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Abstract: This paper presents the results of the first characterization of coincident Ku- and Ka-
band ocean surface normalized radar cross section measurements at earth incidence angles 0◦–18◦

using one year of wide swath Global Precipitation Measurement (GPM) mission dual frequency
precipitation radar (DPR) data. Empirical geophysical model functions were derived for both
bands, isotropic and directorial sensitivity were assessed, and finally, sea surface temperature (SST)
dependence of radar backscatter, at both bands, were investigated. The Ka-band exhibited higher
vector wind sensitivity for a low-to-moderate wind speeds regime, and the SST effects were also
observed to be substantially larger at Ka-band than at Ku-band.

Keywords: ocean normalized radar cross section; near-nadir; GPM-core observatory; DPR; sea
surface roughness scattering; space borne radar; Ku-band radar; Ka-band radar

1. Introduction

A robust empirical model of the relationship between ocean surface normalized radar
cross section (known as σ0) and associated geophysical parameters (especially the ocean
wind speed and direction and sea surface temperature) is essential for the development
of an accurate ocean vector wind (OVW) retrieval algorithm. Moreover, knowledge of
ocean σ0 is also crucial for on-orbit radar calibration of active remote sensors and for
correcting atmospheric path attenuation in satellite cloud and rain profiling radars [1].
While the literature for ocean σ0 is extensive, the majority of studies concern either radar
scatterometers at moderate earth incidence angles (EIA) or nadir-viewing radar altimeters
that operate at the Ku- or C-band frequencies.

On the other hand, the satellite Ku-band Precipitation Radars (PR) onboard Tropical
Rainfall Measuring Mission (TRMM) [2] and the Ku/Ka-band Dual-frequency Precipitation
Radar (DPR) on the follow-on Global Precipitation Mission (GPM) [3,4] also measure ocean
backscatter from space. These radars view the surface at near-nadir EIA, with cross
track scans within ±18◦; this scenario offers a unique scientific opportunity to investigate
air/sea interaction processes as a function of wind and wave parameters from non-sun
synchronous, low-earth orbiting satellites. Notable among near-nadir ocean backscatter
studies were: Freilich and Vanhoff (2003) [5], who established an empirical relation between
ocean surface σ0 and wind speed for EIA 0◦–18◦ using TRMM Ku PR measurements; Jones
et al. (2002) [6] and Souisvarn et al. (2003) [7], who were the first to characterize the TRMM
Ku PR σ0 wind direction anisotropy for EIA 12◦–18◦ over wind speeds of 3–9 m/s; Li et al.
(2004) [8], who first demonstrated the wind speed (WS) retrieval from TRMM PR; and
finally, Tran and Chapron (2006) [9], who first reported the directional anisotropy and sea
state dependency of nadir σ0 measurements by Ku- and C-band satellite altimeters and also
near-nadir measurements from TRMM PR [10]. More recently, an investigation by Chu et al.
(2012a) [11] provided a comprehensive analysis of near nadir σ0 as a function of combined
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wind vector and wave parameters (including wave height and steepness) by using a
large set of collocated TRMM PR and in situ data. Additionally, Chu et al. (2012b) [12]
discussed the unique behavior the Ku-band σ0 at low incidence angles by analyzing its
upwind–downwind asymmetry and upwind–crosswind directional modulations.

Prior to 2014, the ocean σ0 at Ka-band was based on airborne experiments. Although
these radar backscatter measurements provided valuable insights that indicated a similar
behavior of Ka-band σ0 to that at Ku-band, results of various studies were inconsistent with
each other [13]. In February 2014, the GPM satellite was launched, with the dual-frequency
precipitation radar that provided the first space-based measurements of global ocean radar
backscatter at low incidence angles at both Ku- and Ka-bands [14]. Recent studies analyzed
these simultaneous GPM DPR σ0 measurements [15,16]; however, results for Ka-band were
limited to EIA of ± 9◦ (corresponding to ~125 km at the center of collocated Ku swath).
Fortunately, on May 21, 2018, the Ka-band was reconfigured to provide fully collocated
measurements with Ku PR over entire ~250 km swath that corresponds to EIA range of
±18◦ [17].

In addition, Wang et al. (2017) [18] performed a comprehensive investigation of
sea surface temperature (SST) effects on ocean surface σ0 at the corresponding EIAs and
polarizations for C- and Ku-band scatterometers. Although negligible at C band, they
concluded that SST effects were significant for Ku band and should be included in the ocean
surface σ0 geophysical model function (GMF). Based upon their findings, we performed a
similar analysis of GPM DPR backscatter measurements at low incidence angles, and results
are given herein that document of the effects of SST on Ka-band ocean radar backscatter.

Therefore, this paper presents the first comparative results from the full-swath, collo-
cated, GPM DPR measurements, and separate (Ku- and Ka-band) GMFs are described for
horizontal-polarization, which characterize the clear-sky, ocean surface σ0 as a function
of EIA and environmental parameters—namely, ocean surface wind speed (WS), wind
direction (WD), and SST. The paper is organized as follows: instruments and data are
described in Section 2. In Section 3, the WS, relative WD, and SST dependency of σ0 and
model description are provided. Comparative results at Ku and Ka band are also given in
the same section, which is followed by the discussion in Section 4. Section 5 concludes the
paper by giving a summary.

2. Materials and Methods

The Global Precipitation Mission satellite was launched on 27 February, 2014 into a 65◦

inclination, 407 km altitude, non-sun-synchronous orbit. This is a joint Earth Observation
Science mission by the National Aeronautics and Space Administration (NASA) and the
Japan Aerospace Exploration Agency (JAXA), which extends the TRMM time series [2,19]
and enhances the measurement of global precipitation [3,14]. The satellite carries two
microwave remote sensors, namely, a passive GPM microwave imager (GMI) and a dual-
frequency precipitation radar (DPR).

2.1. GPM Dual-Frequency Precipitation Radar (DPR)

A Ku-band (13.6 GHz, H pol) precipitation radar (KuPR) and a new Ka-band (35.5 GHz,
H pol) precipitation radar (KaPR) form the dual-frequency precipitation radar (DPR)
onboard the GPM core observatory as shown in Figure 1. The GPM KuPR (and TRMM
PR) have an identical geometry that uses an electronically scanned phased array to scan
the surface perpendicularly to the flight direction at 49 beam positions over an EIA ±18◦.
Contiguous beams are separated by about 0.75◦ in earth incidence angle, resulting a spatial
footprint of about 5 km in diameter that produces a continuous 245 km measurement swath.
The Ka PR also has 49 cross-track beams with the same beam width as Ku PR, but initially,
only 25 of the Ka-band beams with the same range resolution as the KuPR (250 m) were
overlapped with the central 25 beams of KuPR resulting in a common swath of 125 km,
as shown in Figure 2a. These 25 Ka-band beams are called “matched scan (KaMS)”, and
the other 24 beams which have a different range resolution (500 m) and are called “high
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sensitivity scan (KaHS)” because of their superior noise performance, were interleaved
with the KaMS beams as shown in Figure 2a. However, on 21 May 2018, the Ka-band radar
was reconfigured as shown in Figure 2b, to provide coincident measurements with KuPR
over a full 245 km common swath [17]. This new configuration allows a comparison of
radar backscatter characteristics at both frequencies for low EIA (nadir ± 18◦).
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2.2. GPM Microwave Imager (GMI)

The GPM Microwave Imager (GMI) is a well-calibrated, multi-channel, conical scan-
ning total power microwave radiometer with a 931 km wide swath. It has 13 channels with
frequency ranging from 10.65 to 183.31 GHz, each of which is dual-polarized (except the
23.8 GHz channel which has only V pol). A 245 km DPR swath lies at the center of the
931 km GMI swath, as shown in Figure 1, which simplifies the collocation between these
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two sensor measurements. Since the focus of this paper is DPR, a detailed discussion of
GMI is beyond the scope of this paper, but it can be found in [20]. We used GMI wind speed
(WS), and sea surface temperature (SST) retrieved by the Remote Sensing System [21]. They
used intercalibrated GMI brightness temperatures (Tb) to produce ocean measurement
products including WS and SST. Because the RSS GMI products are simultaneous with
DPR measurements, they are expected to be more appropriate than the wind products
extracted from a numerical weather forecast model.

2.3. Collocation and Quality Control

One year (2019) of Ku PR level 2 standard (2A.GPM.Ku.V8-20180723. V06A) and
Ka PR experimental (2A.GPM.KaX.V8-20200326.V06X) products from the NASA GPM
research data archive (https://arthurhou.pps.eosdis.nasa.gov, accessed on 15 April 2021)
were used in this study. In addition to atmospheric attenuation corrected ocean surface
σ0, the DPR product also contains navigation, sensor geometry, geolocation, and quality
flags. PR rain, surface type and data quality flags were used to filter the radar backscatter
to ensure rain-free ocean σ0 measurements, which were then smoothed (using a triangular
moving average filter) to remove quantization noise caused by analog/digital conversion.
Finally, the filtered ocean σ0 measurements were collocated with pertinent environmental
parameters from two sources to provide a "match-up" dataset.

The first source of environmental parameters (WS and SST) were geophysical retrievals
from coincident passive microwave GMI brightness temperatures (Tbs). These data were
provided by the Remote Sensing Systems (RSS) archive (http://www.remss.com/missions/
gmi/, accessed on 15 April 2021) [21] in the form of daily 0.25◦ earth gridded maps that
were separated into ascending and descending orbit segments. For the 10 m wind speed,
we used the product that was derived from low frequency channels (10.7, 18.7, 23.8, and
36.5 GHz).

The second source of environmental parameters was the European Centre for Medium-
Range Weather Forecasts (ECMWF) global atmospheric reanalysis (ERA-5) [22]. Hourly
10-meter wind vector and SST products with 31 km grid spacing are available in ERA-5,
which were re-gridded in 0.25◦ to match with GMI products.

Finally, the match-up dataset was completed by gridding the GPM DPR data (Ku and
Ka) into 0.25◦ × 0.25◦ boxes, with associated GMI derived WS and SST and ERA-5 WD. All
σ0 measurements in a box were averaged (in linear units) and boxes with a high standard
deviation were discarded, and RSS data quality flags were also used to exclude any rain,
sea-ice, and land contaminated data from the match-up dataset. Since DPR and GMI obtain
near-simultaneous observations over a common ocean surface sub swath, the one-year
time series resulted in millions of co-located, clear-sky global ocean measurements over
a wide variety of environmental conditions. This provides a unique Ku/Ka σ0 match-up
dataset that is reported for the first time in this paper. Results were produced using two
environmental sets, one using GMI WS and SST with ERA-5 WD, and the other using
all ERA-5 products (WS, WD, and SST). The differences were insignificant, except some
mean biases (dc-offsets) between the two results. Therefore, the results with the former
combination are presented in this paper.

3. Geophysical Model Function for the Ocean Ku and Ka-Band PR Backscatter

The microwave ocean surface radar backscatter (σ0) at the GPM DPR incidence angle
range (0◦ to 18◦) are dominated by quasi-specular scattering process, but towards the
outer swath, the resonant (Bragg) scattering process also becomes significant [5]. For both
regimes, the σ0 is directly related to the ocean surface wind vector (OVW), SST, and integral
wave parameters [9–12,15,23,24]. The backscatter can be empirically modeled as a 2nd
order Fourier series (higher order terms are negligible),

σ◦
dB( f , p) = A0 + A1 cos(χ) + A2 cos(2χ) + B1 sin(χ) + B2 sin(2χ) (1)

https://arthurhou.pps.eosdis.nasa.gov
http://www.remss.com/missions/gmi/
http://www.remss.com/missions/gmi/
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where σ◦
dB( f , p) is the sea surface normalized radar cross section at a frequency (f ) and

polarization (p) in dB unit. The model coefficients A0, A1, A2, B1, and B2 are wind speed,
EIA and sea-state dependent, and χ denotes the wind direction relative to the radar azimuth
look defined as χ = ϕwind − ϕradar, where ϕwind is the meteorological wind direction (i.e.,
the direction where the wind is coming from), and ϕradar for DPR, is cross-track azimuth
look (flight direction ±90◦), both referring to the North. Accordingly, χ = 0 denotes the
upwind specifying that the wind is blowing toward the radar look direction. Since both,
Ku and Ka PR onboard GPM operate at only horizontal polarization, all references to
polarization are omitted in this paper.

Historically, the radar ocean backscatter GMF has been modeled as a cosine Fourier
series [25,26], but our initial analysis used both sine and cosine terms in Equation (1).
However, after a comprehensive investigation, it was concluded that the sine terms were
not statistically significant, and as a result, they were neglected. Figure 3 illustrates a typical
comparison of the GMF, with and without the sine terms, for an EIA = 16◦ and WS of 16
m/s. The circle symbols are the residual [< σ0 > −A0] of empirical bin average < σ0 >,
and the red solid line is the full model (Equation (1), sines and cosines) and the blue solid
line is the cosine alone GMF. As shown, the contribution of the odd terms is negligible and
the σ0 azimuth anisotropy can be well approximated by only even terms.

σ◦
dB( f , p) = A0 + A1 cos(χ) + A2 cos(2χ) (2)
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It should be noted that Equation (2) is the same expression used to model the ocean
backscatter at moderate EIAs (20◦–70◦), but here, as will be depicted in the next section,
the A1 term is negative for EIA < 20◦, which results in a reversal of upwind and downwind
asymmetry, i.e., higher downwind backscatter than the upwind backscatter.

In this section, the dependence and sensitivity of Ku and Ka band σ0 on EIA, and the
ocean surface wind speed, and wind direction are analyzed. Fourier coefficients A0, A1
and A2 are derived using σ0 measurements for each angular beam (EIA) positions, and
finally, these coefficients are modeled as a function of wind speed using polynomial fit of
appropriate orders. Additionally, the SST dependence of Ku and Ka band σ0 is discussed.
Results of sea state dependence of σ0 are not included in this paper; however, readers are
encouraged to see [9,10,12,15] for this.
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3.1. Isotropic Ku and Ka-Band σ0 Model Function at Low Incidence Angles

The A0 coefficient in Equation (1) is the azimuth independent (isotropic) σ0 measure-
ment that is directly related to the wind speed (WS) for a particular earth incidence angle
(EIA). Thus, it can be modeled as,

A0= σ◦
dB(WS, EIA) (3)

In order to analyze, A0, the normalized radar backscatter (σ0) measurements of the
Ku and Ka-bands were sorted in ±1 ms−1 wind speed bins for each of 49 EIA beams.
A conservative 3σ filter was applied to each bin to remove outliers (the 3σ values were
calculated in linear, not dB, units), and any bin with less than 500 boxes was not included
in the analysis. Next, using polynomial regression (in dB space), the bin average σ0 for
each of this EIA position were expanded as a third-order polynomial of log (WS). The use
of log (WS) for A0 reduces the order of the polynomial fit.

A0= a01x3+a02x2 + a03x + a04 (4)

where x = log10(WS), and the numerical values of these coefficients (in dB) are given in the
Table A1 in Appendix A for EIA 0◦ to 18.1◦ (Beams 1 to 25).

The dependence of A0 on WS is illustrated in Figure 4 using a log-log plot, for eight
PR beam positions that include EIAs nadir to 18.1◦. The circle symbols represent the mean
value of σ0 measurements over all wind directions and the solid lines are their third-order
polynomial fits, both in dB. At the higher EIA beam positions, σ0 monotonically increases
with wind speed, whereas it monotonically decreases for lower EIAs near nadir. For the
middle EIA beam positions, the σ0 dependence is not monotonic because there are two
different scattering mechanisms involved. Namely, the near nadir backscatter is dominated
by quasi-specular scattering that decreases σ0 with increased ocean roughness, but as EIA
increases, Bragg scattering gradually becomes significant that increases σ0 with WS. These
Ku results are consistent with [5–12,15], except for a small calibration bias between TRMM
PR and GPM KuPR.
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While these results (Figure 4) are qualitatively similar for Ka PR, there are small
differences between the A0 GMFs (Equation (4)) for Ku and Ka bands, and these differences
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are also a function of wind speed and incidence angle, as shown in Figure 5, which plots
the differences of mean backscatter values (∆A0) of Ku and Ka models as a function of
WS for different EIA beam positions. For the lower EIA beams, the difference increases
monotonically with WS, but for the higher EIA beams, the difference first decreases with
WS for lower to moderate WS, then it increases with WS for higher WS. However, for
higher EIA beam positions, the differences are smaller than at lower EIA beam positions,
for instance, the difference is less than 1.5 dB at EIA ~ 16◦ for any WS between 3 and 20 m/s.
Beside this, the WS sensitivity or σ0 gradient, defined as ( ∂σ0

∂WS ), is shown in Figure 6 as
a function of WS for the same beam positions corresponding to Figure 4. The slope of
increase or decrease declines with WS at both bands. For Ka band, it declines slightly
more rapidly than at Ku band for low WS region, whereas for medium to higher WS, the
slopes are a little higher at Ku band. Figure 7 shows the scatter diagram of Ku and Ka PR
mean σ0 for six fixed EIA beam positions. Symbols represent the mean σ0 for different
wind speed bins (1 to 20 m/s at ± 1 m/s steps). As shown, for the outer beam positions
(higher EIA), Ku and Ka PR mean σ0 are linearly correlated, except for higher WS, where
σ0 become flat and start to decrease with WS. The drop of σ0 with increasing WS begins at
relatively lower WS at the inner beam positions (lower EIA) as shown at the bottom panel
of the same Figure. These correlations between Ku and Ka PR mean σ0 could be a useful
alternative way to determine one from another, especially for outer beam positions. For
example, the missing Ka outer swath for the initial phase of GPM mission (up to 22 May
2018) could be estimated from corresponding Ku band measurements. For higher WS at
lower EIA, this approach would be difficult and more prone to error. However, the model
derived in this paper (Equation (4)) is reliably applicable for WS 3–20 m/s for all EIA beam
positions. Another important implication of Figure 7 is the variation of dynamic range of
wind-roughened σ0 with EIA. This is shown in Figure 8, which compares the maximum
wind-dependent variation of Ku band mean σ0 with that at Ka band. As shown, although
both have similar dynamic ranges for EIA ~> 9◦, Ka band mean σ0 has higher dynamic
range for EIA < 9◦.
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Finally, the mean values of binned average σ0 for Ku and Ka bands are shown in
Figure 9 as a function of EIA for different wind speeds. The σ0 monotonically decreases with
increasing incidence angle from nadir to 18.2◦. Additionally, the σ0 decreases monotonically
with wind speed at EIAs near nadir, but σ0 increases monotonically with wind speed near
EIA 18.2◦, with a transition in the middle where σ0 becomes relatively insensitive to
WS (for WS ≥ 4 ms−1). For KuPR, this transition occurs over EIA 11◦–13◦, whereas for
KaPR it occurs over EIA 12◦–14◦. Additionally, these transition regions vary with the
relative azimuth look, for upwind/downwind/crosswind directions, as shown for KuPR
in Figure 10 (these variations are proportionately similar at Ka-band which is not shown
here). This EIA range of reduced σ0 variability is useful for the radar inter-calibration
between these kinds of instruments [5]. Therefore, based upon these results, we conclude
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that the two GMF’s are similar and are applicable for a WS range of 3–20 ms−1 and for all
EIA beam positions.
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3.2. σ0 Azimuthal Anisotropy

The directional anisotropy of ocean surface σ0 is a function of WS, relative wind
direction, and EIA. We can separate the directional signal of σ0 (in dB) by computing the
residual of σ0 as follows,

σ0 − A0 = σ0
(residual) = A1 cos(χ) + A2 cos(2χ) (5)

To analyze the directional anisotropy of both KuPR and KaPR, in accordance with
Equation (5), the σ0 measurements in WS bins (±1 m/s) were further sorted into 10◦ relative
wind direction (χ) bins. Afterwards, the Fourier series approximation of Equation (2) was
applied to the bin average of both Ku and Ka PR σ0 (in dB space), to derive A1 and A2



Remote Sens. 2021, 13, 1569 10 of 27

coefficients for each WS and EIA bin position. Finally, A1 and A2 Fourier coefficients, thus
derived, were modeled as a function of WS using third and seventh order polynomial
regressions (in dB space), respectively. Unlike the case of A0 in Equation (4), use of log
(WS) for A1 and A1 does not reduce the order of the polynomials, thus WS measurements
in linear units were used in these cases.

A1 = a11u3 + a12u2 + a13u + a14 (6)

and,
A2 = a21u7 + a22u6 + a23u5 + a24u4 + a25u3 + a26u2 + a27u + a28 (7)

where u = WS , and the values of the polynomial coefficients a11 through a14 and a21
through a28 (in dB) are given in the Table A2, Table A3, and Table A4 in Appendix A for
EIA 0◦ to 18.1◦ (Beams 1 to 25).
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The A1 and A2 coefficients, for the corresponding EIA beam positions, are shown as a
function of WS in Figures 11 and 12, respectively. Symbols in both Figures represent the
Fourier coefficients found from Equation (2), and the solid lines represent the corresponding
polynomial fits (Equations (6) and (7)). For both bands, A1 is negative, and the magnitude
becomes more negative with increasing WS. Additionally, for the same EIA, the magnitude
of the Ka band A1 is slightly more negative, and the doubling of this coefficient is the
measure of upwind-down wind asymmetry. For the A2 coefficient, both bands have
similar patterns, which decrease with increasing WS and reach a minimum (at ~6 m/s (Ku)
and ~5 m/s (Ka)). Afterwards, the magnitude of A2 rapidly increases with WS until it
approximately saturates at WS ~= 14 m/s for Ku band and WS ~= 12 m/s for Ka band. The
A2 coefficient is a measure of upwind–crosswind asymmetry or total directional anisotropy,
and it increases with EIA.

The residual (anomaly) of the KuPR σ0 is presented in Figure 13 as a function of
relative wind direction for selected EIAs and WS. The symbols are the residual of the
measured bin average, and the solid lines are the corresponding model (Equation (5)). As
shown, the bi-harmonic directional signal increases with both WS and EIA, and the model
is in excellent agreement with the empirical measurements for all cases, except for the 6.8◦

EIA (and less), which is slightly degraded for relative WD: 270◦–360◦, especially for lower
WS cases. The corresponding results for KaPR are presented in Figure 14, but for these
cases the quality of the model fit is somewhat lacking for the lower three EIAs. For these
cases, the model downwind response (relative WD = 180◦) is progressively underestimated
(at the 0.1 dB level), and the model fit with the empirical measurements for relative WD
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of 270◦–360◦ disagree at the 0.2 dB level. Since both the Ku and Ka models have issues
with this same relative WD range, the empirical measurements are suspect. Further, the
model has an even symmetry with relative WD, whereas the empirical measurements
have not. The reason for this anomaly is not understood, but given the low EIA, one
possible explanation is the effect of ocean wave swell, which has not been considered in
this analysis.

The relative difference between the Ku and Ka bandσ0 directional residual (σ0
Ku−residual [dB]

−σ0
Ka−residual [dB]), is given in Figure 15 as a function of relative wind direction for the WS

averaged over 6–14 m/s at different EIAs. As shown, the maximum difference occurs at
the upwind, downwind and crosswind directions which is also a function of the EIA. Now
consider the delta-σ0 residual, calculated at upwind, downwind and crosswind for an EIA
~ 16◦, as a function of WS (given in Figure 16). At the downwind direction, the KaPR has a
higher wind direction signal than KuPR for all WS, whereas for the upwind and crosswind,
the polarity of the difference depends on WS range.
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3.2.1. Upwind and Downwind Asymmetry of σ0

One of the interesting features of the σ0 WD anisotropy at low EIA is that it has an
opposite upwind/downwind asymmetry compared to the conventional scatterometers
that operate at moderate incidence angles (20◦–70◦). As shown in Figures 13 and 14,
DPR measures a higher σ0 from the downwind direction than that from the upwind
direction, and 2A1 is the measure of the peak-to-peak upwind/downwind asymmetry. The
differences between downwind and upwind σ0 measurements, separately for both KuPR
and KaPR as a function of WS: 3–20 m/s, are shown in Figure 17 for six different EIAs:
6.8◦–18.2◦, and it is noted that for all EIAs, the measured σ0 asymmetry increases with WS
of 6–16 m/s. Chu et al. (2012) [12] also presented similar results for TRMM KuPR and
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Mouche et al. (2006) [27] reported the same trends of asymmetries for a C band radar at
low incidence angle. However, this paper presents new information concerning a higher
upwind/downwind asymmetry for Ka band compared to the Ku band. For example, at
EIA ~ 12◦, the Ku band asymmetry is about 0.7 dB for a WS of 16 m/s, while it is > 1 dB for
Ka band for the same EIA and WS.
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3.2.2. Downwind and Crosswind Anisotropy of σ0

For scatterometers operating at moderate EIAs, the A2 coefficient in Equations (2) and
(5), usually defines the peak-to-peak (upwind to crosswind) anisotropy of σ0. However,
for this low EIA range, since A1 is negative and not negligible, backscatter response at the
downwind direction is the sum of A1 and A2. Therefore, the peak-to-peak anisotropy for
this EIA range is defined downwind to crosswind which is > 2A2. Figure 18 shows the
peak-to-peak σ0 anisotropy for Ku and Ka bands, as a function of WS for different EIAs.
Additionally, Figure 19 shows the same results as a function of EIA for WS: 6–18 m/s. As
previously discussed, the shape of this curve follows that of the A2 coefficient for both WS
and EIA.

3.3. SST Dependency of σ0

In previous research [18], it was concluded that the SST has a small but significant effect
on the observed ocean σ0 at Ku band; but in this paper, these SST effects were not explicitly
identified in the development of the three dimensional (3D) GMF = f(WS, WD, EIA) Ku- and
Ka-bands. Unfortunately, the available σ0 match-up datasets have insufficient observations
for the development of a 4D GMF = f(WS, WD, SST, EIA); however, a somewhat qualitative
assessment of the impact of SST on in the GMFs are presented below.

At low microwave frequencies (1–8 GHz), sea surface temperature affects the dielectric
constant of sea water and the resulting Fresnel reflection coefficient; however, at Ku and
Ka bands this effect is weak [24]. On the other hand, SST also affects the surface tension
and viscosity of the sea water, both of which control the amplitude of the capillary wave
spectral region of the sea surface roughness. For the low wind speed regime (~WS < 6m/s),
surface tension dominates the capillary wave spectrum; whereas for higher WS, wave
breaking occurs and viscosity then plays a significant role in controlling the roughness.
Thus, surface tension and viscosity, which tend to reduce surface roughness, both decrease
with increasing SST. As a result, ocean σ0 increases with SST, and V-polarized signals
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exhibit larger dependencies on SST than H-pol signals [18]. Since GPM DPR measurements
are both H pol, this paper presents only SST impacts on H pol at low incidence angles.
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Thus, the dependence of σ0 on SST was empirically characterized for both Ku- and
Ka-bands as a function of EIA, WS and WD, using the following statistical procedure. For
the EIA investigation, the σ0 values, in linear power ratio units, were bin averaged (over
all WS and WD) in 1 ◦C steps of SST 0–30 ◦C. Next, the binned averages were normalized
to the corresponding σ0 values at 15 C, and results presented in Figure 20 show that there
is an approximately linear dependence of the relative σ0 on SST that is independent of
EIA beam positions at both frequencies. However, as expected, the SST dependency is
significantly stronger (> 2 x slope) for Ka band. For example, for an EIA = 9◦, the overall
variation of mean σ0 with SST over the range 0–30 ◦C is < ± 5% at Ku, whereas it is > ±
10% for Ka.
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averaged WS.

Next, these SST binned normalized σ0 data were sorted and averaged (separately for
Ku and Ka) over WS values of 4, 8 and 12 m/s ranges, and the results are presented in
Figure 21 for EIAs of 0.1◦, 9.8◦ and 18.6◦. Here, the results are similar to Figure 20 (averaged
over all WS); however, there is also a slight WS dependence as noted by the separation of
the curves. This is especially notable at the higher EIA that we suspect may be attributed
to the WD effects presented next.

Next, changes in the GMF relative wind direction response due to SST were assessed
using σ0 data (not normalized), but here only the outer most beam position (EIA = 18◦)
was selected since it has the largest anisotropy. The results are shown in Figure 22 for SST
of 5 and 25 ◦C as a function of relative WD for WS values of 8, 10 and 12 m/s. For Ku-band,
there appears to be no SST effects and the relative WD patterns are essentially identical; on
the other hand, at Ka-band the effect is small but significant. It appears that the σ0 WD
pattern is unchanged except for a small increase in the mean (dc offset), which is consistent
with the observation presented in Figure 20.

Finally, the SST impacts, on the mean value of KuPR and KaPR σ0, are presented
in Figure 23 as in set of 2D images for observed ranges of SST and WS. The color scale
represents the mean σ0 relative to corresponding σ0 at 15 ◦C. As shown, for WS ~> 5 m/s,
the mean backscatter at both band increases with SST; however, the contrast is significantly
higher at Ka-band. For WS ~< 5 m/s, the trend is opposite at both bands. These SST
dependent relative weights can be used as a correction factor to account for the SST impacts
on the GMF. One such approach was used by [28] to correct and validate NSCAT-5 GMF.
For the DPR model of this paper (Equation (2)), this can be implemented as follows,

σ0
corrected( f ) = W(SST, WS) x σ0

linear( f ) (8)

where σ0
linear( f ) is σ0 model in linear scale, and W is SST-impact correction factor which can

determined from the tables such as presented in Figure 23 for different EIA beam positions.
Sample correction factors, W(SST, WS), for Ku- and Ka-band models at EIA = 18◦ are given
in the Tables A5 and A6, respectively, in Appendix B.
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4. Discussion

The dual-frequency precipitation radar (DPR) onboard GPM core satellite provides
coincident Ku and Ka-band σ0 measurements over a wide near-nadir EIA range. This
study leveraged the unique opportunity to perform a comprehensive investigation on near-
nadir ocean surface backscatter characteristics using measurements from Ku and Ka-band
radars that were identical in geometry and calibration, and thus derived the corresponding
backscatter models. This is unprecedented and the results are significant because the
amount of data used was reliably large and all the measurements were precisely collocated
in space and time. More importantly, the same surface truth data (WS, WD, and SST) and
exactly the same data analysis procedure were applied to characterize the wind vector
and SST dependency of Ku- and Ka-band radar backscatter for a full EIA range of ±18◦.
Although the Ku-band results are consistent with the previous studies, the comparison
with Ka-band are somewhat unique. Both GMFs were fully explored and results were
presented in parallel, so that one can easily compare key characteristics at both the bands
for utilization in scatterometry from space.

The trends of WS-only dependency of Ku- and Ka-band radar backscatter at the EIA
ranges under consideration were shown to be similar in the way that ocean surface radar
backscatter increases (for higher EIA) and decreases (for lower EIA) monotonically with
WS, but the slope of increase flattens as the WS increases. The difference of mean σ0

between Ku- and Ka- band is dependent on both WS and EIA, and within around 3 dB
for WS 1–20 m/s and EIA 7–18◦. The difference is reduced with increasing EIA, and with
WS, it is lower at moderate WS, but increases at both higher and lower WS. However, the
directional sensitivity of Ka-band ocean radar backscatter was found to be higher than Ku-
band directional sensitivity for low to moderate WS regime. This is particularly significant
in path attenuation correction, in the calibration of radars, and also in considering future
missions for ocean wind vector remote sensing at Ka-band. However, as shown earlier,
saturation of directional anisotropy at Ka-band occurs at relatively lower WS, which might
limit the use of Ka band for remote sensing of higher WS. Moreover, the SST effects were
shown to be substantially higher at Ka-band than that at Ku-band. In recent years, the
SST impact on Ku-band GMFs and on subsequent wind retrieval has raised a concern.
Different ways of correcting existing GMFs and also developing fully SST-dependent GMFs
are underway. The SST dependency presented here for Ku-band GMFs is consistent with
the developing literature, and the results presented for Ka-band are also consistent with
theories. Therefore, taking SST impacts into consideration is recommended for both bands.
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A simple way to include that is given in Equation (8), and the corresponding correction
tables are provided in Appendix B.

The Fourier cosine series model that has been used to develop conventional scat-
terometer GMFs was also shown to be applicable to radar backscatter model at low EIA.
However, the distinct upwind and downwind asymmetry was also made clear for both
bands. WS-dependent model coefficients were provided for both bands, which can be
applied to model ocean radar backscatter at Ku- and Ka- band with prior WS information.
This can be used to estimate ocean radar backscatter for various applications, one example
could be to produce coincident Ka-band backscatter at the outer swat beam positions for
initial phase of GPM missions when KaPR made measurements over 125 km central swath
only. This would be useful for implementing DPR dual frequency algorithm for entire
GPM lifetime.

Although the Ku-band scatterometry at moderate incidence angle has already been
established, this paper explores the potential of Ka-band scatterometry. In addition, it
has also proved the feasibility of Ku- and Ka-band scatterometry at lower EIAs. If the
DPR onboard GPM had multiple azimuth views, it would have been possible to retrieve
wind vector from GPM DPR. Since both PRs only have a single azimuth look, it is not
currently possible to retrieve unique wind direction from DPR. On the other hand, si-
multaneously, there is the conically scanning GMI, which measure passive brightness
temperatures (Tb) with different azimuth diversity. Current studies are investigating the
feasibility of combined active–passive remote sensing ocean wind vectors from GPM,
leveraging the directional anisotropy of both active and passive ocean measurements and
their azimuth diversity [29]. As GPM is in non-sun-synchronous orbit, this approach has a
high scientific potential to provide full diurnal sampling of OVW, which is not possible
with conventional scatterometers flying in polar sun-synchronous orbits. As mentioned
by some studies [9–11], one possible difficulty concerns the effects of significant ocean
wave height (SWH) and ocean swell, which might be significant at this low EIA range.
However, dual-frequency observations, along with collocated ocean wave numerical model
forecast should allow correction for these long ocean wave contributions [30]. Therefore,
this study will be extended to include ocean sea state, particularly, the SWH effects on
ocean normalized cross section at both Ku- and Ka-bands for lower EIAs.

5. Conclusions

In this paper, we characterized ocean surface normalized radar cross section (σ0) at
Ku- and Ka-band over an EIA range of ±18◦ using simultaneous and coincident measure-
ments by dual-frequency precipitation radars (DPR) onboard GPM. Separate geophysical
model functions (GMFs) were derived that characterized the wind speed dependence and
azimuthal anisotropy of σ0 over the above mentioned EIA range. A detailed comparison,
of the two GMFs, was presented and differences were explicitly documented in GMF coef-
ficients Appendix A. Additionally, SST effects on Ku- and Ka- band σ0 were assessed, and
a simple approach, to incorporate these effects into corresponding GMFs, was presented. It
was discovered that Ka-band has higher directional sensitivity for low-to-moderate WS,
and the SST impact was also found to be more substantial at Ka-band than at Ku-band.
The possibilities of dual-band ocean wind vector remote sensing at moderate EIAs, and
also from GPM, were discussed and finally, the scope of future research directions is given.
This study will significantly improve the understanding of the Ka-band, as well as enhance
the knowledge of Ku-band scatterometry at near-nadir incidence angles.
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Appendix A

Table A1. Polynomial coefficients for Ku- and Ka-band A0 model in dB (Equation (4)).

Beam No
Ku Ka

EIA a01 a02 a03 a04 EIA a01 a02 a03 a04

1 18.16 0.23 −5.69 16.54 −9.71 18.16 −2.92 0.01 14.62 −11.28

2 17.41 0.70 −6.96 16.95 −8.53 17.40 −2.25 −1.64 15.01 −9.92

3 16.64 1.01 −7.82 16.97 −7.35 16.64 −1.63 −3.14 15.25 −8.62

4 15.89 1.15 −8.21 16.60 −5.99 15.88 −1.08 −4.46 15.32 −7.23

5 15.13 1.41 −8.95 16.51 −4.68 15.13 −0.51 −5.81 15.41 −6.03

6 14.38 1.69 −9.69 16.40 −3.45 14.37 0.09 −7.26 15.60 −4.79

7 13.62 1.78 −9.92 15.85 −2.12 13.61 0.69 −8.70 15.79 −3.40

8 12.86 1.73 −9.72 14.89 −0.63 12.86 1.20 −9.92 15.83 −2.20

9 12.10 1.84 −10.02 14.42 0.72 12.10 1.73 −11.21 15.93 −0.92

10 11.35 1.72 −9.64 13.33 2.14 11.35 2.21 −12.39 15.98 0.28

11 10.59 1.57 −9.12 12.12 3.55 10.59 2.67 −13.50 16.01 1.45

12 9.84 1.31 −8.34 10.70 5.07 9.84 3.04 −14.37 15.86 2.74

13 9.08 1.07 −7.55 9.27 6.51 9.08 3.46 −15.43 15.90 3.70

14 8.33 0.62 −6.23 7.41 7.98 8.33 3.83 −16.29 15.77 4.97

15 7.57 0.33 −5.25 5.81 9.42 7.57 4.03 −16.69 15.27 5.98

16 6.82 −0.11 −3.92 3.97 10.72 6.82 4.25 −17.09 14.80 6.94

17 6.06 −0.66 −2.23 1.82 12.11 6.06 4.14 −16.61 13.61 8.19

18 5.31 −1.32 −0.18 −0.66 13.57 5.31 3.95 −15.86 12.19 9.13

19 4.56 −2.07 2.12 −3.33 14.98 4.55 3.64 −14.78 10.55 10.35

20 3.80 −2.66 3.97 −5.54 16.16 3.80 3.36 −13.77 9.04 11.31

21 3.04 −3.31 5.96 −7.79 17.25 3.04 3.12 −12.93 7.77 12.03

https://arthurhou.pps.eosdis.nasa.gov
www.remss.com
https://github.com/HossanAlamgir/Ku-and-Ka-Band-Ocean-Surface-Radar-Backscatter-Model-Functions-at-Low-Incidence-Angles.git
https://github.com/HossanAlamgir/Ku-and-Ka-Band-Ocean-Surface-Radar-Backscatter-Model-Functions-at-Low-Incidence-Angles.git
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Table A1. Cont.

Beam No
Ku Ka

EIA a01 a02 a03 a04 EIA a01 a02 a03 a04

22 2.29 −4.01 8.06 −10.05 18.14 2.29 2.79 −11.82 6.32 13.15

23 1.54 −4.73 10.28 −12.42 19.06 1.54 2.37 −10.45 4.68 13.66

24 0.79 −5.31 12.25 −14.66 19.89 0.78 2.00 −9.22 3.22 14.08

25 0.11 −6.73 17.07 −19.93 21.84 0.03 0.35 −4.06 −1.96 16.00

Table A2. Polynomial coefficients for Ku- and Ka-band A1 model in dB (Equation (6)).

Beam No
Ku Ka

EIA a11 a12 a13 a14 EIA a11 a12 a13 a14

1 18.16 −0.0001 0.0023 −0.0243 −0.0576 18.16 0.0002 −0.0072 0.0545 −0.2377

2 17.41 0.0000 0.0011 −0.0160 −0.0694 17.4 0.0002 −0.0072 0.0458 −0.1950

3 16.64 0.0000 0.0002 −0.0132 −0.0550 16.64 0.0002 −0.0062 0.0264 −0.1137

4 15.89 0.0001 −0.0013 −0.0043 −0.0476 15.88 0.0002 −0.0054 0.0105 −0.0432

5 15.13 0.0001 −0.0017 −0.0039 −0.0363 15.13 0.0003 −0.0071 0.0214 −0.0561

6 14.38 0.0001 −0.0029 0.0048 −0.0437 14.37 0.0003 −0.0073 0.0202 −0.0352

7 13.62 0.0001 −0.0043 0.0163 −0.0650 13.61 0.0003 −0.0085 0.0280 −0.0408

8 12.86 0.0002 −0.0047 0.0192 −0.0664 12.86 0.0003 −0.0090 0.0308 −0.0351

9 12.1 0.0002 −0.0056 0.0260 −0.0751 12.1 0.0004 −0.0103 0.0450 −0.0640

10 11.35 0.0002 −0.0066 0.0356 −0.0916 11.35 0.0004 −0.0116 0.0583 −0.0891

11 10.59 0.0002 −0.0061 0.0315 −0.0780 10.59 0.0004 −0.0134 0.0768 −0.1253

12 9.84 0.0002 −0.0068 0.0398 −0.1047 9.84 0.0005 −0.0155 0.0999 −0.1827

13 9.08 0.0003 −0.0086 0.0572 −0.1425 9.08 0.0005 −0.0152 0.0990 −0.1842

14 8.33 0.0003 −0.0088 0.0616 −0.1510 8.33 0.0005 −0.0161 0.1110 −0.2023

15 7.57 0.0003 −0.0111 0.0850 −0.1987 7.57 0.0005 −0.0152 0.1059 −0.1826

16 6.82 0.0003 −0.0108 0.0836 −0.1942 6.82 0.0005 −0.0170 0.1249 −0.2141

17 6.06 0.0003 −0.0109 0.0872 −0.2043 6.06 0.0005 −0.0165 0.1229 −0.1963

18 5.31 0.0003 −0.0105 0.0854 −0.1900 5.31 0.0005 −0.0163 0.1255 −0.1987

19 4.56 0.0003 −0.0091 0.0722 −0.1562 4.55 0.0005 −0.0148 0.1125 −0.1371

20 3.8 0.0003 −0.0079 0.0584 −0.0945 3.8 0.0004 −0.0127 0.0952 −0.0876

21 3.04 0.0001 −0.0040 0.0254 −0.0119 3.04 0.0004 −0.0131 0.1065 −0.1298

22 2.29 0.0002 −0.0087 0.0932 −0.2913 2.29 0.0004 −0.0143 0.1291 −0.2344

23 1.54 0.0003 −0.0091 0.0944 −0.2678 1.54 0.0004 −0.0148 0.1487 −0.3375

24 0.79 0.0001 −0.0053 0.0574 −0.1468 0.78 0.0004 −0.0147 0.1507 −0.3238

25 0.11 −0.0001 0.0045 −0.0434 0.1710 0.03 0.0004 −0.0141 0.1347 −0.2774
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Table A3. Polynomial coefficients for Ku-band A2 model in dB (Equation (7)).

Beam
No EIA a21 a22 a23 a24 a25 a26 a27 a28

1 18.16 −2.51 × 10−8 1.37 × 10−6 −1.89 × 10−5 −0.00013 0.00321 0.019326 −0.38819 1.591838

2 17.41 −3.03 × 10−8 1.88 × 10−6 −3.86 × 10−5 0.000258 −0.00098 0.042961 −0.45597 1.628328

3 16.64 −1.13 × 10−7 8.54 × 10−6 −0.00026 0.004169 −0.04013 0.263471 −1.10123 2.343184

4 15.89 −1.21 × 10−7 9.35 × 10−6 −0.00029 0.004749 −0.04628 0.298097 −1.19719 2.406955

5 15.13 −7.46 × 10−8 5.58 × 10−6 −0.00017 0.002561 −0.0242 0.169838 −0.80344 1.891615

6 14.38 −7.61 × 10−8 5.73 × 10−6 −0.00017 0.002692 −0.0255 0.174281 −0.79615 1.810658

7 13.62 −4.49 × 10−8 3.22 × 10−6 −8.98 × 10−5 0.00127 −0.01147 0.094093 −0.54922 1.46773

8 12.86 −5.94 × 10−8 4.41 × 10−6 −0.00013 0.001983 −0.01855 0.131392 −0.64059 1.510883

9 12.1 −4.93 × 10−8 3.60 × 10−6 −0.0001 0.001547 −0.01442 0.107759 −0.56267 1.376621

10 11.35 −3.84 × 10−8 2.83 × 10−6 −8.28 × 10−5 0.001264 −0.01231 0.097383 −0.52466 1.287835

11 10.59 −5.38 × 10−8 4.02 × 10−6 −0.00012 0.001938 −0.01902 0.133029 −0.61068 1.328016

12 9.84 −6.36 × 10−8 4.95 × 10−6 −0.00016 0.002595 −0.02585 0.170093 −0.70143 1.37417

13 9.08 −4.43 × 10−8 3.27 × 10−6 −9.63 × 10−5 0.001497 −0.01446 0.103187 −0.49284 1.091061

14 8.33 −2.86 × 10−8 2.02 × 10−6 −5.61 × 10−5 0.000817 −0.0079 0.065707 −0.37112 0.906196

15 7.57 −2.23 × 10−8 1.15 × 10−6 −1.53 × 10−5 −9.89E−05 0.00298 −0.00386 −0.14594 0.599584

16 6.82 −7.29 × 10−8 4.99 × 10−6 −0.00013 0.001829 −0.0146 0.084527 −0.36466 0.780318

17 6.06 −8.53 × 10−8 6.10 × 10−6 −0.00017 0.002612 −0.02305 0.133651 −0.49913 0.888727

18 5.31 −1.31 × 10−7 9.80 × 10−6 −0.0003 0.004725 −0.04346 0.241628 −0.77882 1.139603

19 4.56 −2.51 × 10−7 1.94 × 10−5 −0.00061 0.01013 −0.09551 0.518007 −1.50914 1.848456

20 3.8 −2.91 × 10−7 2.16 × 10−5 −0.00065 0.010106 −0.08874 0.441954 −1.16733 1.286324

21 3.04 −4.20 × 10−7 3.08 × 10−5 −0.0009 0.013482 −0.10939 0.470893 −0.95257 0.640136

22 2.29 −1.11 × 10−8 −1.13 × 10−5 0.000112 −0.00337 0.048202 −0.35222 1.258894 −1.70139

23 1.54 −3.55 × 10−7 2.67 × 10−5 −0.00082 0.013007 −0.11706 0.596926 −1.60916 1.813668

24 0.79 −1.29 × 10−7 8.34 × 10−5 −0.0002 0.002153 −0.00725 −0.03711 0.326281 −0.60025

25 0.11 2.79 × 10−7 −2.34 × 10−5 0.000803 −0.0144 0.144452 −0.79752 2.20042 −2.32417
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Table A4. Polynomial coefficients for Ka-band A2 model in dB (Equation (7)).

Beam
No EIA a21 a22 a23 a24 a25 a26 a27 a28

1 18.16 2.42 × 10−7 −1.95 × 10−5 0.000630 −0.010285 0.086533 −0.327061 0.300739 1.182616

2 17.4 2.24 × 10−7 −1.81 × 10−5 0.000584 −0.009520 0.079453 −0.290412 0.197955 1.253774

3 16.64 1.64 × 10−7 −1.33 × 10−5 0.000430 −0.006907 0.054482 −0.155678 −0.187766 1.661966

4 15.88 1.64 × 10−7 −1.35 × 10−5 0.000440 −0.007202 0.058886 −0.190922 −0.049940 1.412138

5 15.13 1.77 × 10−7 −1.46 × 10−5 0.000483 −0.008099 0.069775 −0.266707 0.221679 0.986715

6 14.37 1.88 × 10−7 −1.56 × 10−5 0.000520 −0.008830 0.078501 −0.327420 0.441136 0.634368

7 13.61 2.07 × 10−7 −1.72 × 10−5 0.000577 −0.009927 0.090532 −0.402978 0.686282 0.284689

8 12.86 2.00 × 10−7 −1.66 × 10−5 0.000560 −0.009654 0.088519 −0.398082 0.695758 0.208310

9 12.1 1.84 × 10−7 −1.55 × 10−5 0.000527 −0.009213 0.085757 −0.394888 0.730148 0.078091

10 11.35 2.21 × 10−7 −1.85 × 10−5 0.000628 −0.010983 0.103633 −0.497933 1.038398 −0.317011

11 10.59 1.88 × 10−7 −1.59 × 10−5 0.000545 −0.009590 0.090552 −0.430458 0.863195 −0.171659

12 9.84 1.75 × 10−7 −1.51 × 10−5 0.000530 −0.009536 0.092273 −0.453516 0.966268 −0.354499

13 9.08 1.93 × 10−7 −1.63 × 10−5 0.000558 −0.009872 0.094156 −0.458488 0.974761 −0.398545

14 8.33 1.83 × 10−7 −1.56 × 10−5 0.000540 −0.009598 0.091517 −0.442654 0.922165 −0.358762

15 7.57 1.86 × 10−7 −1.58 × 10−5 0.000540 −0.009504 0.089661 −0.428214 0.873555 −0.330738

16 6.82 1.33 × 10−7 −1.14 × 10−5 0.000390 −0.006815 0.062436 −0.274513 0.433755 0.121128

17 6.06 6.59 × 10−8 −5.83 × 10−6 0.000203 −0.003484 0.029146 −0.091183 −0.069137 0.611545

18 5.31 −5.98 × 10−8 4.23 × 10−6 −0.000126 0.002153 −0.024887 0.192571 −0.805417 1.298094

19 4.55 −1.88 × 10−7 1.43 × 10−5 −0.000445 0.007450 −0.073550 0.434311 −1.379665 1.725746

20 3.8 −2.29 × 10−7 1.76 × 10−5 −0.000545 0.008844 −0.081123 0.420976 −1.104958 1.037734

21 3.04 −5.07 × 10−8 1.79 × 10−6 0.000033 −0.002468 0.045852 −0.391507 1.617923 −2.622437

22 2.29 −3.10 × 10−7 2.39 × 10−5 −0.000747 0.012150 −0.110696 0.558874 −1.391901 1.206958

23 1.54 9.61 × 10−8 −1.01 × 10−5 0.000419 −0.008970 0.106483 −0.701081 2.392505 −3.269356

24 0.78 −2.32 × 10−7 1.82 × 10−5 −0.000592 0.010423 −0.108244 0.664801 −2.196144 2.936393

25 0.03 2.58 × 10−6 −0.000205 0.006542 −0.107272 0.958791 −4.604580 11.119489 −10.804452
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Appendix B

Table A5. SST correction factor (W) for Ku-band model for EIA = 18◦ in linear unit (Equation (8)). The bins with inadequate
observations are shown as not-a-number (NaN).

SST
(C)

WS (m/s)

1 2 3 4 5 6 7 7 9 10 11 12 13 14 15 16 17 18 19 20

−3 NaN 1.31 1.15 1.10 1.07 1.04 1.02 1.01 1.00 0.99 0.98 0.98 0.98 1.01 1.01 1.00 0.98 0.95 0.93 0.88

−2 NaN 1.28 1.17 1.09 1.05 1.03 1.02 1.00 0.99 0.97 0.95 0.95 0.94 0.95 0.95 0.93 0.92 0.91 0.91 0.88

−1 NaN 1.20 1.12 1.06 1.04 1.02 1.01 0.99 0.98 0.96 0.94 0.93 0.91 0.91 0.91 0.89 0.88 0.88 0.88 0.86

0 1.26 1.15 1.08 1.04 1.03 1.02 1.00 0.99 0.97 0.95 0.94 0.92 0.91 0.91 0.90 0.88 0.88 0.88 0.89 0.87

1 1.25 1.15 1.07 1.03 1.02 1.01 1.00 0.99 0.97 0.95 0.94 0.92 0.92 0.92 0.91 0.90 0.89 0.90 0.91 0.89

2 1.24 1.14 1.06 1.03 1.02 1.01 1.00 0.99 0.98 0.97 0.95 0.94 0.93 0.93 0.93 0.92 0.92 0.92 0.93 0.91

3 1.20 1.12 1.06 1.03 1.02 1.02 1.01 1.00 0.99 0.98 0.97 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.95 0.93

4 1.20 1.13 1.06 1.03 1.03 1.02 1.01 1.00 1.00 1.00 0.98 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.96 0.95

5 1.21 1.13 1.06 1.04 1.03 1.03 1.02 1.01 1.01 1.00 0.99 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.94

6 1.18 1.14 1.07 1.04 1.03 1.03 1.02 1.01 1.01 1.00 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.96 0.94

7 1.13 1.14 1.07 1.03 1.02 1.02 1.01 1.01 1.01 1.01 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.96

8 1.11 1.12 1.06 1.03 1.02 1.01 1.01 1.01 1.01 1.01 1.00 0.99 0.99 1.00 0.99 0.99 0.99 0.98 0.99 0.98

9 1.06 1.10 1.06 1.03 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.00 0.99 1.00 1.00 0.99 0.99 0.99 1.00 0.99

10 1.04 1.07 1.05 1.02 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 0.98

11 1.02 1.05 1.03 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.00 1.00 1.01 1.01 1.00 0.99 0.98 0.98 0.97

12 1.03 1.05 1.03 1.02 1.01 1.01 1.01 1.01 1.02 1.02 1.01 1.01 1.01 1.01 1.01 1.00 0.99 0.98 0.98 0.97

13 1.07 1.05 1.03 1.02 1.01 1.01 1.01 1.01 1.01 1.02 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 0.98

14 1.05 1.03 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.01 1.01 1.02 1.01 1.00 1.00 0.99

15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

16 1.01 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.01 1.00

17 1.03 0.96 0.97 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 1.01 1.01 1.00 1.00 0.99 0.99 0.98

18 1.00 0.95 0.95 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 1.00 1.01 0.99 1.01 1.01 1.00 0.98

19 0.98 0.94 0.94 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 1.00 1.00 1.01 1.03 1.02 1.01 0.99

20 0.95 0.91 0.94 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 1.00 1.01 1.03 1.03 1.02 1.00 0.93

21 0.91 0.90 0.93 0.96 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 1.00 1.01 1.01 1.03 1.02 1.02 1.01 0.93

22 0.88 0.90 0.94 0.96 0.97 0.98 0.99 0.99 0.99 1.00 0.99 0.99 0.99 1.00 1.01 1.00 1.00 1.02 1.02 0.97

23 0.87 0.89 0.93 0.96 0.98 0.99 0.99 1.00 1.00 1.01 1.00 1.00 0.99 0.99 1.00 0.98 0.97 0.98 1.00 0.99

24 0.83 0.87 0.93 0.97 0.98 0.99 1.00 1.00 1.01 1.02 1.02 1.01 1.01 1.00 1.00 0.97 0.93 0.96 1.02 1.08

25 0.81 0.87 0.94 0.98 0.99 1.00 1.01 1.02 1.02 1.04 1.03 1.03 1.02 1.01 1.01 1.00 0.97 1.00 1.06 1.09

26 0.84 0.90 0.95 0.99 1.01 1.01 1.02 1.03 1.03 1.05 1.05 1.04 1.03 1.03 1.03 1.03 1.04 1.04 1.00 0.90

27 0.86 0.92 0.98 1.01 1.01 1.02 1.03 1.03 1.04 1.05 1.05 1.05 1.05 1.05 1.02 1.02 1.03 1.00 0.98 0.87

28 0.89 0.96 1.01 1.01 1.02 1.03 1.03 1.03 1.04 1.04 1.05 1.05 1.07 1.05 1.02 1.01 1.05 1.05 1.22 NaN

29 0.90 0.97 1.00 1.00 1.01 1.02 1.03 1.03 1.03 1.03 1.04 1.05 1.06 1.06 1.04 1.03 1.01 1.27 NaN NaN

30 0.87 0.94 0.97 0.98 1.00 1.01 1.02 1.02 1.02 1.02 1.02 1.04 1.03 1.03 1.04 1.04 0.95 NaN NaN NaN

31 0.81 0.88 0.92 0.95 0.98 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.92 0.94 0.90 0.79 NaN NaN NaN

32 0.66 0.75 0.82 0.89 0.94 0.96 0.95 0.95 0.94 0.95 0.93 0.94 0.92 0.85 0.88 NaN NaN NaN NaN NaN

33 0.50 0.69 0.82 0.85 0.91 0.94 0.92 0.88 0.88 0.91 0.87 0.94 0.83 NaN NaN NaN NaN NaN NaN NaN

34 0.42 0.96 0.93 0.87 0.94 0.90 0.89 0.89 0.92 0.88 0.82 0.99 NaN NaN NaN NaN NaN NaN NaN NaN
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Table A6. SST correction factor (W) for Ka-band model for EIA = 18◦ in linear unit (Equation (8)). The bins with inadequate
observations are shown as not-a-number (NaN).

SST
(C)

WS (m/s)

1 2 3 4 5 6 7 7 9 10 11 12 13 14 15 16 17 18 19 20

−3 NaN 1.25 1.08 1.03 0.99 0.95 0.92 0.89 0.88 0.88 0.89 0.90 0.90 0.92 0.92 0.92 0.90 0.88 0.86 0.82

−2 NaN 1.22 1.11 1.02 0.97 0.94 0.92 0.90 0.88 0.87 0.86 0.86 0.86 0.87 0.87 0.86 0.85 0.84 0.84 0.82

−1 NaN 1.13 1.06 0.99 0.96 0.94 0.92 0.90 0.88 0.86 0.85 0.84 0.84 0.84 0.84 0.83 0.82 0.81 0.81 0.81

0 1.28 1.10 1.02 0.98 0.96 0.95 0.92 0.90 0.88 0.87 0.85 0.84 0.84 0.84 0.84 0.83 0.82 0.82 0.83 0.81

1 1.28 1.11 1.02 0.98 0.96 0.95 0.93 0.91 0.89 0.88 0.86 0.85 0.85 0.85 0.85 0.84 0.84 0.85 0.85 0.83

2 1.28 1.10 1.02 0.98 0.96 0.95 0.94 0.92 0.91 0.90 0.88 0.87 0.86 0.87 0.87 0.86 0.86 0.87 0.87 0.85

3 1.24 1.09 1.02 0.98 0.97 0.97 0.95 0.94 0.93 0.92 0.90 0.89 0.88 0.89 0.89 0.89 0.89 0.89 0.90 0.88

4 1.25 1.11 1.03 0.99 0.98 0.98 0.96 0.95 0.94 0.94 0.92 0.91 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.90

5 1.27 1.11 1.04 1.00 0.99 0.98 0.97 0.96 0.95 0.95 0.93 0.92 0.92 0.92 0.93 0.93 0.92 0.91 0.90 0.89

6 1.23 1.12 1.05 1.01 0.99 0.99 0.97 0.96 0.96 0.96 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.93 0.91 0.89

7 1.18 1.13 1.04 1.00 0.99 0.99 0.97 0.97 0.97 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.93 0.91

8 1.15 1.12 1.04 1.00 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.96 0.95 0.96 0.96 0.96 0.96 0.94 0.94 0.93

9 1.09 1.09 1.04 1.01 0.99 0.99 0.98 0.98 0.99 0.98 0.98 0.96 0.96 0.96 0.97 0.97 0.96 0.96 0.96 0.94

10 1.06 1.06 1.03 1.00 0.99 0.99 0.99 0.99 1.00 0.99 0.98 0.97 0.97 0.97 0.98 0.98 0.97 0.96 0.97 0.94

11 1.05 1.05 1.03 1.00 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.98 0.98 0.99 0.99 0.98 0.97 0.96 0.95 0.94

12 1.08 1.05 1.03 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.98 0.96 0.95 0.95

13 1.11 1.04 1.02 1.01 1.01 1.01 1.00 1.00 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.96

14 1.06 1.02 1.01 1.01 1.01 1.01 1.01 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.00 0.99 0.98

15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

16 1.03 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01

17 1.05 0.96 0.97 0.98 0.99 1.00 0.99 0.99 0.99 1.00 0.99 0.99 1.00 1.02 1.02 1.02 1.02 1.01 1.00 0.99

18 1.04 0.95 0.95 0.97 0.98 0.99 0.99 0.99 0.99 0.99 1.00 0.99 1.00 1.02 1.02 1.02 1.04 1.04 1.01 0.98

19 1.01 0.93 0.95 0.97 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.01 1.02 1.04 1.07 1.06 1.02 0.99

20 0.97 0.91 0.95 0.97 0.98 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.03 1.04 1.06 1.07 1.05 1.02 0.95

21 0.92 0.90 0.95 0.98 0.99 1.00 1.00 1.01 1.02 1.02 1.01 1.02 1.03 1.04 1.05 1.07 1.07 1.06 1.03 0.95

22 0.89 0.90 0.96 0.98 1.00 1.01 1.02 1.03 1.04 1.04 1.03 1.02 1.02 1.04 1.06 1.05 1.04 1.04 1.03 0.99

23 0.88 0.89 0.96 0.99 1.01 1.03 1.03 1.04 1.06 1.06 1.05 1.04 1.03 1.03 1.05 1.04 1.01 1.00 1.02 1.02

24 0.83 0.87 0.96 1.01 1.02 1.04 1.05 1.07 1.08 1.08 1.07 1.06 1.06 1.04 1.04 1.03 0.99 1.02 1.07 1.16

25 0.82 0.88 0.97 1.02 1.04 1.06 1.08 1.09 1.10 1.11 1.10 1.08 1.08 1.06 1.07 1.05 1.02 1.08 1.16 1.21

26 0.84 0.91 0.99 1.04 1.06 1.08 1.09 1.11 1.12 1.13 1.12 1.10 1.09 1.08 1.08 1.09 1.14 1.16 1.13 0.99

27 0.88 0.94 1.03 1.06 1.07 1.09 1.11 1.12 1.13 1.13 1.12 1.12 1.11 1.11 1.08 1.10 1.15 1.12 1.10 0.95

28 0.93 0.99 1.06 1.07 1.08 1.10 1.11 1.12 1.13 1.12 1.12 1.12 1.13 1.10 1.07 1.08 1.15 1.20 1.40 1.16

29 0.92 1.00 1.05 1.06 1.07 1.09 1.11 1.12 1.12 1.11 1.11 1.12 1.12 1.11 1.11 1.09 1.06 1.39 NaN NaN

30 0.89 0.97 1.02 1.03 1.06 1.09 1.10 1.10 1.10 1.09 1.08 1.10 1.09 1.10 1.13 1.11 0.99 NaN NaN NaN

31 0.82 0.90 0.96 1.00 1.04 1.07 1.07 1.07 1.05 1.04 1.04 1.04 1.04 0.99 1.01 0.94 0.82 NaN NaN NaN

32 0.66 0.76 0.86 0.93 0.99 1.01 1.01 1.01 0.99 1.00 0.98 1.02 0.96 0.90 0.89 NaN NaN NaN NaN NaN

33 0.48 0.70 0.87 0.89 0.97 1.01 0.97 0.93 0.93 0.98 0.93 1.01 0.86 NaN NaN NaN NaN NaN NaN NaN

34 0.42 0.97 0.99 0.92 1.01 0.98 0.98 0.96 0.98 0.95 0.88 0.97 NaN NaN NaN NaN NaN NaN NaN NaN
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