 are also equal for the green, red, and NIR bands and lies inside
the uncertainty range. The relative difference between the gain derived from Libya 4 and
Cluster 13 is larger in the coastal aerosol and blue band, which is approximately within 2%.

The sources of uncertainty were defined for the calculation of the cross-calibration
gain, as discussed earlier in Section 4.4, and the gain obtained with the traditional approach
of cross-calibration, was compared, as shown in Figure 18. The summary of type A and
type B uncertainties sources for the cross-calibration of Landsat 8 and Sentinel 2A is shown
in Table 2. The type A uncertainty source includes the temporal, spatial, BRDF, and SBAF
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uncertainty, and the type B uncertainty is the calibration uncertainties associated with the
sensors. The calibration uncertainties of OLI and MSI are 2% [18] and 2.5% [10], respectively,
which are the major contributors to the final uncertainty. The total uncertainty calculated
for the cross-calibration between OLI and MSI-A sensor is within 5.8% for all the bands.

Figure 19 shows the mean cross-calibration gain ratio and the associated standard
deviation derived for the previous and current approach to cross-calibration. The mean
cross-calibration for the trend-to-trend approach was calculated by taking an average
of the blue data in Figure 18 and, for the Libya 4 coincident scene, pairs approaching
the mean cross-calibration gain were calculated by taking the average of the red data-
points in Figure 18. The black data in Figure 19 were derived by Farhad et al. [28] for the
cross-calibration of OLI and MSI sensors using PICS, where the error bars represent the
uncertainty derived, which was approximately 6.8%. For two perfectly calibrated sesnors,
the value of the cross-calibration gain ratio is expected to be unity. However, for some
bands, the cross-calibration ratios deviate from unity due to various factors, such as the
uncertainties associated with SBAF correction, BRDF normalization, sensor instability,
and the atmosphere. As a whole, both approaches showed consistent estimation of the
cross-calibration ratios, since the error bars cross the mean values. The cross-calibration
gain derived from Cluster 13 shows higher uncertainties than the Libya 4 ROI-derived
cross-calibration gain. Since Farhad et al. also derived the cross-calibration gain, combining
various PICS locations, the uncertainty is much larger than the other two cross-calibration
ratios. The uncertainty from the cluster-based approach has a larger uncertainties in the
coastal aerosol and blue band, which is approximately 6%, and has the lowest uncertainty
for the NIR band, which is within 4%. The SWIR channel has a larger uncertainty for both
approaches, since the TOA reflectance of Landsat 8 and Sentinel 2A has more variation in
these channels.

These cross-calibration results show a comparison of traditional and current ap-
proaches to the cross-calibration of Landsat 8 and Sentinel 2A, which exhibited consistent
results, within 2%, and the gains derived from Libya 4 ROI and Cluster 13 are very close to
each other. Coincident scene pairs of Landsat 8 and Sentinel 2A were used for the tradi-
tional cross-calibration, which shows that traditional cross-calibration is achieved well with
the coincident scenes. Considering the higher uncertainties of the cluster-based approach,
both the previous and the proposed methods provide consistent results of cross-calibration
and they are statistically equal.

Similarly, sensor pairs that are out-of-phase and unable to achieve coincident scene
pairs can be cross-calibrated using near-coincident scene pairs [8]. To compare the current
approach with the traditional cross-calibration using near-coincident scene pairs, the
comparison of cross-calibration results of Sentinel 2A and Sentinel 2B was also made, as
shown in Figure 20. The cross-calibration gain obtained with the scene pairs of Libya 4 ROI
(5 days apart) from the MSI-A sensor and MSI-B sensor is represented by the red dots
and the cross-calibration gain, with the cluster-based trend-to-trend approach represented
by the blue dots. The red data, from the traditional PICS approach, were obtained via
personal communication with the author [23]. The black line represents the cross-calibration
result obtained by Charlotte Revel et al. [32], with the cross-calibration over desert sites.
Comparing the mean values of all the three approaches, it can be seen that the mean
values of the previous cross-calibration lie within the uncertainty range of the proposed
Cluster 13-based approach. From the graph, it can be observed that the gain obtained
from near coincident scene pairs has more variability than the one where coincident scene
pairs were used. However, results obtained from the new trend-to-trend approach with
cluster showed consistent results with the near-coincident scene pair approach for the cross-
calibration of Sentinel 2A and Sentinel 2B, which is within 1% for all the bands and 2.5%
for the coastal aerosol band. This shows the major advantage of the proposed approach
when it comes to cross-calibrating two sensors that cannot acquire coincident scenes.
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Figure 19. Cross-calibration gains comparison of Landsat 8 OLI and Sentinel 2A MSI using a
traditional ROI-based approach and the cluster-based approach. (Blue and black bars represents the
uncertainty and the red bar is the associated standard deviation at k = 2).Remote Sens. 2021, 13, x FOR PEER REVIEW 23 of 26 
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6. Discussion

The cross-calibration of satellites is performed to provide accurate and consistent
results between multiple sensors over the land surface. It plays an important role in putting
sensors into a common radiometric level for mission continuity and interoperability [6].
Traditionally, coincident scene/near-coincident scene pairs from various PICS locations
have been used to cross-calibrate any two sensors. This PICS-based approach can possi-
bly obtain Landsat 8 and Sentinel 2A coincident acquisitions every 80 days, because of
the difference in the respective satellite orbital patterns [22]. Among the few available
locations on Earth, Libya 4 can provide these acquisitions. For cross-calibration based
on the coincident scene pair approach of Landsat 8 and Sentinel 2A, only 15 coincident
scene pairs were acquired over 5 years. Shrestha et al. [16] used clusters to increase the
frequency of datasets used for cross-calibration and obtained only 11 coincident scene pairs
in a year. With this trend-to-trend cross-calibration approach, applying the Savitzky-Golay
filter and interpolating it each day, for a period randing 2015 to 2020, 1815 daily coincident
scene pairs were obtained, and the differences between Landsat 8 and Sentinel 2A were
better observed at a frequency greater than 80 days. Therefore, within a shorter period,
trend-to-trend cross-calibration helps in understanding the sensor’s differences, making it
possible to detect and correct these changes in a shorter time frame. This method is highly
useful when calibrating a newly launched satellite whose calibration needs to be done
within a shorter calibration time, and where enough coincident or near-coincident scene
pairs cannot be achieved within the calibration period.

The Savitzky–Golay filter was used to determine the trend of the TOA reflectance
of Cluster 13 for this work, which seems to predict the trend more accurately if there are
enough data within the Savitzky–Golay window span. Missing data or data gaps in the
TOA reflectance could produce more spreads and variations in the detected trend. In
Figure 20, a spread of about 0.08 reflectance can be observed in SWIR 2 band since, for
Sentinel 2B, there were only four datapoints within the 60 day window, which produced
the high data spread at around the end of the year 2019. Additionally, the analysis is
based on the time domain filter, which can be further analyzed with different techniques
of time-domain and frequency-domain filtering processes. Even more accurate and real
trends can be identified with better smoothing filters.

The proposed technique of cross-calibration showed that the cross-calibration results
of Landsat 8 and Sentinel 2A are within 1% and consistent with the results obtained from
Libya 4 CNES ROI using coincident scenes. From Figure 20, it can be observed that the
gain obtained from near-coincident scene pairs has more variability than the one where
coincident scene pairs were used. However, results obtained from the new trend-to-trend
approach with cluster showed consistent results for the cross-calibration of Sentinel 2A
and Sentinel 2B. The result is within 2% when compared to the traditional Libya 4 ROI
cross-calibration results. This shows the major advantage of the proposed system when it
comes to cross-calibrating two sensors whose coincident scene pairs cannot be achieved.
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7. Conclusions

Since Cluster 13 provides higher temporally frequent sets of data for the cross-
calibration of two sensors, the proposed trend-to-trend cross-calibration technique further
amplifies this opportunity. The purpose of this EPICS-based trend-to-trend cross-calibration
is to illustrate the technique of using the cluster to cross-calibrate two satellite sensors
without needing coincident or near-coincident acquisitions. The obtained results have been
shown and compared to the previously accepted approach, which showed consistent and
statistically equal results. Out of all the other bands for all the combinations of sensors
for cross-calibration, the NIR band showed a better agreement when compared to the
coincident, near-coincident scene pair approach, which was within 1%. Maximum offsets
were observed in coastal aerosol, blue and SWIR1 channels, and were within 2.5%. The
uncertainties in these bands were higher, which was mostly due to the spatial uncertainty
of Cluster 13, the calibration uncertainty, and the BRDF effects’ uncertainty. However, the
overall cross-calibration is comparable to the traditional approach. Based on the results
of EPICS based cross-calibration, it can be concluded that any portion of cluster 13 can
be used for cross calibrating two sensors in much shorter time, using the trends of two
sensors, with the same level of accuracy as provided by the traditional PICS-based method
that utilizes coincident or near coincident scene pairs.
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