Coupling Analysis of Ecosystem Services Value and Economic Development in the Yangtze River Economic Belt: A Case Study in Hunan Province, China
Abstract
:1. Introduction
- (1)
- to evaluate the spatiotemporal characteristics of ESV in Hunan Province from 2000 to 2018;
- (2)
- to explore the spatiotemporal characteristics of the ESV sensitivity in Hunan province from 2000 to 2018;
- (3)
- to measure the bivariate spatial autocorrelation relationship between the ESV and economic development level in Hunan Province from 2000 to 2018; and
- (4)
- to analyze the spatiotemporal evolution characteristics of the coupling relationship between the ESV and economic development of Hunan Province from 2000 to 2018.
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Methods
2.3.1. Measurement of the Ecosystem Services Value
2.3.2. Sensitivity Analysis
2.3.3. Spatial Autocorrelation Test
2.3.4. Coupling Analysis
3. Results
3.1. Land-Use Change in Hunan Province from 2000 to 2018
3.2. Spatial Pattern of Ecosystem Services Value in Hunan Province from 2000 to 2018
3.3. Sensitivity Analysis of Ecosystem Services Value in Hunan Province from 2000 to 2018
3.4. Spatial Pattern of Economic Density in Hunan Province from 2000 to 2018
3.5. Spatial Autocorrelation between Ecosystem Services Value and Economic Development in Hunan Province from 2000 to 2018
3.6. Coupling Analysis of Ecosystem Services Value and Economic Development in Hunan Province from 2000 to 2018
4. Discussion
4.1. Interpretation of Findings
4.2. Coupling Relationship between Ecosystem Services Value and Economic Development
4.3. Integrating Ecosystem Services into Land Use Decisions
4.4. Policy Implications
4.5. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, D.; Chen, Z.; Peng, B. Spatial differentiation and coupling effect between land ecosystem services value and economic development: A case study of West Dongting Lake area. Geogr. Res. 2018, 37, 1692–1703. [Google Scholar]
- Li, G.; Fang, C. Global mapping and estimation of ecosystem services values and gross domestic product: A spatially explicit integration of national ‘green GDP’ accounting. Ecol. Indic. 2014, 46, 293–314. [Google Scholar] [CrossRef]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S. Bringing ecosystem services into economic decision-making: Land use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Chen, L.; Sun, R.; Kong, P. Land use changes and socio-economic development strongly deteriorate river ecosystem health in one of the largest basins in China. Sci. Total Environ. 2018, 616–617, 376–385. [Google Scholar] [CrossRef]
- Arrow, K.; Bolin, B.; Costanza, R.; Dasgupta, P.; Folke, C. Economic growth, carrying capacity, and the environment. Science 1995, 15, 91–95. [Google Scholar]
- Grossman, G.M.; Krueger, A.B. Economic growth and the environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef] [Green Version]
- Rozelle, S.; Huang, J.; Zhang, L. Poverty, population and environmental degradation in China. Food Policy 1997, 22, 229–251. [Google Scholar] [CrossRef]
- Stern, D.I.; Common, M.S.; Barbier, E.B. Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development. World Dev. 1996, 24, 1151–1160. [Google Scholar] [CrossRef]
- Costanza, R.; Darge, R.C.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.E.; Naeem, S.; Oneill, R.V.; Paruelo, J.M. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Song, W. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- de Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Kremen, C. Managing ecosystem services: What do we need to know about their ecology? Ecol. Lett. 2010, 8, 468–479. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert knowledgy based valuation method of ecosystem services in China. J. Nat. Res. 2008, 23, 911–919. [Google Scholar]
- Li, F.; Zhang, S.; Yang, J.; Chang, L.; Yang, H.; Bu, K. Effects of land use change on ecosystem services value in West Jilin since the reform and opening of China. Ecosyst. Serv. 2018, 31, 12–20. [Google Scholar]
- Li, Y.; Zhan, J.; Liu, Y.; Zhang, F.; Zhang, M. Response of ecosystem services to land use and cover change: A case study in Chengdu City. Resour. Conserv. Recy. 2017, 132, 291–300. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, E.; Yin, L.; Ma, L. Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region, China. Ecosyst. Serv. 2018, 34, 55–67. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Daily, G.C. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Capriolo, A.; Boschetto, R.G.; Mascolo, R.A.; Balbi, S.; Villa, F. Biophysical and economic assessment of four ecosystem services for natural capital accounting in Italy. Ecosyst. Serv. 2020, 46, 101207. [Google Scholar] [CrossRef]
- Riper, C.; Kyle, G.T. Capturing multiple values of ecosystem services shaped by environmental worldviews: A spatial analysis. J. Environ. Manag. 2014, 145, 374–384. [Google Scholar] [CrossRef]
- Booth, P.N.; Law, S.A.; Ma, J.; Buonagurio, J.; Boyd, J.; Turnley, J. Modeling aesthetics to support an ecosystem services approach for natural resource management decision making. Integr. Environ. Asses. Manag. 2017, 13, 926–938. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Semmens, D.J.; Waage, S.; Winthropc, R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst. Serv. 2013, 5, 27–39. [Google Scholar] [CrossRef]
- Waage, S.; Armstrong, K.; Hwang, L. New Business Decision-Making Aids in An Era of Complexity, Scrutiny, and Uncertainty: Tools for Identifying, Assessing, and Valuing Ecosystem Services. In Handbook on the Economics of Ecosystem Services and Biodiversity; Edward Elgar Publishing: Cheltenham, UK, 2011; Volume 40. [Google Scholar]
- Huang, C.H.; Yang, J.; Zhang, W.J. Research progress in ecosystem service evaluation model. Chin. J. Ecol. 2013, 32, 3360–3367. [Google Scholar]
- Asadolahi, Z.; Salmanmahiny, A.; Sakieh, Y.; Mirkarimi, S.H.; Baral, H.; Azimi, M. Dynamic trade-off analysis of multiple ecosystem services under land use change scenarios: Towards putting ecosystem services into planning in Iran. Ecol. Complex. 2018, 36, 250–260. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G.; Li, J. The spatial aspect of ecosystem services balance and its determinants. Land Use Policy 2020, 90, 104263. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G.; Li, J. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts on ecosystem services in the Middle Reaches of the Yangtze River Economic Belt in China based on the geo-informatic Tupu method. Sci. Total Environ. 2020, 701, 134690. [Google Scholar] [CrossRef]
- Jopke, C.; Kreyling, J.; Maes, J.; Koellner, T. Interactions among ecosystem services across Europe: Bagplots and cumulative correlation coefficients reveal synergies, trade-offs, and regional patterns. Ecol. Indic. 2015, 49, 46–52. [Google Scholar] [CrossRef]
- Villamagna, A.M.; Angermeier, P.L.; Bennett, E.M. Capacity, pressure, demand, and flow: A conceptual framework for analyzing ecosystem service provision and delivery. Ecol. Complex. 2013, 15, 114–121. [Google Scholar] [CrossRef]
- Braat, L.C.; de Groot, R. The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Zare, M.; Panagopoulos, T.; Loures, L. Simulating the impacts of future land use change on soil erosion in the Kasilian watershed, Iran. Land Use Policy 2017, 67, 558–572. [Google Scholar] [CrossRef]
- Boyd, W.J. The nonmarket benefits of nature: What should be counted in green GDP? Ecol. Econ. 2007, 61, 716–723. [Google Scholar] [CrossRef]
- Du, L.; Liu, H.; Xu, J.; Zhang, F.; Li, J. Review of bidirectional effects of urbanization and ecosystem services. Ecol. Sci. 2017, 36, 233–240. [Google Scholar]
- Kaletová, T.; Loures, L.; Rui, A.C.; Aydin, E.; Gama, J.; Loures, A.; Truchy, A. Relevance of intermittent rivers and streams in agricultural landscape and their impact on provided ecosystem services—A mediterranean case study. Int. J. Environ. Res. Public Health 2019, 16, 2693. [Google Scholar] [CrossRef] [Green Version]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Messerli, B.; Grosjean, M.; Hofer, T.; Núez, L.; Pfister, C. From nature-dominated to human-dominated environmental changes. Quat. Sci. Rev. 2000, 19, 459–479. [Google Scholar] [CrossRef]
- Kuznets, S. Economic growth and income inequality. Am. Econ. Rev. 1995, 45, 1–28. [Google Scholar]
- Chen, W.; Chi, G.; Li, J. Ecosystem services and their driving forces in the Middle Reaches of the Yangtze River Urban Agglomerations, China. Int. J. Environ. Res. Public Health 2020, 17, 3717. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, Z.; Lei, X.; He, B.; Jia, K. Simulation of urban agglomeration ecosystem spatial distributions under different scenarios: A case study of the Changsha–Zhuzhou–Xiangtan urban agglomeration. Ecol. Eng. 2016, 88, 112–121. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Leng, Y.; Zhang, D.; Li, S. Ecological assets valuation of the Tibetan Platean. J. Nat. Res. 2003, 18, 189–196. [Google Scholar]
- Ye, Y.; Bryan, B.A.; Zhang, J.E.; Connor, J.D.; Chen, L.; Qin, Z.; He, M. Changes in land-use and ecosystem services in the Guangzhou-Foshan Metropolitan Area, China from 1990 to 2010: Implications for sustainability under rapid urbanization. Ecol. Indic. 2018, 93, 930–941. [Google Scholar] [CrossRef]
- Yi, H.; Gueneralp, B.; Filippi, A.M.; Kreuter, U.P.; Gueneralp, I. Impacts of land change on ecosystem services in the San Antonio River Basin, Texas, from 1984 to 2010. Ecol. Econ. 2017, 135, 125–135. [Google Scholar] [CrossRef]
- Abulizi, A.; Yang, Y.; Mamat, Z.; Luo, J.; Abdulslam, D. Land-use change and its effects in charchan Oasis, Xinjiang, China. Land Degrad. Dev. 2017, 28, 106–115. [Google Scholar] [CrossRef]
- Kreuter, U.P.; Harris, H.G.; Matlock, M.D.; Lacey, R.E. Change in ecosystem service values in the San Antonio area, Texas. Ecol. Econ. 2001, 39, 333–346. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, F.; Yang, D.; Huo, J.; Chen, H. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial associationâ-LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Anselin, L. A test for spatial autocorrelation in seemingly unrelated regressions. Econ. Lett. 1988, 28, 335–341. [Google Scholar] [CrossRef]
- Wang, Z.; Fang, C.; Wang, J. Evaluation on the coordination of ecological and economic systems and associated spatial evolution patterns in the rapid urbanized Yangtze Delta Region since 1991. Acta Geogr. Sin. 2011, 66, 1657–1668. [Google Scholar]
- Liu, Y.; Liao, L.; Long, H.; Qin, J. Effects of land use transitions on ecosystem services value: A case study of Hunan province. Geogr. Res. 2015, 34, 691–700. [Google Scholar]
- Xiong, Y.; Zhang, C.; Gong, C.; Luo, P. Spatial-temporal Evolvement of Ecosystem Service Value in Hunan Province Based on LUCC. Res. Environ. Yangtze Basin 2018, 27, 1397–1408. [Google Scholar]
- Hu, Z.; Wang, S.; Bai, X.; Luo, G.; Deng, Y. Changes in ecosystem service values in karst areas of China. Agric. Ecosyst. Environ. 2020, 301, 107026. [Google Scholar] [CrossRef]
- Li, M.; Zhou, Z. Positive and negative ecosystem services evaluation and its spatial pattern analysis on urban landscape: A case study of Xi’an City. Acta Ecol. Sin. 2016, 71, 1215–1230. [Google Scholar]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Sci. Total Environ. 2018, 637–638, 780. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233. [Google Scholar] [CrossRef]
- Tammi, I.; Mustajrvi, K.; Rasinmki, J. Integrating spatial valuation of ecosystem services into regional planning and development - ScienceDirect. Ecosyst. Serv. 2017, 26, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Nat. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Primmer, E.; Furman, E. Operationalising ecosystem service approaches for governance: Do measuring, mapping and valuing integrate sector-specific knowledge systems? Ecosyst. Serv. 2012, 1, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Lian, X. Review on advanced practice of provincial spatial planning: Case of a western, less developed province. Int. Rev. Spat. Plan. Sustain. Dev. 2018, 6, 185–202. [Google Scholar] [CrossRef] [Green Version]
- Kuo, L.; Chang, B.G. The affecting factors of circular economy information and its impact on corporate economic sustainability-Evidence from China. Sustain. Prod. Consump. 2021, 27, 986–997. [Google Scholar] [CrossRef]
- Xing, L.; Zhu, Y.; Wang, J. Spatial spillover effects of urbanization on ecosystem services value in Chinese cities. Ecol. Indic. 2021, 121, 107028. [Google Scholar] [CrossRef]
Categories | Sub-Categories | Forestland | Grassland | Cultivated Land | Wetland | Water Area | Unused Land | Construction Land |
---|---|---|---|---|---|---|---|---|
Supplying services | Food production | 0.33 | 0.43 | 1 | 0.36 | 0.53 | 0.02 | 0.01 |
Raw material | 2.98 | 0.36 | 0.39 | 0.24 | 0.35 | 0.04 | 0 | |
Regulating services | Gas regulation | 4.32 | 1.5 | 0.72 | 2.41 | 0.51 | 0.06 | −2.42 |
Climate regulation | 4.07 | 1.56 | 0.97 | 13.55 | 2.06 | 0.13 | 0 | |
Hydrological regulation | 4.09 | 1.52 | 0.77 | 13.44 | 18.77 | 0.07 | −7.51 | |
Waste treatment | 1.72 | 1.32 | 1.39 | 14.4 | 14.85 | 0.26 | −2.46 | |
Supporting services | Soil formation and retention | 4.02 | 2.24 | 1.47 | 1.99 | 0.41 | 0.17 | 0.02 |
Biodiversity protection | 4.51 | 1.87 | 1.02 | 3.69 | 3.43 | 0.4 | 0.34 | |
Cultural services | Recreation and culture | 2.08 | 0.87 | 0.17 | 4.69 | 4.44 | 0.24 | 0.01 |
Total equivalent value | 28.12 | 11.67 | 7.9 | 54.77 | 45.35 | 1.39 | −12.01 |
Categories | Sub-Categories | Forestland | Grassland | Cultivated Land | Wetland | Water Area | Unused Land | Construction Land |
---|---|---|---|---|---|---|---|---|
Supplying services | Food production | 96.218 | 125.376 | 291.571 | 104.966 | 154.533 | 5.831 | 2.916 |
Raw material | 868.882 | 104.966 | 113.713 | 69.977 | 102.050 | 11.663 | 0.000 | |
Regulating services | Gas regulation | 1259.588 | 437.357 | 209.931 | 702.687 | 148.701 | 17.494 | −705.602 |
Climate regulation | 1186.695 | 454.851 | 282.824 | 3950.790 | 600.637 | 37.904 | 0.000 | |
Hydrological regulation | 1192.526 | 443.188 | 224.510 | 3918.717 | 5472.791 | 20.410 | −2189.700 | |
Waste treatment | 501.502 | 384.874 | 405.284 | 4198.625 | 4329.832 | 75.809 | −717.265 | |
Supporting services | Soil formation and retention | 1172.116 | 653.119 | 428.610 | 580.227 | 119.544 | 49.567 | 5.831 |
Biodiversity protection | 1314.986 | 545.238 | 297.403 | 1075.898 | 1000.089 | 116.628 | 99.134 | |
Cultural services | Recreation and culture | 606.468 | 253.667 | 49.567 | 1367.469 | 1294.576 | 69.977 | 2.916 |
Total ESV | 8198.982 | 3402.636 | 2303.413 | 15,969.355 | 13,222.754 | 405.284 | −3501.770 |
Land-Use Types | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|
Cultivated land | 14,302.183 | 14,218.600 | 13,831.071 | 13,746.060 | 13,619.970 |
Forestland | 107,694.389 | 107,604.525 | 108,457.975 | 108,267.962 | 107,976.455 |
Grassland | 2573.791 | 2568.106 | 2378.621 | 2362.218 | 2352.787 |
Water area | 8020.218 | 8275.951 | 8297.624 | 7961.308 | 8754.782 |
Construction land | −997.838 | −1119.530 | −1485.664 | −1704.457 | −2016.604 |
Unused land | 0.883 | 0.828 | 1.382 | 1.368 | 1.123 |
Wetland | 2876.845 | 2796.383 | 2985.614 | 3431.047 | 2525.791 |
In Total | 134,470.470 | 134,344.862 | 134,466.623 | 134,065.505 | 133,214.304 |
Categories | Sub-Categories | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|---|
Supplying services | Food production | 3282.561 | 3273.278 | 3229.067 | 3214.651 | 3198.501 |
Raw material | 12,272.832 | 12,260.626 | 12,327.106 | 12,301.623 | 12,266.365 | |
Regulating services | Gas regulation | 18,194.868 | 18,147.526 | 18,153.783 | 18,086.467 | 17,935.162 |
Climate regulation | 18,763.614 | 18,731.290 | 18,829.755 | 18,884.543 | 18,637.670 | |
Hydrological regulation | 20,794.721 | 20,782.766 | 20,670.932 | 20,466.164 | 20,321.318 | |
Waste treatment | 12,573.262 | 12,590.065 | 12,534.607 | 12,468.338 | 12,385.091 | |
Supporting services | Soil formation and retention | 18,729.979 | 18,700.073 | 18,721.350 | 18,688.725 | 18,596.551 |
Biodiversity protection | 20,360.423 | 20,351.658 | 20,433.053 | 20,399.736 | 20,342.982 | |
Cultural services | Recreation and culture | 9498.210 | 9507.580 | 9566.970 | 9555.258 | 9530.664 |
Total ESV | 134,470.470 | 134,344.862 | 134,466.623 | 134,065.505 | 133,214.304 |
Land-Use Types | 2000 | 2005 | 2010 | 2015 | 2018 |
---|---|---|---|---|---|
Cultivated land | 0.027 | 0.026 | 0.026 | 0.026 | 0.026 |
Forestland | 0.227 | 0.227 | 0.227 | 0.228 | 0.228 |
Grassland | 0.005 | 0.005 | 0.004 | 0.004 | 0.004 |
Water area | 0.015 | 0.015 | 0.015 | 0.015 | 0.016 |
Construction land | 0.002 | 0.002 | 0.003 | 0.003 | 0.004 |
Unused land | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Wetland | 0.005 | 0.005 | 0.006 | 0.006 | 0.005 |
Types | Worsening Relationship | High Conflict | Relatively Higher Conflict | Moderate Conflict | Relatively Lower Conflict | Low Conflict | Potential Crisis | Low Coordination | Relatively Low Coordination | Medium Coordination | Higher Coordination | Coordination Relationship |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2000–2005 | 0 | 1 | 1 | 1 | 1 | 85 | 33 | 0 | 0 | 0 | 0 | 0 |
2005–2010 | 1 | 0 | 0 | 1 | 0 | 86 | 33 | 0 | 0 | 0 | 0 | 1 |
2010–2015 | 0 | 0 | 0 | 0 | 1 | 102 | 18 | 0 | 0 | 1 | 0 | 0 |
2015–2018 | 3 | 0 | 0 | 1 | 8 | 102 | 4 | 1 | 0 | 0 | 0 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Zeng, J.; Zhong, M.; Pan, S. Coupling Analysis of Ecosystem Services Value and Economic Development in the Yangtze River Economic Belt: A Case Study in Hunan Province, China. Remote Sens. 2021, 13, 1552. https://doi.org/10.3390/rs13081552
Chen W, Zeng J, Zhong M, Pan S. Coupling Analysis of Ecosystem Services Value and Economic Development in the Yangtze River Economic Belt: A Case Study in Hunan Province, China. Remote Sensing. 2021; 13(8):1552. https://doi.org/10.3390/rs13081552
Chicago/Turabian StyleChen, Wanxu, Jie Zeng, Mingxing Zhong, and Sipei Pan. 2021. "Coupling Analysis of Ecosystem Services Value and Economic Development in the Yangtze River Economic Belt: A Case Study in Hunan Province, China" Remote Sensing 13, no. 8: 1552. https://doi.org/10.3390/rs13081552
APA StyleChen, W., Zeng, J., Zhong, M., & Pan, S. (2021). Coupling Analysis of Ecosystem Services Value and Economic Development in the Yangtze River Economic Belt: A Case Study in Hunan Province, China. Remote Sensing, 13(8), 1552. https://doi.org/10.3390/rs13081552