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Abstract: Mapping burned areas using satellite imagery has become a subject of extensive research
over the past decades. The availability of high-resolution satellite data allows burned area maps to
be produced with great detail. However, their increasing spatial resolution is usually not matched by
a similar increase in the temporal domain. Moreover, high-resolution data can be a computational
challenge. Existing methods usually require downloading and processing massive volumes of data in
order to produce the resulting maps. In this work we propose a method to make this procedure fast
and yet accurate by leveraging the use of a coarse resolution burned area product, the computation
capabilities of Google Earth Engine to pre-process and download Sentinel-2 10-m resolution data,
and a deep learning model trained to map the multispectral satellite data into the burned area maps.
For a 1500 ha fire our method can generate a 10-m resolution map in about 5 min, using a computer
with an 8-core processor and 8 GB of RAM. An analysis of six important case studies located in
Portugal, southern France and Greece shows the detailed computation time for each process and
how the resulting maps compare to the input satellite data as well as to independent reference maps
produced by Copernicus Emergency Management System. We also analyze the feature importance
of each input band to the final burned area map, giving further insight about the differences among
these events.

Keywords: burned areas; wildfires; remote sensing; VIIRS; Sentinel-2; deep learning

1. Introduction

Wildfires are a natural hazard with important impacts in ecosystems and human pop-
ulations (e.g., [1,2]). Mediterranean Europe is regularly affected by wildfires, a trend that is
poised to increase according to the range of climate change scenarios [3,4]. Monitoring the
areas burned by wildfires with high resolution is of paramount importance for damage
assessment and forest management [5,6], and fire danger and propagation forecasts [7].
Burned area products can be derived based on ground observations or satellite data, often
presenting significant differences at the end of the fire season [8,9]. The latter have the
advantage of allowing for a consistent analysis over space and time and have therefore
been used extensively over the past decades [10]. Furthermore, the importance of satel-
lite observations will keep growing as more satellite data are available with increasingly
higher resolution.

Polar orbiting satellites are usually the choice for developing burned area products
due to their higher spatial resolution and global coverage [10]. Recently, several global
burned area products have been proposed using data from Moderate Resolution Imaging
Spectroradiometer (MODIS) [11,12] and Visible Infrared Imaging Radiometer Suite (VI-
IRS) [13]. These products, despite having a coarse resolution (250–1000 m), provide daily
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coverage allowing for near-real-time applications and better robustness to the presence of
clouds. The coarse resolution is however a limitation for applications where the fine details
of the burned areas are important or to accurately estimate the total burned area at the
end of the season, a basic metric that can still present significant differences depending on
the methods used [14,15]. Aiming towards higher resolution products, Landsat satellites
have been extensively used to map burned areas with up to 30 m resolution (e.g., [16–18])
and an 8-day revisit period with two satellites. Sentinel-2 satellites [19] go a step further
with a spatial resolution up to 10 m and a revisit period of 5 days, considering Sentinel-2A
and Sentinel-2B, the latter operating since early 2017. This higher spatial resolution and
better temporal coverage make Sentinel-2 a great choice to map burned areas since 2017, as
already shown by several studies (e.g., [15,20]).

Traditional approaches for mapping burned areas with Sentinel-2 or Landsat data are
often based on a two-step approach, where candidate pixels are first selected based on active
fires data and spectral indices, followed by a refinement step to balance and reduce the
commission and omission errors [15]. In some approaches, it is also common to use a region
growing algorithm where the initial candidate points are used as seeds and new candidates
are included with awareness of the neighbouring pixels [16]. A detailed overview of the
historical methods for mapping burned areas can be found in Chuvieco et al. 2019 ([10]).

Deep learning techniques have been gaining increasing attention over the recent years
following the increase in computational capability. Most notably, the use of Graphical
Processing Units (GPUs) has enabled a very fast development and improvement of com-
puter vision techniques. Applications for burned areas mapping have started to emerge for
daily burned areas mapping and dating using VIIRS [13], as well as for higher resolution
data using Sentinel-1 [21] and Sentinel-2 [22]. Deep learning techniques present interesting
advantages, namely: optimization can be done with batches of data, making the training
process computationally feasible; the convolutional neural network structure can efficiently
capture the spatial context of neighbouring pixels; the inference step, after the model is
trained, is very efficient and highly parallelizable.

One important limitation of existing algorithms for mapping burned areas with
medium to high resolution data is the computational cost and storage required. Even if
deep learning techniques reduce the cost of processing the data, just the acquisition and
pre-processing of data for an extended period and region can be very slow and challenging
for regular desktop or laptop computers. To mitigate this problem, we propose a modular
methodology for a faster monitoring of burned areas with 10m resolution. The method
explores the storage and processing capacity of the Google Earth Engine (GEE, [23]) for data
pre-processing and acquisition, and a deep learning model trained to map the burned areas
using previously downloaded pre-fire and post-fire composites. The sequence of steps in
our approach consists of: (1) using BA-Net model [13] to produce coarse burned areas maps
using VIIRS 375 m bands; (2) splitting the detected burned areas into individual events;
(3) downloading pre-fire and post-fire Sentinel-2 composites of red, near-infrared (NIR) and
shortwave-infrared (SWIR) only for the regions enclosing the fires of interest, making use
of the GEE functionalities to create the pre-fire and post-fire composites; (4) using a deep
learning model optimized to generate 10 m burned areas using as inputs the Sentinel-2
data and the coarse burned area map derived from VIIRS.

The proposed approach can be used for a fast monitoring of wildfires as BA-Net
model allows for daily updates and Sentinel-2 data are available every 5 days if there is no
occlusion by clouds in the burned region. As we will show, the procedure can generate a
10 m resolution burned map for a 1500 hectares fire event in about 5 min overhead time
(assuming the coarse mask for the event is already routinely generated and provided) on a
regular personal computer, including the download time of the Sentinel-2 data required.

The main objectives of this work are three-fold: (1) To develop a fast and robust
tool for quick post-fire assessment, as soon as clean data are available; (2) to allow for a
more detailed analysis of historical fires, particularly those with intricate borders between
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burned and unburned pixels within large fires, and (3) to make the methodology available
as a Python package ready to be used.

In line with the third goal of this work, the Python package and pretrained models
necessary to apply our methodology are available at https://github.com/mnpinto/FireHR,
accessed on 14 April 2021.

2. Data and Methods

Our study focused on Mediterranean Europe and, since we were working with
Sentinel-2A and Sentinel-2B satellites, we were restricted to data from the 2017 fire season
onwards. However, in 2017 Portugal’s fire season accounts for a total burned area of about
500,000 hectares, representing more than 50% of the total burned area in the EU for that
year [24,25]. Therefore, there was an unusually high amount of data for that year alone
that could be used to train and evaluate our model for 10 m resolution burned areas as
described in Section 2.4. The pipeline for the approach we propose is illustrated in Figure 1
and described in detail in Sections 2.1–2.5.

Figure 1. Pipeline to generate the 10 m resolution burned areas. Numbers in parenthesis indicate the paper’s subsection
describing the process.

2.1. Daily Burned Areas Using BA-Net

BA-Net [13] is a deep learning model trained to map and date burned areas using
sequences of daily satellite images derived from VIIRS sensors. We used the BA-Net Python
library version 0.6 (pypi.org/project/banet/0.6.0, accessed on 14 April 2021) to generate
the burned area products with 0.001º resolution (about 100 m) for the time periods and
regions described in Table 1 and delimited in Figure 2 by green rectangles.

Figure 2. Green rectangles delimit the regions of study described in Table 1.

https://github.com/mnpinto/FireHR
pypi.org/project/banet/0.6.0
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Table 1. Study regions details.

Region Name Bounding Box Time Use

Western Iberia 36.0 to 44.0◦N
10.0 to 6.0◦W

June to October 2017
and August 2018

Train/Test

French Riviera 42.8 to 44.0◦N
4.8 to 7.0◦E

July 2017 Test

Attica Greece 37.5 to 38.5◦N
22.5 to 24.4◦E

July 2018 Test

2.2. Split Individual Fire Events

A common method to split individual fire events is flood fill [26–28] in which neigh-
bouring burned pixels with identical or sequential date of burning are aggregated to iden-
tify the individual burned patches. This method is, however, computationally expensive,
particularly for large regions with large fires, and even more if implemented in high-level
programming languages (e.g., Python). In order to make the pipeline fast and efficient
in Python, we developed the fire_split library (https://github.com/mnpinto/fire_split,
accessed on 14 April 2021) that makes use of the very efficient ndimage.label function from
SciPy library [29], that split non overlapping patches, enhanced with functionality to allow
for a spatial buffer and temporal separation of the events.

The method consists of the following steps:

1. Create a buffer around the burned pixels using kernel convolution with kernel size
2 × 2 pixels;

2. Use ndimage.label function to split the fires spatially without taking into account the
temporal component;

3. Remove fire events smaller than 25 pixels;
4. For each retained event, look at the dates of burning and split the event every time

the temporal distance is greater than 2 days;
5. For each newly separated event run ndimage.label to separate events that may have

been previously connected by a third one;
6. Remove again fire events smaller than 25 pixels if any is present after the tempo-

ral split.

The value of 2 × 2 pixels for the kernel size of the spatial buffer corresponds to a
minimum separation distance of about 4 pixels at the 0.001◦ spatial resolution and was set
to be close to, but higher than the original 375 m resolution of the VIIRS data. As for the
temporal separation, the value of 2 days was set in order to have a good discrimination of
the dense number of fires that occurred in western Iberia in 2017, but still giving enough
margin to account for the uncertainty in the date of burning of BA-Net, which is smaller
than 2 days for more than 90% of the pixels [13]. The minimum size selected of 25 pixels
corresponds to about 25 hectares, a number that is close to about 2 pixels at the original
375 m resolution of the data. In the fire_split Python library all these parameters can be
adjusted by the user.

2.3. Sentinel-2 Composites Using Google Earth Engine

Google Earth Engine (GEE) Python API can be used to select, pre-process and download
data automatically using a Python script. In fact, in a recent work, Long et al. 2019 ([30])
proposed a global annual burned area mapping tool based on GEE and Landsat images.
Our approach significantly differs, as we only use GEE as a pre-processing and data
acquisition tool at single event level. In this regard, our method is designed as a tool
either for quick post-fire assessment or for a detailed analysis of historical fires. The quick
post-fire assessment can be performed as soon as clean Sentinel-2 data are available, i.e.,
less than 6-days if the following overpass finds clear sky conditions.

Our approach consists in downloading two composites of multispectral images for
each event, one corresponding to dates before the fire, and the other immediately after the

https://github.com/mnpinto/fire_split
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fire. These images include Sentinel-2 Level-1C (reference code on GEE: COPERNICUS/S2)
bands Red (B4), NIR (B8) and SWIR2 (B12). In order to obtain images that are usually free
of clouds we computed the median of all available images within the two months prior and
after the fire. The Python code we provide has additional options for the pre-processing of
the composites, namely, a maximum cloud coverage level can be set to filter cleaner images
or the number of images (n) with the least cloud cover fraction could be selected, where n
can be set by the user. This pre-processing process, regardless of the option used, is very
fast since it was performed on GEE platform. We only download the two (pre-fire and
post-fire) composited images for the region of each fire event of interest, as defined with
the method described in Section 2.2. Furthermore, as there was a maximum total request
size for each download request, we split each fire region into 32 × 32 pixel titles that are
downloaded individually and then stitched together into the full region image. For the
near-real-time monitoring of the fires using our Python code, the post-fire time window
can be shortened to select a single image that will be available in less than 6-days after
the event, following the best revisit time using both Sentinel-2A and Sentinel-2B. In this
case, if clouds and shadows or dense smoke plumes are present over the burned region,
the results will be compromised. This is a limitation of any near-real-time application for
burned areas.

We note that this approach can also be applied to Landsat data to study events prior
to mid-2015 (the date Sentinel 2A became operational). We plan to add this functionality to
the Python package in a future update.

2.4. Model and Training

To generate the 10 m burned area maps from Sentinel-2 data and the coarse mask
derived from VIIRS data, we used a deep learning model that is defined and trained
for such purpose. This sequence of processes (see Figure 1) is described in detail in
Sections 2.4.1– 2.4.3.

2.4.1. Create Dataset

To train the model we prepared a dataset consisting of events for western Iberia (see
Table 1). For each event, the Sentinel-2 data was downloaded using the procedure described
in Section 2.3. Since the model training requires batches of data with identically-sized
images and the total size is limited by the 8 GB memory of the GPU used for training,
large images were cropped into 512 × 512 tiles, corresponding to regions of about 5 × 5 km.
Smaller-sized images were interpolated to fill-in the full 512 × 512 tiles.

To train the model with supervision we also needed target data. To generate the targets,
we used a semi-automatic approach making use of the pre-fire to post-fire differences of the
Normalized Burned Ratio (NBR), a widely used metric to map burned area and estimate
burn severity (e.g., [31–33]). The approach consisted in the following steps:

1. NBR was computed for each event using the expression NBR = (NIR − SWIR) / (NIR
+ SWIR);

2. The difference of prefire and postfire NBR (dNBR) was computed;
3. The median dNBR was then computed inside and outside the coarse burned mask,

using the BA-Net product;
4. The dNBR threshold to define the burned region was defined for each event as the

mean point between the two medians of step 3;
5. The resulting mask was cleaned using the method described in Section 2.2 with

a spatial buffer of 10 pixels, a minimum pixel size of 100 and keeping only the
burned regions representing at least 10% of the total burned area of each event. The
choice of the buffer size, minimum pixel size and the 10% criteria was done by
visual interpretation with the goal of removing any existing noise around the main
burned patch;

6. Finally, each mask was evaluated visually, together with dNBR data, and events
looking “unnatural” were discarded.
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This procedure resulted in 3188 input/target pairs of data.
We note that the target masks do not need to be absolutely accurate since the deep

learning models, like the one we used (described in the next section) are robust to some
degree of random noise [34]. Indeed, during optimization, the model learned how to link
the input data to the burned area maps consistently among the training samples, reflecting
the spectral patterns associated with burned areas. We stress that users of our Python
package do not need to repeat this process as the pre-trained models are provided together
with the code.

2.4.2. Define Model

The deep learning model defined to tackle this problem is represented in Figure 3
where numbers in parenthesis indicate the number of input features (left) and the number
of output features (right). The ConvLayer is a 2D convolution operation with kernel-
size 3 × 3 and no bias term, followed by a 2D batch normalization [35] and a Rectified
Linear Unit (ReLU, [36]) activation. The rationale for the ConvLayer is that the convolution
operation captures local contextual information of close neighbouring pixels, followed
by a normalization step that ensures that the data distribution remains with an average
close to zero and standard deviation close to one to stabilize the training process in multi-
layer models, and finally the rectified linear unit is a commonly used activation function,
consisting of setting all negative values to zero and in turn giving the model its non-
linear characteristic. The ChannelLinear layer applies a 1D linear layer to the channel
dimension (i.e., without awareness of the spatial relation of the pixels) followed by a 1D
batch normalization and a ReLU activation. The rationale for the ChannelLinear layers is to
combine the features at a pixel level, without any spatial awareness. This allows the model
to learn non-linear combinations of the spectral features. For instance, the model could
learn a spectral index with characteristics similar to the dNBR described in Section 2.4.1, but
since the parameters are learned they result in an optimized index with a 64-dimensional
representation, since the number of output features for the second ChannelLinear layer is 64.

Figure 3. Diagram representing the model pipeline. Blue, orange, and green boxes represent inputs, neural network modules
and outputs, respectively. The

⊕
symbol indicates that features are concatenated on the channel dimension. Numbers in

parenthesis indicate the number of input (left) and output (right) features for the respective neural network layer.

The Coarse Mask in Figure 3 is the BA-Net [13] burned area map interpolated to the
same projection and spatial resolution as the Sentinel-2 data and after applying a spatial
moving average filter with kernel size of 101 × 101 pixels (about 1 × 1 km) to soften the
edges of the coarse mask. The output of the ConvLayer (small orange box in Figure 3) is
then concatenated with the 6 input channels of the high-resolution data, corresponding
to the Red, NIR and SWIR before and after the fire. The resulting tensor has a size of
[batch-size, 14, 512, 512], where the batch-size is constrained by the GPU memory as will
be covered in the next subsection. The layers in the large orange block in Figure 3 are then
applied sequentially resulting in the high resolution burned area as output, a tensor with
size [batch-size, 1, 512, 512].
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We also note that by allowing the model to learn an optimal combination of the input
bands we can then gain some insight on which input feature has the most impact on the
final result, as we will discuss in Section 3.

2.4.3. Train Model

The model was trained using a NVIDIA GTX 1080 GPU. For training, the data were
randomly split into a train and validation set with 80/20 ratio, making sure the test events
were not in the train set, in order to evaluate if the model was generalizing properly.
The model was trained with mixed precision [37] using iterative upscaling starting with
20 epochs at 128 × 128 image size and batch-size of 64, followed by 20 epochs at 256 ×
256 image size and batch-size of 16, and finally by 20 epochs at the 512 × 512 original
image size and batch-size of 8. Starting with a smaller image size and large batch-size
allowed for better stability at the beginning of training, as Batch Normalization is known
to be less stable for smaller batch-sizes [38]. For each scale level a one-cycle learning
rate schedule [39] was used with a maximum learning rate of 0.01 for the first cycle
at 128 × 128 scale and dividing the maximum learning rate by the same factor as the
batch-size was decreased for the two following cycles, at 256 × 256 and 512 × 512 scales
respectively. The Adam optimizer [40] was used with a weight decay of 0.001. Image
augmentations were used to increase the diversity of the dataset, as it is common practice
in computer vision applications [41]. The augmentations used were the eight dihedral
transformations, brightness, contrast, rotation and wrapping using the default parameters
of fastai library [42]. For a general overview of practical deep learning techniques, we
recommend fastai open online courses (https://www.fast.ai, accessed on 14 April 2021).

2.5. Validation of the Six Case Studies

For the validation of the six case studies, we used burned area maps produced by the
Copernicus Emergency Management Service (CEMS). The CEMS provides on-demand
detailed information for several types of emergency situations, including wildfires. The
service was activated for all of the six case studies we selected and therefore detailed maps
of the burned areas are available. Table 2 describes the details for each CEMS event. For
most cases CEMS used SPOT-6-7 1.5 m resolution data. For the “Attica Greece 2” event,
CEMS used the higher resolution (0.5 m) Pleiades-1A-1B data to produce the burned area
maps. We note, however, that these maps were generated as a quick response to emergency
activations and that their level of detail and accuracy may have varied significantly, being
dependent on the quality of the source images and on the presence of clouds and/or smoke
partially obstructing the view.

Table 2. Description of the CEMS validation data for the six test regions.

FireID CEMS ID Source Name Source Resolution Published Time (UTC)

Portugal 1 EMSR207 SPOT-6-7/Other 1.5 m/Other 2017-06-22 19:56:12
Portugal 2 EMSR303 SPOT-6-7 1.5 m 2018-08-10 17:00:48

French Riviera 1 EMSR214 SPOT-6 1.5 m 2017-07-31 14:58:03
French Riviera 2 EMSR214 SPOT-6 1.5 m 2017-07-28 19:16:39
Attica Greece 1 EMSR300 SPOT-6-7 1.5 m 2018-07-30 17:28:17
Attica Greece 2 EMSR300 Pleiades-1A-1B 0.5 m 2018-07-26 16:38:00

For a general overview of the comparison between the two products we also computed
the Commission Error (CE), Omission Error (OE) and Dice coefficient, defined as

CE = FP/(FP + TP)

OE = FN/(FN + TP)

Dice = 2TP/(2TP + FP + FN)

https://www.fast.ai
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where TP, FP and FN correspond to the number of pixels for True Positives, False Positives
and False Negatives, when considering the CEMS maps as the reference. These are common
metrics used to evaluate burned area products (e.g., [15,43]). The rationale for these metrics
is that CE (OE) represents the fraction of false positives (negatives) over all predicted
(reference) positives and the Dice (also known as F1 score) corresponds to the harmonic
mean of precision and recall.

3. Results
3.1. Computation Benchmark

In this section we will present the results and performance benchmarks for six case-
studies that took place in the three Mediterranean boxes considered (see Figure 2 and
Table 1). For all the computation benchmarks, an Intel i7-7700 CPU or a NVIDIA GTX 1080
GPU were used, running on a machine with 32 GB of RAM. After training the model with
the procedure described in Section 2.4.3, the resulting Dice coefficient for the validation set
was 0.97.

The first step in our pipeline, the production of the coarse masks using the BA-Net
model, can take up to several hours, depending on the size of the region of study and also
on the spatial resolution selected for the product. For the benchmark of the BA-Net model,
we refer to Pinto et al. 2020 ([13]). Regarding the computational cost to split the fires, the
process took about 1 second for French Riviera and Attica Greek regions, since the number
of fires was very small. For the western Iberia region, it took about 7 min for 2017 and 2
min for 2018.

The performance benchmarks for the data acquisition and computation of the burned
area maps for the six case studies is shown in Table 3. We did not include the time to
produce the coarse masks in our performance benchmark, since we are only interested in
evaluating the overhead time of generating the 10 m resolution maps. We assume that the
coarse product is already routinely generated and provided. The most time-consuming
step corresponds to the GEE download process. This step takes less than about 5 min for
fires up to about 1500 ha size and, for larger fires, the time increases as expected, since the
volume of data to download is significantly larger. Nevertheless, for the largest of the six
case studies, a fire with 42,333 ha in central Portugal, the data were downloaded in less
than an hour on average. Fires larger than 20,000 ha are rare in Mediterranean Europe
and most often only occur in Portugal. The inference time to compute the high resolution
burned area map is short, particularly if using a GPU (Table 3 sixth column) which even for
the largest fire took less than a minute to compute. For fires under 1500 ha, this step takes
1–2 s on the GPU and about 3 to 6 times more in the CPU. For example, for the 1344 ha fire
with ID “French Riviera 2” (Table 3 row 5), the inference time on CPU was 11 s.

Table 3. Benchmark results for the six test regions. Computation times are the average of seven runs for all cases but GEE
Download Time that corresponds to the average of three runs in different days.

FireID Sentinel-2
Image Size

Sentinel-2
Data Size
on Disk

GEE
Download

Time

Inference
Time
(CPU)

Inference
Time

(GPU)

Burned
Area
(ha)

Portugal 1 4733 × 4732 300 MB 51 min 152 s 50 s 42,333
Portugal 2 3419 × 3418 161 MB 25 min 76 s 21 s 23,868

French Riviera 1 870 × 881 9 MB 3 min 5 s 1 s 489
French Riviera 2 1315 × 1327 19 MB 4 min 11 s 2 s 1344
Attica Greece 1 2262 × 2260 62 MB 13 min 32 s 7 s 4363
Attica Greece 2 1093 × 1081 16 MB 4 min 7 s 1 s 1232
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3.2. Feature Importance

To better understand the results and the trained model we computed the relative
importance of each input band to the final result (Figure 4). The relative importance was
measured as the decrease in Dice score of the output when the input band in x-axis was
randomly shuffled compared to the score when the unchanged input data were used.
When shuffling the data, water pixels were masked out to avoid mixing land and water
pixels. We can see that, in general, the NIR and SWIR were the most important features
(Figure 4), particularly, the post-fire NIR and SWIR followed by the pre-fire SWIR. The
pre-fire NIR and coarse mask followed with a small importance variation among the six
case studies, and finally the least important feature was the red, particularly the pre-fire red.
Looking in more detail at the three dominant features (post-fire SWIR and NIR and pre-fire
SWIR), there were noticeable differences among the case studies. For example, while for the
“Portugal 1” case the post-fire NIR was the most important feature, for the “Attica Greece 1”
case, the post-fire SWIR and NIR showed the highest importance, followed by the pre-fire
SWIR. There are several factors that could explain these differences. For example, a fire
occurring earlier in a fire season, as is the case for “Portugal 1” event, is more likely to show
a stronger drop in NIR as the vegetation is usually not as dry as later in the season. It is
also worth noting that our feature importance reflects the spatial variability of the features.
If the fire occurs in a perfectly uniform forest region, shuffling the pre-fire features have
no impact on the result. In fact, we see that the pre-fire bands, particularly the SWIR were
also important, meaning that the location of the burned shape could be to some extent
identified before the fire, something that is expected especially for the fires in forest-urban
interface regions where the forest-urban delimitation is usually clear in the pre-fire images.

Figure 4. Feature importance for each input channel measured before and after the fire (x-axis) and
per fire event (indicated by the top label).

3.3. Case Studies

In this section we look in detail to the six case studies, comparing our product with
the CEMS maps to obtain further insight into the performance of our model. Table 4
summarizes the three metrics described in Section 2.5 for each case study. Overall, the
agreement between the products is very good with a Dice coefficient greater than 0.92 for
all but one event.
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Table 4. Evaluation metrics for the six test regions considering the CEMS product as the reference.

FireID Commission
Error

Omission
Error Dice

Portugal 1 0.034 0.097 0.933
Portugal 2 0.016 0.122 0.928

French Riviera 1 0.074 0.065 0.931
French Riviera 2 0.072 0.047 0.941
Attica Greece 1 0.007 0.225 0.870
Attica Greece 2 0.059 0.093 0.924

Figures 5 and 6 show the two case studies for Portugal that took place in 2017 and
2018, respectively. The first fire event (Figure 5) occurred in June 2017 in central Portugal
and led tragically to a death toll of 64 people [44] and a total burned area of 42,333 ha. The
second event (Figure 6) occurred in August 2018 in southwest Portugal, with a total burned
area of 23,868 ha and mobilizing up to about 1400 firefighters and 14 aircraft and leading to
41 people injured and millions of euros of economic losses [45].

Figure 5a suggests an overall good accuracy, which was confirmed by a Dice score
of 0.933 (Table 4, first row). The white patch on the northeast part of the burned area
corresponds to a region not mapped by the CEMS and therefore was not considered for
the computation of the evaluation metrics. Regarding the large easternmost red patch,
we visually confirmed, using the Sentinel-2 data, that it corresponds to a burned region,
but it was one of the latest regions to burn, likely after the CEMS analysis data, thus
explaining the difference. On the remaining of the burned region (Figure 5a) we see that
most differences lay in small patches within the burned region, which CEMS map attributed
to burned contrary to our classification. To get some insight, we looked in detail at one of
these patches (identified by a magenta square in Figure 5a) in Figure 5 panels (a) to (e).
Looking at panels (b) and (c), corresponding to true colour view median composites for
the periods before and after the fire, respectively, we see, although not very clearly, that the
green regions in panel (e) had a shift in colour from dark green to dark brown. The false
colour composite in panel (d) makes it easier to appreciate this difference. Furthermore, we
note that the southernmost section of this burned area was mapped with higher detail by
CEMS and Figure 5a shows that the agreement between the two maps is stronger thereby
suggesting that most of the differences are in part based on the detail of the analysis or the
criteria for regions with a low burn severity as we will further discuss later.

Figure 6 shows once again a very good overall accuracy for the second case study,
with a Dice coefficient of 0.928. After the green, the blue colour is the most common in
Figure 6a, corresponding to regions where CEMS map assigns pixels as burned contrary
to our product. The zoomed region in panels (b) to (e) shows an interesting detail with
narrow burned patches captured by our product as well as by CEMS map. It is worth
noting that some of the CEMS maps provide burn severity grading but since these varied
among the cases, we opted to include all severity grades. As our product does not map
different levels of burn severity it is expected that differences may be more frequent in low
severity burn regions where the spectral difference in pre-fire to post-fire images was small,
as is the case in the example presented in Figure 6.

Figures 7 and 8 show the two cases for the French Riviera in July 2017. These two
fires represented a total of 489 and 1344 ha of burned area, respectively, and despite being
much smaller in size compared to the examples of Portugal, they led to significant socio-
economic impacts, forcing the evacuation of more than 10,000 people, according to the
local press. The agreement between our product and the CEMS maps was again very good
with a Dice coefficient of 0.931 and 0.941 for each case, respectively. The zoomed view in
Figures 7 and 8b–e panels shows that the discrepancies between the two maps are mostly
in the margins between burned and unburned regions. These small differences are to be
expected when comparing products obtained from different satellite sensors, particularly
if the raw data have different spatial resolution or view angles.
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Figures 9 and 10 show the two cases for Attica, Greece in July 2018. The total burned
area for these events was 4363 and 1232 ha, respectively. The location of the fires in
wildland-urban interfaces together with extreme weather conditions, led to the tragic
outcome of 102 fatalities [46]. For these two cases we obtained a Dice coefficient of 0.870
and 0.924, respectively. Starting with the first case (Figure 9) where the discrepancy between
our product and the CEMS maps was the largest of all other five case studies considered
here, we first note that there is a large blue patch in the western side of the burned area, i.e.,
a burned scar identified by CEMS maps, contrary to our product. By visually inspecting
post-fire Sentinel-2 images we found no evidence for that patch to be burned. It is most
likely that this was mis-classified by CEMS due to the presence of clouds in the region as
observed in the CEMS data for this case study (see Table 2). Looking now at the zoomed
region on Figure 9 panels (b) to (e) we can see that scattered burned patches with sectors
that may have burned with a low or negligible severity, since in several parts they still
appear in dark green colour in the post-fire true colour composite (panel c). This example
illustrates well what we already mentioned in the previous case studies. Looking now at
Figure 10 we start by noting that the small white patch on the west side of the burned area
is outside the region mapped by CEMS and was therefore not considered to compute the
evaluation metrics (Table 4, last row). Focusing now on the zoomed region a high number
of small gaps are clearly observed. These correspond to small clusters of houses in the
path of the fire and it is therefore a challenging case to map the burned area. We note
that for this case the CEMS used data from Pleiades-1A-1B that has a source resolution of
0.5 m. The good agreement between our product and the CEMS is an indication that our
methodology can be applied not only for wildland regions but also to more challenging
wildland-urban interfaces with as good accuracy, reflecting that the deep learning model
described in Section 2.4.2 successfully learned the spectral patterns associated with the
burned areas.

Figure 5. Visual analysis of “Portugal 1” fire. Panel (a) shows the true colour satellite view for the selected fire region together
with the burned area maps derived in this study and by CEMS: green represents the pixels where both products agree; red
represent burned pixels identified by this study and not by CEMS; blue corresponds to burned pixels identified by CEMS and
not in this study; white pixels correspond to burned pixels outside the CEMS mapping window. Panels (b–e) correspond to
the zoomed region indicated by the magenta square in panel (a); panels (b,c) represent the true colour view for the median
composite before and after the fire, respectively; panels (d,e) show the false colour composite of pre/post-fire differences in
red, NIR and SWIR and the zoomed view of panel (a) map, respectively.
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Figure 6. Visual analysis of “Portugal 2” fire. See Figure 5 for panel descriptions.

Figure 7. Visual analysis of “French Riviera 1” fire. See Figure 5 for panel descriptions.
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Figure 8. Visual analysis of “French Riviera 2” fire. See Figure 5 for panel descriptions.

Figure 9. Visual analysis of “Attica Greece 1” fire. See Figure 5 for panel descriptions.
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Figure 10. Visual analysis of “Attica Greece 2" fire. See Figure 5 for panel descriptions.

4. Discussion

The target data used to train the model are produced with a semi-automatic method
and do not correspond to the ground truth, since such reference data do not exist. Often a
higher resolution product is used as reference to evaluate the performance of burned area
products [47], however, data with a resolution higher than 10 m are usually not available
or difficult to obtain. Therefore, the validation is restricted to the six case-studies selected,
for which the CEMS burned area maps are available (Table 2). Nevertheless, since the main
goal of this work is to provide a fast and practical method (and yet accurate and robust) for
a quick monitoring of the burned regions, the comparison with CEMS is very relevant.

Regarding the input data, the coarse mask used in our pipeline is not restricted to be
produced by BA-Net model. For instance, it can be manually produced based on ground
observations or based on other coarse burned area products. However, the BA-Net product
provides daily updates and a state-of-the-art accuracy in the date of burning, making it,
to the best of our knowledge, the most appropriate choice for near-real-time applications,
when compared to other fully automated products, such as MCD64A1 Collection 6 burned
area product ([12]) that can only be produced with at least one month delay. For the higher
resolution data, the use of GEE to create the composites and download data at the event
level is a major improvement in download time, storage, and processing requirements. This
contrasts with the algorithm for near-real-time mapping of burned areas using Sentinel-2
proposed by Pulvirenti et al. 2020 ([48]) for Italy where data is processed at a country level.

Most existing methods for computation of high resolution burned areas are based
on indices combining two or more spectral bands, usually Red, NIR and MIR or SWIR,
as well as their pre-fire to post-fire difference (e.g., [32,49,50]). In our approach, we used
a deep learning model that, instead, learns an optimal non-linear combination of pre-
fire and post-fire Red, NIR and SWIR. Furthermore, the convolutional layers that follow
allow the model to learn some spatial correlations between neighbouring pixels, instead
of considering each pixel individually. This is an important component for burned area
identification. Traditional algorithms to map burned areas often rely on a grid expansion
method to account for the spatial factor (e.g., [17]). We also note that our deep learning
model has about 160,000 parameters, a number that is relatively small for this type of
model. This results in lower memory requirements and a faster computation. For instance,
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typical model architectures for image segmentation, like the U-Net architecture used by
Knopp et al. 2020 ([22]), usually have at least millions to tens of millions of parameters.
Our smaller model trades off with a lower field of vision (i.e., it can only take into account
for close neighboring pixels in the convolutional layers) but we note that: (1) the coarse
mask we use as input was generated with a larger model (BA-Net, [13]) and therefore the
task of the model we defined for this work (Figure 3) has already a spatial guideline; (2) in
the identification of burned areas, the pre-fire to post-fire changes in reflectance are the
dominant signal and therefore a very large field of vision is unlikely to be necessary for
most situations. This contrasts with other applications of computer vision, where large
complex objects need to be identified.

The two main limitations of the methodology proposed are: (1) very small fires may
not be captured by the coarse burned area product used as input; (2) for regions where
cloud cover is very frequent it may take longer to have clear sky images and therefore the
near-real-time mapping is compromised for these situations. These limitations can possibly
be addressed in future works by combining multiple input sensors in a single model,
in particular through the inclusion of Synthetic Aperture Radar data that is capable of
penetrating clouds and smoke [21]. Finally, future research on high resolution burned areas
would benefit from detailed ground or drone observations for calibration and validation of
the models. This is particularly relevant to generate very high resolution burned severity
maps where information at single tree scale may be relevant.

5. Conclusions

Forest fires have long been part of the Mediterranean landscape and will continue
to be so in the future. Climate change only worsens this problem as the meteorological
conditions for severe fires become more and more likely in a warming scenario [3,4]. In this
context, having the tools for a timely high-resolution assessment of the burned areas is of
paramount importance. Satellite data are now openly available allowing anyone to access
high quality data. Powerful computational tools, such as the Google Earth Engine (GEE),
make the visualization and processing of high volumes of data feasible. Our proposed
method corresponds to a fast and yet reliable tool, suited for monitoring of burned areas
with 10m resolution, leveraging the functionalities of GEE as a data acquisition and pre-
processing tool to obtain input data to then feed to a deep learning model that outputs the
burned area map. This methodology can generate a burned map for a 1500 ha fire in about
5 min, using about 25 MB of storage on disk and running inference on a computer with an
8-core processor and 8 GB of RAM. This is important for researchers, forest managers, or
any entity interested in studying or evaluating the impacts of wildland fires. We showed
in this work, six case studies as examples of application of the proposed methodology.
A visual evaluation of the maps produced by our model and the validation using maps
produced by the CEMS shows how our model successfully captures the fine details of
the burned areas that cannot be observed in coarse resolution products. This is especially
noticeable in fires occurring in wildland-urban interfaces where the fine spatial resolution is
decisive to identify small clusters of houses. By using a deep learning model that maps the
pre-fire and post-fire Red, NIR and SWIR bands, together with the coarse resolution mask,
to the final 10 m resolution burned map, we can then study how each input band affects
the result on the trained model. The results show that, as expected, the NIR and SWIR
bands are the most important spatial features. On average post-fire NIR shows the highest
importance, followed by post-fire SWIR, pre-fire SWIR and pre-fire NIR. There are however
differences among the case studies that are likely due to the spatial and temporal context
in which the fire occurred. Finally, this work is a step towards a fully automated procedure
to produce high resolution burned areas in near-real-time over an extended region with
a feasible computational cost. Once again, the code to our methodology is provided as a
Python package, ready to apply to new cases, at https://github.com/mnpinto/FireHR,
accessed on 14 April 2021.

https://github.com/mnpinto/FireHR
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