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Abstract: The paper investigates the penetration properties of an airborne Ku-band frequency modu-
lated continuous waveform (FMCW) profiling radar named Tomoradar and a satellite near-infrared
lidar into the boreal forest of Finland. We achieve the accumulative energy distributions based on the
Tomoradar waveforms and the satellite lidar waveforms generated from the high-density airborne
lidar data within Tomoradar footprints. By comparing two groups of the height percentiles and
energy percentiles derived from the accumulative energy distributions, we evaluate the relationship
of penetrations between the Ku-band microwave and near-infrared laser according to the coefficients
of the determination (COD), and the root mean square errors (RMSE) of linear regression analyses.
The quantitative analysis results demonstrate that the height and energy percentiles derived from
Tomoradar waveforms correlate well with those from satellite lidar waveforms with the mean corre-
lation coefficients of more than 0.78 and 0.85. The linear regression models for the height and energy
percentile produce excellent fits with the mean CODs of 0.95 and 0.90 and the mean RMSEs of 1.25 m
and 0.03, respectively. Less than 15% of height percentiles and 87.54% of the energy percentiles in
the sixth stratum near the ground derived from Tomoradar waveforms surpass those from satellite
lidar waveforms. Hence, the Ku-band microwave can penetrate deeper into the forest than the
near-infrared laser at the same spatial scale. In addition, quadratic fitting models are established to
describe the differences of the height percentile (DHP) and the energy percentile (DEP) to expound
the canopy height and closure contributions numerically. The facts that the CODs of the DHP and
DEP individually are more than 0.96 and 0.89 and the fitting residual histograms approximate to
normal distributions reveal the reliabilities of the proposed fitting models. Thus, the penetration
analyses are valid for the explorations on the FMCW radar applications and the data fusion of the
Ku-band radar and near-infrared lidar in the forest investigations.

Keywords: Ku-band microwave; satellite lidar; penetration; height percentile; energy percentile;
regression analysis

1. Introduction

As crucial ecosystems, forests play prominent roles in determining carbon storage,
climate and ecological functionalities [1,2]. Monitoring the forest structure’s spatial and
temporal characteristics contributes to understanding carbon stock modelling and global
environmental changes [3,4].

Remote sensing technologies have been proved to be highly effective for acquiring
more accurate and spatially continuous forest structure properties on a large scale in a
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rapid manner. Passive optical imaging systems can only collect the reflected sunlight from
the exterior canopy surface and are incapable of obtaining the vertical forest structures
inside the canopy [5,6]. However, active remote sensing devices, including lidar and radar
systems, can explore the understory vegetation and the ground to become the primary
technologies in forest investigation.

Full waveform, small-footprint lidar and large footprint satellite lidar transmit laser
pulses into the forest and record the vegetation and ground returns. Combing with the
navigation and positioning information of the platforms, the lidar systems are valuable
for estimating various forest inventory parameters, including canopy height, leaf area
index and biomass [7–10]. Synthetic aperture radar (SAR) has been well developed in past
decades worldwide and employed to extract the canopy height and stem volume [11,12],
but the vertical canopy structure information is still missing due to poor penetration. To
resolve such a penetration problem and as a complement to SAR and lidar, a light-weighted
Ku-band frequency-modulated continuous waveform (FMCW) profiling radar aboard an
airborne platform, named Tomoradar, was designed by the Finnish Geospatial Research
Institute to collect the full polarisation backscattered signals from the forest in Finland [13].
A wide range of forest parameters, including ground level, canopy top elevation, canopy
height and leaf area index, are retrieved by processing the Tomoradar waveforms [14–16].
However, some disparities in these forest parameters are derived from lidar data and
Tomoradar waveforms because of the varying signal propagation and penetration into
the forest.

The remote sensing devices’ abilities to measure the canopy structure are strongly
dependent on the penetration of the electromagnetic (EM) wavelengths [17]. Near-infrared
lidar is bound to present the discrepancies of the penetration with Ku-band Tomoradar.
Lidar penetrations were usually investigated by energy penetration index or ground
return percentage (the ratio between ground energy and total waveform energy) and
the crown’s depth [18–20]. Ku-band Tomoradar penetration was analysed according to
the backscattered ratio of canopy energy to total waveform energy [21]. However, this
research only depicted the energy ratio from the ground or the canopy, and did not present
the waveforms’ penetration process through the forest. Moreover, there are very few
comparisons that have been implemented concerning lidar and radar penetrations into the
forests at the same time and same place.

In this research, benefiting from the cooperative observation of lidar and Tomoradar on
the same platform, the penetration properties of the Ku-band microwave and near-infrared
laser are explored in Tomoradar waveforms and satellite lidar waveforms simulated from
airborne lidar data at the same spatial scale. By processing Tomoradar waveforms and
simulating the satellite lidar waveforms, the accumulative energy distributions are de-
rived to generate the two groups of height and energy percentiles (HEP). We provide the
comparisons and regression analyses of the HEPs derived from Tomoradar and satellite
lidar to expound on these two wavelengths’ penetrations in the boreal forest environment.
Two specific objectives are to (1) investigate the quantitative relationships of the HEPs to
demonstrate the penetration differences of the Ku-band microwave and near-infrared laser;
(2) establish the regression models of the differences of the HEP as functions of the canopy
height and closure to present the influence of the canopy structure on the penetration.

The rest of this paper is organised as follows: Section 2 describes the study area, To-
moradar waveforms, lidar data, and illustrates the methods of derivation and comparisons
of the HEPs; Section 3 expounds on the results of the HEPs; Section 4 discusses the and
regression analyses; finally, the conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Study Area

The study area was located at a fraction of the boreal forest region in Evo, southern
Finland (61.19◦N, 25.11◦E). It was a popular recreation area and consisted of Scots pine,
Norway spruce, and birch with different vegetation densities and tree height. Both the
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Tomoradar and Velodyne VLP-16 laser scanner were mounted on a Bell 206 helicopter with
a flight height of 60–100 m to synchronously gather the backscattered waveforms and point
clouds of the vegetation and ground in September 2016. There were 41 stripes over the
study area with a total length of about 24 km. The flying trajectory of the helicopter during
the Tomoradar campaigns is presented in Figure 1. In this study, 17 stripes of Tomoradar
waveforms and lidar points are randomly chosen to investigate the penetration of the
Ku-band microwave and near-infrared laser.

Figure 1. The flying trajectory of the Tomoradar field test in the study area (yellow line) and the
17 randomly selected stripes in this study (red line).

2.2. Tomoradar Waveforms

The FMCW Tomoradar recorded the backscattered signals from the canopy surface
and the underlying ground within the Tomoradar footprint and converted them into
waveforms. The effective field of view (FOV) of Tomoradar was 8 degrees, in which the
fraction of total radiation energy was supposed to be 91% [22]. Raw Tomoradar waveforms
represented the vertical distribution of the Ku-band microwave radiation along the beam
path. The Tomoradar system has a range resolution of 15 centimetres and an along-track
spatial interval of about 6 centimetres on the ground. Due to a severe intersection of the
contiguous footprint in such intervals, we resample the footprint according to the 2-m
along-track resolution. Hence, only 5321 Tomoradar waveforms were preserved to be
investigated in this study.

2.3. Airborne Lidar Data

The airborne lidar data were acquired by a Velodyne VLP-16 lidar installed on the
same platform as the Tomoradar. The instrument instantaneously provided 16 parallel
scan lines with a 30◦ along-track scan angle and only collected the first and strongest
returns. The average lidar point density was approximately 36 points per square meter.
The high-density airborne lidar data were the representatives of the 3D distributions of
vegetation and ground over the study area as references for simulating the satellite lidar
waveforms. In addition, the airborne lidar data were filtered to separate the ground and
canopy, then the canopy height and closure can be derived in terms of the distance from the
ground to canopy top, and the ratio of ground returns to total returns within the Tomoradar
FOV, respectively.

2.4. Methods

The penetration of the Ku-band microwave and near-infrared laser into the forest can
be directly investigated according to the distributions of Tomoradar waveforms and satellite
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lidar waveforms, which are the functions of the transmitted microwave and laser energy,
surface reflectance and scattering, and atmospheric attenuation. In order to retain the
influence of vegetation’s distributions and ground on the penetration of waveforms, each
waveform should be normalised by its summation. The percentile heights and energies of
the normalised waveforms into the forest are explored to demonstrate the penetration of
airborne Ku-band radar and satellite near-infrared lidar. The detailed diagram is illustrated
in Figure 2, which includes three processing steps: (a) Satellite Lidar waveform simulation;
(b) Tomoradar waveform Processing; (c) Penetration assessment.

Figure 2. The flowchart of the penetration investigation of the Ku-band microwave and near-infrared laser at the same
spatial scale based on the percentile heights and energy. The procedure includes three processing steps: simulating satellite
lidar waveforms from lidar points, assessing penetration and processing Tomoradar waveforms. The symbol of FOVT

represents the Tomoradar FOV.

2.4.1. Simulating Satellite Lidar Waveform

Satellite lidar waveforms can be simulated from airborne lidar data by convoluting
the target cross-section with Gaussian weighting functions of outgoing pulse and impulse
response. In our simulation, only the lidar points within Tomoradar FOV are effectively
acceptable. The laser footprint on the ground is entirely identical to the Tomoradar footprint
and assumed to contain about 86.5% of outgoing laser pulse energy. Given the lidar points
(xi, yi, zi) within a Tomoradar FOV, the simulated lidar waveforms can be described as [20]

Wl(h) =

[
∑

i∈Q

βi
ρ4

i
· I(xi, yi)

]
∗ f (h)

Q =
{

i
∣∣∣(xi, yi, zi) ∈ FOVT and |zi − h| ≤ ∆ρ

2

} (1)

where h symbolises the target height, βi represents the surface reflectance and is supposed
to be constant in this paper, ρi is the distance from the lidar system to the target, which is
approximately invariable since the satellite altitude is much greater than the target height.
FOVT is the Tomoradar FOV, ∆ρ is Tomoradar range resolution. I(xi, yi) represents the
spatial intensity distribution of outgoing laser pulse on the ground and f (t) is the lidar
system function which can be treated as the convolution of the outgoing pulse and impulse
response of satellite lidar system. They can be expressed as the following

I(xi, yi) = exp
[
− (xi−x0)

2+(yi−y0)
2

2d2

]
f (h) = exp

(
− 2h2

c2δ2

) (2)
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where (x0, y0) denotes the laser footprint centroid, c is light speed, d and δ are the footprint
radius and time width at the exp

(
− 1

2

)
points of maximal intensity and lidar system

function, respectively. The laser footprint radius varies from 5.5 m to 13.5 m according
to the helicopter’s flight height over the study area. The time width of the lidar system
function is set to 2 nanoseconds. It should be noted that the simulated lidar waveform
generated by Equation (1) is relative in the unit.

2.4.2. Processing of Tomoradar Waveform

Raw Tomoradar waveforms comprise effective signals and noises that may nega-
tively affect the extraction of effective signals. Smooth filtering with a weighted factor
of normalised Gaussian distribution is performed to remove the noise [15]. The filtered
waveforms above a signal threshold are regarded as the effective Tomoradar waveforms.
Here, the signal threshold is usually set to 3 times the standard deviation of the noise,
which can be resolved using raw waveforms in both edges. Considering that the distri-
butions of the simulated lidar waveform are irrelevant to the target height, the processed
Tomoradar waveforms should also be corrected with the fourth power of the heights from
the helicopter to the target according to the radar equation as

Wr(h) = h4Pr(h) (3)

where, Pr(h) represents the filtered Tomoradar waveforms above the signal threshold.

2.4.3. Assessing Penetration

The normalised waveforms are the distributions of the vegetation and ground sensed
by Tomoradar and satellite lidar. In this study, there are two groups of the waveform
parameters serving as the metrics of penetration: (a) the 15th, 30th, 45th, 60th, 75th and
90th height percentiles (H15, H30, H45, H60, H75, H90); (b) the energy percentiles in six
equal height parts (E1, E2, E3, E4, E5, E6), as presented in Figure 3.

Figure 3. The illustrations of the waveform and the resultant cumulative energy, which determine the height percentiles
and energy percentiles. (a) original waveform; (b) height percentiles; (c) energy percentiles.

These height and energy percentiles are calculated from the energy proportions and
heights of the normalised waveforms’ accumulative distributions [7,23]. Height percentiles
represent the vertical structure distributions of the vegetation within the footprint, and
energy percentiles describe the energy levels distributed in different strata of the vegetation.
It is expected that the more substantial penetration corresponds to a greater energy per-
centile in the lowest height and a smaller height percentile in the same energy proportion.
We directly compare the height and energy percentiles derived from Tomoradar wave-
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forms and satellite lidar waveforms to demonstrate Ku-band microwave and near-infrared
laser penetration.

If we symbolise the height and energy percentiles derived from Tomoradar waveforms
and satellite lidar waveforms as (HPt, EPt) and (HPl , EPl), the linear regression analyses
with a confidence level of 95% are employed in the estimation of the relationship between
the height and energy percentiles. The coefficient of determination (COD, r2) and the root
mean square error (RMSE, δr) can be given by

r2
H = 1− ∑(HPt −HPr)

2

∑
(
HPt −HPt

)2 , δHr =

√
∑(HPt −HPr)

2

n− 1
. (4)

r2
E = 1− ∑(EPt − EPr)

2

∑
(
EPt − EPt

)2 , δEr =

√
∑(EPt − EPr)

2

n− 1
. (5)

where HPr represents predicted value of HPt as a function of HPl , and EPr represents
predicted value of EPt as a function of EPl with the linear regression models. HPt and EPt
are the means of HPt and EPt, respectively, n is the number of Tomoradar measurements
in this study. The COD is the proportion of the variance in the dependent variable that is
predictable from the independent variables in statistics. The associations of a higher COD
and a lower RMSE indicate a better fitting for the predicted model.

In addition, we intend to investigate the influence of the vegetation structure distribu-
tions on the penetrations of the Ku-band microwave and near-infrared laser. Considering
that the metrics of the canopy height and closure are the representatives of vegetation
structure, we would establish the fitting model about the differences of the height and
energy percentiles derived from Tomoradar waveforms and satellite lidar waveforms as
a function of canopy height and closure. Meanwhile, the contributions of canopy height
and closure to the penetration of the Ku-band microwave and near-infrared laser can be
quantitatively explored.

3. Results
3.1. The Correlation Analysis of Tomoradar Waveforms and Satellite Lidar Waveforms

If Tomoradar radiation hits a region with a 9.5-m radius where there are multiple trees
with 15-m canopy height and 0.57 canopy closure, a visual comparison between Tomoradar
waveform and satellite lidar waveform is presented in Figure 4.

Figure 4. An illustration of Tomoradar waveforms and satellite lidar waveforms from a region with
multiple trees. (a) A point cloud of vegetation and ground in the selected region; (b) Tomoradar
waveform (blue line) and satellite lidar waveform (red line).
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Both the Tomoradar waveform and satellite lidar waveform are composed of two
components: a vegetation return and a ground return. The composition and 3D structure
of the vegetation and the ground determine the waveform distributions. Furthermore, we
discover that the Tomoradar waveform shifts towards the ground relative to the satellite
lidar waveform. It implies that more Tomoradar radiation energy penetrated inside the
canopy rather than that of the laser pulse. Meanwhile, it can be observed that the Tomoradar
waveform has a strong correlation with the satellite lidar waveform based on the Pearson’s
correlation coefficient of 0.75.

The correlations between Tomoradar waveforms and satellite lidar waveforms are
changeable for different scenarios in the study area. We calculate 5321 correlation coeffi-
cients and partition them into five segments with a range from 0 to 1 and an interval of
0.2 based on the definition of the correlation strength. By counting the numbers within
each segment, we obtain the proportions to 5321 measurements. Hence, we provide the
distributions of the correlation coefficients for all measurements and the corresponding
proportions, as shown in Figure 5.

Figure 5. The correlation between Tomoradar waveforms and satellite lidar waveforms for 5321
measurements. (a) The correlation coefficients; (b) proportions classified by correlation strength.

The correlation coefficient in Figure 5a is fluctuated for each measurement due to the
diversity of the target within the Tomoradar footprint. When the correlation strength varies
from very weak to very strong in Figure 5b, the proportions of all measurements rapidly
increase and take values of 1.21%, 2.54%, 7.62%, 27.38% and 61.25%, respectively. It means
that 88.63% of Tomoradar waveforms correlate very well with satellite lidar waveforms.
As such, the Ku-band microwave may have a partially similar penetration feature into the
forest with a near-infrared laser at the same spatial scale. Nevertheless, further analysis
of these two wavelengths’ penetration should be performed by the following height and
energy percentiles.

3.2. The Penetration Analysis Based on the Height and Energy Percentiles
3.2.1. Height Percentile Analysis

According to the method mentioned above for calculating the height percentiles,
we obtain the height percentiles derived from Tomoradar waveforms and satellite lidar
waveforms (defined as HPt and HPl) and present the scatterplots and linear regression
results of them in Figure 6.
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Figure 6. The scatterplots and linear regression results of height percentiles derived from Tomoradar waveforms (HPt) and
satellite lidar waveforms (HPl ). The symbol R represents the correlation coefficient between HPt and HPl . (a) 15th; (b) 30th;
(c) 45th; (d) 60th; (e) 75th; (f) 90th.

We notice that the height percentiles derived from Tomoradar waveforms correlate
well to those from satellite lidar waveforms with a stronger correlation strength of a
0.78 mean correlation coefficient. Moreover, the linear regression models produce an
excellent fit with CODs of 0.92–0.99 and RMSEs of 0.07 m–1.99 m. In this case, we may
exactly depict the relationship between HPt and HPl using the linear regression models.

Meanwhile, we observe that a single relation of height percentiles derived from
Tomoradar waveforms (HPt) and satellite lidar waveforms (HPl) is expressed as a blue
point. Additionally, the majority of these points in Figure 6 locate above the line of
Y = X. It implies that the height percentiles of the microwave radar are generally smaller
than the height percentiles of lidar. Such a phenomenon means that microwave radar’s
penetration capability is more substantial than lidar, which also fits the conclusion of
Chen et al., 2017. Furthermore, Table 1 presents three groups of assessment parameters for
further investigation.

Table 1. The means and the standard deviations of HPt and HPl and the proportions γH.

Symbol 15th 30th 45th 60th 75th 90th

MHt
1 (m) 12.92 9.71 6.61 3.75 1.40 −0.30

MHl
1 (m) 15.65 12.73 9.54 6.17 2.85 0.35

SHt
1 (m) 7.37 7.18 6.56 5.31 3.33 1.35

SHl
1 (m) 7.34 7.32 7.17 6.33 4.45 1.81

γH
2 (%) 91.51 88.31 85.49 85.55 89.42 94.81

1 The mean and the standard deviation of HPt and HPl as (MHt, SHt and (MHl , SHl ); 2 The proportion of the
numbers of HPl ≥ HPt to total measurements as γH.
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With the increase in the penetration depth into the forest, the mean and the standard
deviation of HPt and HPl decrease rapidly, and HPl gradually approaches to HPt. If the
penetrated energy is no more than 45%, the average difference between HPl and HPt
is around 3 m. However, when the penetrated energy is equal to 90%, such difference
diminishes to 0.65 m. The results suggest that the height percentiles near the canopy top are
easily influenced by the wavelength and become more uncertain, but the height percentiles
near the ground are less dependent on the wavelength and become more stable. In addi-
tion, more than 85% of height percentiles derived from satellite lidar waveforms surpass
those from Tomoradar waveforms, which demonstrates that the Ku-band microwave can
penetrate deeper into the forest than the near-infrared laser.

To investigate the impact of the structure distributions of the vegetation on the height
percentile of HPt and HPl , we illustrate the 3D distributions of the target within the
footprint, waveforms and the accumulative energies in three situations: (a) HPt is more
considerable than HPl ; (b) HPt is much smaller than HPl ; (c) HPt is approximately equal
to HPl , which are presented in Figure 7.

Figure 7. The point cloud of the target within the footprint (left) and the waveforms (middle) and cumulative energies of
Tomoradar and satellite lidar (right) of three typical situations from the top row to bottom row: (a–c) the case that HPt is
much larger than HPl ; (d–f) the case that HPt is much smaller than HPl ; (g–i) the case that HPt is approximately equal
to HPl .
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It appears that for a vegetated region with highly dense canopies in Figure 7a, To-
moradar can receive the backscattered signals on the canopy surface and inside the canopy,
but satellite lidar only captures the returned signal from the canopy surface. Hence, the
canopy return from Tomoradar is more complicated and more significant than that from
satellite lidar, which can be employed to retrieve more detailed canopy information. Sim-
ilarly, for a vegetated region with relatively sparse canopies in Figure 7b, the Ku-band
microwave can directly penetrate the ground, but the vegetation’s branches and leaves
would reflect laser signals. Thus, the ground return from Tomoradar is higher than that
from satellite lidar. For these two situations in Figure 7a,b, the minor variations of the
waveform shape heavily influence the distributions of the cumulative energy and result
in the enormous differences between the height percentile of HPt and HPl . However, for
a flat region without vegetation in Figure 7c, both the Tomoradar waveform and satellite
lidar waveform show unimodal characteristics and similar cumulative energy distributions
with approximate height percentiles.

3.2.2. Energy Percentile Analysis

Based on the method of resolving the energy percentiles and all 5321 waveforms, we
provide the scatterplots and linear regression results of the energy percentiles derived from
Tomoradar waveforms and satellite lidar waveforms (defined as EPt and EPl) as presented
in Figure 8.

Figure 8. The scatterplots and linear regression results of energy percentiles derived from Tomoradar waveforms (EPt) and
satellite lidar waveforms (EPl ). The symbol R represents the correlation coefficient between EPt and EPl . (a) 1/6; (b) 2/6;
(c) 3/6; (d) 4/6; (e) 5/6; (f) 6/6.

In Figure 8, the energy percentiles derived from Tomoradar waveforms correlate
very well to those from satellite lidar waveforms with an extreme correlation strength of
0.85 mean correlation coefficient. Meanwhile, the linear regression models for the energy
percentile produce preferable goodness of fit with the CODs of 0.81–0.99 and the RMSEs of
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0.02–0.06. Moreover, the scatter points transfer to the bottom of the line of Y = X with the
increase in penetration depth.

We define the proportion of the numbers of EPl ≥ EPt to total measurements as γE, the
mean and the standard deviation of EPt and EPl as (MEt, SEt) and (MEl , SEl), respectively.
Their statistical results are enumerated in Table 2. We discover that the maximal differences
between MEt and MEl are located in the highest and lowest height strata, demonstrating
that the energy percentiles near the canopy top and the ground are more greatly affected
by the wavelength. Meanwhile, the proportion γE decreases rapidly from 91.13% to 12.46%
when the waveform penetrates from the first stratum to the sixth stratum. It shows 87.54%
of the energy percentiles in the sixth stratum derived from Tomoradar waveforms exceed
those from satellite lidar waveforms. The results validate that the Ku-band microwave can
more easily reach the ground and has more substantial penetration into the forest than the
near-infrared laser.

Table 2. The means and the standard deviations of EPt and EPl and the proportion γE.

Symbol One-Sixth Two-Sixths Three-Sixths Four-Sixths Five-Sixths Six-Sixths

MEt 0.06 0.17 0.14 0.12 0.17 0.34
MEl 0.13 0.21 0.14 0.12 0.16 0.24
SEt 0.08 0.13 0.10 0.13 0.15 0.26
SEl 0.09 0.13 0.10 0.13 0.16 0.21

γE (%) 91.13 76.19 55.52 48.32 40.76 12.46

We explore the influence of the target distributions on the energy percentiles for three
situations mentioned in Figure 7 and plot the corresponding energy percentiles EPt and
EPl as illustrated in Figure 9.

Figure 9. The height percentile distributions derived from Tomoradar waveforms and satellite lidar waveforms for three
typical situations in Figure 7. (a) HPt is much larger than HPl ; (b) HPt is much smaller than HPl ; (c) HPt is approximately
equal to HPl . The numbers from 1 to 6 along the x-coordinate directions represent the energy percentiles metrics from E1 to
E6, respectively.

We observe that, for a vegetated region with highly dense canopies in Figure 7a, the
differences between EPl and EPt near the canopy top and the ground are more significant
due to the vast variations between the Tomoradar waveform and satellite lidar waveform.
Similarly, for a vegetated region with relatively sparse canopies in Figure 7b, the more
considerable difference is distributed near the ground. However, for a flat region without
vegetation in Figure 7c, the energy percentile EPl is similar to EPt owing to the resemblances
of their cumulative energy distributions.
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4. Discussions

According to the HEP analyses, we conclude that both the HEPs derived from To-
moradar waveforms and satellite lidar waveforms are closely relevant to the canopy height
and closure. For this reason, it is necessary to investigate the quantitative links of their
differences of the HEP with the canopy height and closure based on the regression analysis.
We calculate the canopy heights and closures in airborne lidar data within 5321 footprints
and display their distributions in Figure 10.

Figure 10. The distributions of canopy height and closure derived from airborne lidar data within
5321 footprints. The blue and red lines represent the canopy heights and closures, respectively.

In Figure 10, the canopy heights within 5321 footprints vary from 0.56 m to 40.29 m
with a mean value of 21.05 m and a standard deviation of 7.19 m. The canopy closures
are distributed within a range from 0 to 1, with a mean value of 0.53 and a standard
deviation of 0.24. Moreover, the canopy heights have similar distribution regularities with
the canopy closure. A grown-up tree with higher canopy height could have a dense canopy
closure, but a new tree with lower canopy height could have a sparse canopy closure. The
heterogeneous vegetation information positively contributes to the penetration analysis.

4.1. Regression Analysis on the Differences of the Height Percentiles

We define the difference of the height percentile (DHP) derived from Tomoradar and
satellite lidar waveforms as ∆HPi. The subscript i represents the 15th, 30th, 45th, 60th, 75th
and 90th energy proportions, respectively. The canopy height and closure are symbolised
with H and C. The values are based on the abovementioned results of the height percentiles
and canopy heights and closures. We provide the fitting curved surfaces of the DHP, as
shown in Figure 11.

The quadratic surfaces in Figure 11 are the preferable fitting results for the DHP. The
more significant fitting errors are converged towards the higher canopy heights and denser
canopy closures. The distributions of the quadratic surfaces are distinguished from each
other. The detailed regression results of the fitting models, the CODs and the RMSEs for
the DHPs are illustrated in Table 3.

Table 3. The detailed regression results of the fitting models, the CODs and the RMSEs for the DHPs.

Symbol Fitting Model r2 δr (m)

∆HP15 ∆HP15 = 0.243− 2.930C− 0.078H + 4.780C2 + 0.029HC 0.96 0.75
∆HP30 ∆HP30 = −0.201− 5.353C + 0.056H + 10.400C2 − 0.278HC 0.97 0.78
∆HP45 ∆HP45 = −0.395− 2.723C + 0.093H + 7.138C2 − 0.341HC 0.96 0.95
∆HP60 ∆HP60 = −0.503 + 2.931C− 0.046H− 2.481C2 − 0.217HC 0.98 0.56
∆HP75 ∆HP75 = −0.4357 + 5.680C− 0.018H− 8.565C2 − 0.028HC 0.97 0.50
∆HP90 ∆HP90 = −0.464 + 2.250C− 0.011H− 2.944C2 − 0.002HC 0.97 0.20
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Figure 11. The fitting curved surfaces and original distributions of the DHP. The blue dots and the curved surfaces represent
the DHP distributions and the fitting surfaces, respectively. (a) ∆HP15; (b) ∆HP30; (c) ∆HP45; (d) ∆HP60; (e) ∆HP75;
(f) ∆HP90.

The quadratic regression models of the DHP produce excellent fit with the CODs
of more than 0.96 and RMSEs of less than 0.95 m. Based on the regression models, we
discover that the contributions of the canopy height and closure to the DHP are variable,
and the relatively higher number of extraordinary contributions of the canopy closure (C),
the canopy height (H) and the synthetic contributions (HC) primarily emerge in (∆HP30,
∆HP45, ∆HP75), (∆HP15, ∆HP30, ∆HP45, ∆HP60) and (∆HP30, ∆HP45, ∆HP60), respectively.

To evaluate the ultimate fitting effects, we divide the fitting residuals of ∆HPi into
300 sections within a window from −30 m to 30 m and an interval of 0.2 m and calculate
the proportions of total measurements within each section. The histograms of the fitting
residual of ∆HPi are presented in Figure 12.

All fitting residual histograms of the DHP approach normal distributions, which
suggests that the proposed quadratic regression models satisfy the requirements of reliable
models. Meanwhile, compared with the ranges of the DHP, the minor centroids and sigma
widths also validate the reliabilities of the proposed fitting models.

4.2. Regression Analysis on the Differences of the Energy Percentiles

Just like the analysis on the DHP, we define the difference of the energy percentile
(DEP) derived from Tomoradar and satellite lidar waveforms as (i = 1, 2, . . . , 6), where the
subscript i represents the height stratum. We plot the fitting curved surfaces of the DEP, as
presented in Figure 13.
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Figure 12. The histograms of the residuals of the differences of the height percentile. The symbols a, b and w denote the
amplitude, centroid and sigma width of the fitting normal distribution. (a) ∆HP15; (b) ∆HP30; (c) ∆HP45; (d) ∆HP60; (e)
∆HP75; (f) ∆HP90.

Figure 13. The fitting curved surfaces of the DEP. The blue dots and the curved surfaces represent the DEP distributions and
the fitting surfaces at different energy percentiles, respectively. (a) ∆EP1; (b) ∆EP2; (c) ∆EP3; (d) ∆EP4; (e) ∆EP5; (f) ∆EP6.
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The quadratic surfaces in Figure 13 can also fit well with the results of the DEP. There
are more significant fitting errors near the higher canopy heights and the denser canopy
closure. The detailed regression results of the fitting models, the CODs and the RMSEs for
the DEPs are listed in Table 4.

Table 4. The detailed regression results of the fitting models, the CODs and the RMSEs for the DEPs.

Symbol Fitting Model r2 δr

∆EP1 ∆EP1 = 0.004− 0.057C− 0.001H + 0.084C2 − 0.003HC 0.95 0.01
∆EP2 ∆EP2 = −0.005− 0.141C + 0.109C2 − 0.001HC 0.94 0.02
∆EP3 ∆EP3 = −0.027 + 0.066C + 0.002H + 0.063C2 − 0.006HC 0.89 0.03
∆EP4 ∆EP4 = −0.013 + 0.075C + 0.001H + 0.026C2 − 0.004HC 0.95 0.01
∆EP5 ∆EP5 = 0.051− 0.176C− 0.001H + 0.124C2 + 0.003HC 0.95 0.02
∆EP6 ∆EP6 = 0.020 + 0.186C− 0.317C2 + 0.005HC 0.94 0.03

The DEP’s quadratic regression models produce the greater goodness of fit with
CODs of more than 0.89 and the RMSEs of than 0.03. We discover that the relatively
greater contributions of the canopy closure (C) and the synthetic contributions (HC) to
∆EPi primarily emerge in (∆EP2, ∆EP5, ∆EP6) and (∆EP3, ∆EP4, ∆EP6), respectively. The
individual contributions of the canopy height (H) to ∆EPi are approximately negligible.
Furthermore, we divide the fitting residuals of ∆EPi into 100 sections within a window from
−1 to 1 and an interval of 0.02 and calculate the proportions of total measurements within
each section. The histograms of the fitting residual of ∆EPi are presented in Figure 14.

Figure 14. The histograms of the residuals of the differences of the energy percentile. The symbols a, b and w denote the
amplitude, centroid and sigma width of the fitting normal distribution. (a) ∆EP1; (b) ∆EP2; (c) ∆EP3; (d) ∆EP4; (e) ∆EP5;
(f) ∆EP6.
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The facts that all fitting residual histograms of the DEP approach normal distributions
and the corresponding centroids and sigma widths are much less than the DEP ranges also
demonstrate the reliabilities of the proposed fitting models.

5. Conclusions

Height percentile and energy percentile are two significant metrics for assessing the
penetration of full-waveform lidar and FMCW profiling radar. The height percentile can
reflect the height distribution at the different energy proportions, and energy percentile
can express energy distribution within different height strata. More height and energy
percentiles can represent the characteristics of EM penetration into the forest and bring
about more complicated evaluation indicators. In this research, we suggest that two groups
of height and energy percentiles with 12 metrics are favourable for the penetration analyses
of satellite lidar and Tomoradar.

The penetrations of the near-infrared laser and Ku-band microwave into the forest
are heavily dependent on the wavelength. Through the qualitative and quantitative explo-
rations of the height and energy percentiles at the same spatial scale and simultaneously, we
reveal that the Tomoradar waveforms have much stronger penetrations than satellite lidar
waveforms. The results imply that Tomoradar radiations can easily penetrate significantly
deeper into denser vegetation and interact with the stems, branches and trunks inside the
canopy and the ground so that more detailed vegetation information can be derived from
Tomoradar waveforms. Meanwhile, more backscattered energy from the ground captured
by Tomoradar can be utilised to calculate the inverse precise ground level, whereas stronger
penetration of Tomoradar corresponds to the weaker canopy return for sparse vegetation,
which causes it to be challenging to identify the canopy top. Hence, a variable gain related
to the target distance should be designed to improve the signal intensity at the canopy top,
and the raw Tomoradar waveform should be expressed with the unit of dB to present the
canopy return [14].

In addition, since the Tomoradar FOV is much greater than the lidar system, the radar
footprint is undoubtedly more significant than the lidar footprint at the same altitude,
which would decrease the spatial resolution of Tomoradar. Thus, we can combine the
superiority in the penetration of Ku-band profiling radar and high density of lidar to
investigate the denser forest inventory.
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