Variations in Channel Centerline Migration Rate and Intensity of a Braided Reach in the Lower Yellow River
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources
3.1.1. Hydrological Data
3.1.2. Cross-Sectional Topography
3.1.3. Remote Sensing Images
3.2. Methods
3.2.1. Hydrological Data
3.2.2. Calculation of Reach-Scale Bankfull Channel Dimensions
3.2.3. Calculation of Section-Scale Channel Migration Rate
3.2.4. Calculation of Reach-Scale Channel Migration rate and Intensity
4. Results and Discussion
4.1. Migration Direction of Channel Centerline
4.2. Migration Rate of Channel Centerline
4.3. Migration Intensity of Channel Centerline
4.4. Influencing Factors of Channel Migration Intensity
4.4.1. Effect of Channel Boundary Conditions
4.4.2. Effect of the Altered Flow and Sediment Regime
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, R.; Xie, J. Sedimentation Research in China; China Water and Power Press: Beijing, China, 1993. [Google Scholar]
- Julien, P.; Tuzson, J. River Mechanics. Appl. Mech. Rev. 2003, 56, B30–B31. [Google Scholar] [CrossRef]
- Chien, N.; Zhou, W. Channel Evolution in the Lower Yellow River; Science Press: Beijing, China, 1965. [Google Scholar]
- Klaassen, G.J.; Mosselman, E.; Masselink, G.; Bruhl, H.; Huisink, M.; Koomen, E.; Seymonsbergen, A.C. Planform Changes in Large Braided Sand-Bed Rivers; Delft Hudraulics: Delft, The Netherlands, 1993. [Google Scholar]
- Petts, G.E.; Gurnell, A.M. Dams and geomorphology: Research progress and future directions. Geomorphology 2005, 71, 27–47. [Google Scholar] [CrossRef]
- Peixoto, J.M.A.; Nelson, B.W.; Wittmann, F. Spatial and temporal dynamics of river channel migration and vegetation in central Amazonian white-water floodplains by remote-sensing techniques. Remote. Sens. Environ. 2009, 113, 2258–2266. [Google Scholar] [CrossRef]
- Rowland, J.C.; Shelef, E.; Pope, P.A.; Muss, J.; Gangodagamage, C.; Brumby, S.P.; Wilson, C.J. A morphology independent methodology for quantifying planview river change and characteristics from remotely sensed imagery. Remote Sens. Environ. 2016, 184, 212–228. [Google Scholar] [CrossRef] [Green Version]
- Miao, C.; Ni, J.; Borthwick, A.G.L. Recent changes of water discharge and sediment load in the Yellow River basin, China. Prog. Phys. Geogr. Earth Environ. 2010, 34, 541–561. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Huang, H.Q.; Nanson, G.C.; Li, Y.; Yao, W. Channel adjustments in response to the operation of large dams: The upper reach of the lower Yellow River. Geomorphology 2012, 147–148, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Li, X.; Li, T.; Zhang, X.; Zong, Q. Response of reach-scale bankfull channel geometry to the altered flow and sediment regime in the lower Yellow River. Geomorphology 2014, 213, 255–265. [Google Scholar] [CrossRef]
- Xia, J.; Li, X.; Zhang, X.; Li, T. Recent variation in reach-scale bankfull discharge in the Lower Yellow River. Earth Surf. Process. Landf. 2013, 39, 723–734. [Google Scholar] [CrossRef]
- Song, X.; Zhong, D.; Wang, G. Simulation on the stochastic evolution of hydraulic geometry relationships with the stochastic changing bankfull discharges in the Lower Yellow River. J. Geogr. Sci. 2020, 30, 843–864. [Google Scholar] [CrossRef]
- Li, J.; Xia, J.; Zhou, M.; Deng, S.; Zhang, X. Variation in reach-scale thalweg-migration intensity in a braided reach of the lower Yellow River in 1986–2015. Earth Surf. Process. Landf. 2017, 42, 1952–1962. [Google Scholar] [CrossRef]
- Chen, J.-G.; Zhou, W.-H.; Chen, Q. Reservoir Sedimentation and Transformation of Morpho-Logy in the Lower Yellow River during 10 Year’s Initial Operation of the Xiaolangdi Reservoir. J. Hydrodyn. 2012, 24, 914–924. [Google Scholar] [CrossRef]
- MacDonald, T.E.; Parker, G.; Leuthe, D.P. Inventory and Analysis of Stream Meander Problems in Minnesota. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA, August 1991. [Google Scholar]
- Richard, G.A.; Julien, P.Y.; Baird, D.C. Case Study: Modeling the Lateral Mobility of the Rio Grande below Cochiti Dam, New Mexico. J. Hydraul. Eng. 2005, 131, 931–941. [Google Scholar] [CrossRef]
- Kong, D.; Latrubesse, E.M.; Miao, C.; Zhou, R. Morphological response of the Lower Yellow River to the operation of Xiaolangdi Dam, China. Geomorphology 2020, 350, 106931. [Google Scholar] [CrossRef]
- Leys, K.F.; Werritty, A. River channel planform change: Software for historical analysis. Geomorphology 1999, 29, 107–120. [Google Scholar] [CrossRef]
- Wu, B.; Wang, G.; Ma, J.; Zhang, R. Case Study: River Training and Its Effects on Fluvial Processes in the Lower Yellow River, China. J. Hydraul. Eng. 2005, 131, 85–96. [Google Scholar] [CrossRef]
- Yang, X.; Damen, M.C.; van Zuidam, R.A. Satellite remote sensing and GIS for the analysis of channel migration changes in the active Yellow River Delta, China. Int. J. Appl. Earth Obs. Geoinform. 1999, 1, 146–157. [Google Scholar] [CrossRef]
- Yang, C.; Cai, X.; Wang, X.; Yan, R.; Zhang, T.; Lu, X. Remotely Sensed Trajectory Analysis of Channel Migration in Lower Jingjiang Reach during the Period of 1983–2013. Remote Sens. 2015, 7, 16241–16256. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Li, L.; Ran, L.; Yan, Y. Spatial and temporal variations of channel lateral migration rates in the Inner Mongolian reach of the upper Yellow River. Environ. Earth Sci. 2016, 75, 1255. [Google Scholar] [CrossRef]
- Priestnall, G.; Aplin, P. Cover: Spatial and temporal remote sensing requirements for river monitoring. Int. J. Remote Sens. 2006, 27, 2111–2120. [Google Scholar] [CrossRef]
- Takagi, T.; Oguchi, T.; Matsumoto, J.; Grossman, M.; Sarker, M.; Matin, M. Channel braiding and stability of the Brahmaputra River, Bangladesh, since 1967: GIS and remote sensing analyses. Geomorpholology 2007, 85, 294–305. [Google Scholar] [CrossRef]
- Arnesen, A.S.; Silva, T.S.; Hess, L.L.; Novo, E.M.; Rudorff, C.M.; Chapman, B.D.; McDonald, K.C. Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sens. Environ. 2013, 130, 51–61. [Google Scholar] [CrossRef]
- Allen, G.H.; Pavelsky, T.M. Patterns of river width and surface area revealed by the satellite-derived North American River Width data set. Geophys. Res. Lett. 2015, 42, 395–402. [Google Scholar] [CrossRef]
- Shields, F.D., Jr.; Simon, A.; Steffen, L.J. Reservoir effects on downstream river channel migration. Environ. Conserv. 2000, 27, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Fisher, G.B.; Bookhagen, B.; Amos, C.B. Channel planform geometry and slopes from freely available high-spatial resolution imagery and DEM fusion: Implications for channel width scalings, erosion proxies, and fluvial signatures in tectonically active landscapes. Geomorphology 2013, 194, 46–56. [Google Scholar] [CrossRef]
- Li, W.; Gong, P. Continuous monitoring of coastline dynamics in western Florida with a 30-year time series of Landsat imagery. Remote Sens. Environ. 2016, 179, 196–209. [Google Scholar] [CrossRef]
- Park, E.; Latrubesse, E.M. The hydro-geomorphologic complexity of the lower Amazon River floodplain and hydrological connectivity assessed by remote sensing and field control. Remote Sens. Environ. 2017, 198, 321–332. [Google Scholar] [CrossRef]
- Hossain, A.; Gan, T.Y.; Baki, A.B.M. Assessing morphological changes of the Ganges River using satellite images. Quat. Int. 2013, 304, 142–155. [Google Scholar] [CrossRef]
- Yu, Y.G.; Shi, X.F.; Wang, H.J.; Yue, C.K.; Chen, S.L.; Liu, Y.G.; Hu, L.M.; Qiao, S.Q. Effects of Dams on Water and Sediment Delivery to the Sea by the Huanghe (Yellow River): The Special Role of Water–Sediment Modulation. Anthropocene 2013, 3, 72–82. [Google Scholar]
- Long, Y.; Chien, N. Erosion and Transportation of Sediment in the Yellow River Basin. Int. J. Sediment Res. 1986, 1, 2–38. [Google Scholar]
- Liu, S.M.; Li, L.W.; Zhang, G.L.; Liu, Z.; Yu, Z.; Ren, J.L. Impacts of human activities on nutrient transports in the Huanghe (Yellow River) estuary. J. Hydrol. 2012, 430-431, 103–110. [Google Scholar] [CrossRef]
- Miao, C.; Kong, D.; Wu, J.; Duan, Q. Functional degradation of the water–sediment regulation scheme in the lower Yellow River: Spatial and temporal analyses. Sci. Total Environ. 2016, 551-552, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xia, J.; Wu, B. Numerical Simulation of Longitudinal and Lateral Channel Deformations in the Braided Reach of the Lower Yellow River. J. Hydraul. Eng. 2008, 134, 1064–1078. [Google Scholar] [CrossRef]
- Wu, B.; Zheng, S.; Thorne, C.R. A general framework for using the rate law to simulate morphological response to disturbance in the fluvial system. Prog. Phys. Geogr. Earth Environ. 2012, 36, 575–597. [Google Scholar] [CrossRef]
- Walling, D.E. Assessing the accuracy of suspended sediment rating curves for a small basin. Water Resour. Res. 1977, 13, 531–538. [Google Scholar] [CrossRef]
- Andrews, J.T.; Syvitski, J.P.M.; Burrell, D.C.; Skei, J.M. Fjords: Processes and Products. Arct. Alp. Res. 1988, 20, 375. [Google Scholar] [CrossRef]
- Horowitz, A.J. An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrol. Process. 2003, 17, 3387–3409. [Google Scholar] [CrossRef]
- Yang, G.; Chen, Z.; Yu, F.; Wang, Z.; Zhao, Y.; Wang, Z. Sediment rating parameters and their implications: Yangtze River, China. Geomorphology 2007, 85, 166–175. [Google Scholar] [CrossRef]
- Fan, X.; Shi, C.; Zhou, Y.; Shao, W. Sediment rating curves in the Ningxia-Inner Mongolia reaches of the upper Yellow River and their implications. Quat. Int. 2012, 282, 152–162. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, N.; Li, F.; He, L.; Yan, M.; Yan, Y. Evaluating spatial variation of suspended sediment rating curves in the middle Yellow River basin, China. Hydrol. Process. 2018, 32, 1616–1624. [Google Scholar] [CrossRef]
- Peters-Kümmerly, B.E. Undersuchungen Über Zusammensetzung Und Transport von Schwebstoffen in Einigen Schweizer Flüseen. Geogr. Helv. 1973, 28, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.P.C. Soil Erosion and Conservation; Longman: London, UK, 1995. [Google Scholar]
- Xia, J.; Deng, S.; Zhou, M.; Lu, J.; Xu, Q. Geomorphic response of the Jingjiang Reach to the Three Gorges Project operation. Earth Surf. Process. Landf. 2016, 42, 866–876. [Google Scholar] [CrossRef]
- Zhou, M.; Xia, J.; Lu, J.; Deng, S.; Lin, F. Morphological adjustments in a meandering reach of the middle Yangtze River caused by severe human activities. Geomorphology 2017, 285, 325–332. [Google Scholar] [CrossRef]
- Xia, J.; Li, J.; Carling, P.A.; Zhou, M.; Zhang, X. Dynamic adjustments in bankfull width of a braided reach. Proc. Inst. Civ. Eng. Water Manag. 2019, 172, 207–216. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, X.; Wang, Z.; Li, J.; Zhou, M. Modelling of hyperconcentrated flood and channel evolution in a braided reach using a dynamically coupled one-dimensional approach. J. Hydrol. 2018, 561, 622–635. [Google Scholar] [CrossRef]
- Tian, S.; Wang, W.; Xie, B.; Zhang, M. Fluvial processes of the downstream reaches of the reservoirs in the Lower Yellow River. J. Geogr. Sci. 2016, 26, 1321–1336. [Google Scholar] [CrossRef]
- Xia, J.; Wu, B.; Wang, Y.; Zhao, S. An analysis of soil composition and mechanical properties of riverbanks in a braided reach of the Lower Yellow River. Sci. Bull. 2008, 53, 2400–2409. [Google Scholar] [CrossRef] [Green Version]
- Julien, P.Y.; Wargadalam, J.; Hager, W.H.; Huang, H.Q. Closure to “Alluvial Channel Geometry: Theory and Applications” by Pierre Y. Julien and Jayamurni Wargadalam. J. Hydraul. Eng. 1996, 122, 752–753. [Google Scholar] [CrossRef]
- He, L.; Wilkerson, G.V. Improved Bankfull Channel Geometry Prediction Using Two-Year Return-Period Discharge1. JAWRA J. Am. Water Resour. Assoc. 2011, 47, 1298–1316. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, H.; Liu, G.; Wang, K.; Peng, R.; Liu, Y. River Training in the Braided Reach of the Lower Yellow River; The Yellow River Water Conservancy Press: Zhengzhou, China, 1998. [Google Scholar]
a | |||||||
No | Acquisition Date | Water Level at HYK (m) | Water Level at JHT (m) | Water Level at GC (m) | Image Type | Spatial Resolution (m) | Path Row |
1 | 19861203 | 91.54 | 72.96 | 60.54 | Landsat5-TM | 30 | 123 |
2 | 19871222 | 91.45 | 73.03 | 60.72 | Landsat5-TM | 30 | 123 |
3 | 19881122 | 92.05 | 73.1 | 60.62 | Landsat5-TM | 30 | 123 |
4 | 19891125 | 92.32 | 73.47 | 61.03 | Landsat5-TM | 30 | 123 |
5 | 19900824 | 92.41 | 73.73 | 61.48 | Landsat5-TM | 30 | 123 |
6 | 19911030 | 92.37 | 73.05 | 60.28 | Landsat5-TM | 30 | 123 |
7 | 19921016 | 92.64 | 73.8 | 61.45 | Landsat5-TM | 30 | 123 |
8 | 19931019 | 92.66 | 74.04 | 61.43 | Landsat5-TM | 30 | 123 |
9 | 19941022 | 92.72 | 75.92 | 61.1 | Landsat5-TM | 30 | 123 |
10 | 19951110 | 92.84 | 75.83 | 61.45 | Landsat5-TM | 30 | 123 |
11 | 19961027 | 92.47 | 75.83 | 61.25 | Landsat5-TM | 30 | 123 |
12 | 19971030 | 92.27 | 75.22 | 60.59 | Landsat5-TM | 30 | 123 |
13 | 19981017 | 92.69 | 75.19 | 61.7 | Landsat5-TM | 30 | 123 |
14 | 19991129 | 92.42 | 75.78 | 62.15 | Landsat7-ETM+ | 30 | 123 |
15 | 20001030 | 92.64 | 76.2 | 62.56 | Landsat7-ETM+ | 30 | 123 |
16 | 20011017 | 92.46 | 76.04 | 62.27 | Landsat7-ETM+ | 30 | 123 |
17 | 20021004 | 92.02 | 76.17 | 62.12 | Landsat7-ETM+ | 30 | 123 |
18 | 20031226 | 91.57 | 75.08 | 61.58 | Landsat7-ETM+ | 30 | 123 |
19 | 20041025 | 90.98 | 74.62 | 60.69 | Landsat7-ETM+ | 30 | 123 |
20 | 20051215 | 91.04 | 75.05 | 60.74 | Landsat7-ETM+ | 30 | 123 |
21 | 20061015 | 91.20 | 74.41 | 60.35 | Landsat7-ETM+ | 30 | 123 |
22 | 20071103 | 91.04 | 74.39 | 60.75 | Landsat7-ETM+ | 30 | 123 |
23 | 20081121 | 90.61 | 73.89 | 59.92 | Landsat7-ETM+ | 30 | 123 |
24 | 20091023 | 90.73 | 73.63 | 60 | Landsat7-ETM+ | 30 | 123 |
25 | 20101229 | 90.48 | 73.69 | 59.7 | Landsat7-ETM+ | 30 | 123 |
26 | 20111114 | 90.92 | 73.96 | 60.29 | Landsat7-ETM+ | 30 | 123 |
27 | 20121031 | 89.96 | 73.25 | 59.68 | Landsat7-ETM+ | 30 | 123 |
28 | 20131010 | 90.12 | 73.36 | 59.62 | Landsat8-OLI | 30 | 123 |
29 | 20141114 | 89.58 | 72.89 | 59.48 | Landsat8-OLI | 30 | 123 |
30 | 20151016 | 88.87 | 72.34 | 58.92 | Landsat8-OLI | 30 | 123 |
31 | 20161103 | 89.19 | 72.86 | 59.11 | Landsat8-OLI | 30 | 123 |
b | |||||||
No | Acquisition Date | Water Level at HYK (m) | Water Level at JHT (m) | Water Level at GC (m) | Image Type | Spatial Resolution (m) | path row |
1 | 19861110 | 91.44 | 72.69 | 60.39 | Landsat5-TM | 30 | 124 |
2 | 19871113 | 91.6 | 73.15 | 60.91 | Landsat5-TM | 30 | 124 |
3 | 19881115 | 92.04 | 73.2 | 60.61 | Landsat5-TM | 30 | 124 |
4 | 19891204 | 92.34 | 73.75 | 61.35 | Landsat5-TM | 30 | 124 |
5 | 19901121 | 92.36 | 73.76 | 61.49 | Landsat5-TM | 30 | 124 |
6 | 19911007 | 92.34 | 73.3 | 60.94 | Landsat5-TM | 30 | 124 |
7 | 19921025 | 92.46 | 73.46 | 61.16 | Landsat5-TM | 30 | 124 |
8 | 19931231 | 92.47 | 73.5 | 61.2 | Landsat5-TM | 30 | 124 |
9 | 19941031 | 92.83 | 75.87 | 61.16 | Landsat5-TM | 30 | 124 |
10 | 19951103 | 92.74 | 75.78 | 61.36 | Landsat5-TM | 30 | 124 |
11 | 19961004 | 92.6 | 76.01 | 61.43 | Landsat5-TM | 30 | 124 |
12 | 19971007 | 92.62 | 75.77 | 61.71 | Landsat5-TM | 30 | 124 |
13 | 19981127 | 92.59 | 75.2 | 61.71 | Landsat5-TM | 30 | 124 |
14 | 19991122 | 92.46 | 75.89 | 62.22 | Landsat7-ETM+ | 30 | 124 |
15 | 20001226 | 92.5 | 76.12 | 62.49 | Landsat7-ETM+ | 30 | 124 |
16 | 20011111 | 91.87 | 75.36 | 61.88 | Landsat7-ETM+ | 30 | 124 |
17 | 20021013 | 92.01 | 76.07 | 62.03 | Landsat7-ETM+ | 30 | 124 |
18 | 20031101 | 92.36 | 75.65 | 61.69 | Landsat7-ETM+ | 30 | 124 |
19 | 20041002 | 90.91 | 74.83 | 60.87 | Landsat7-ETM+ | 30 | 124 |
20 | 20051208 | 91.15 | 75.06 | 60.77 | Landsat7-ETM+ | 30 | 124 |
21 | 20061008 | 91.29 | 74.44 | 60.48 | Landsat7-ETM+ | 30 | 124 |
22 | 20071128 | 91.15 | 74.18 | 60.43 | Landsat7-ETM+ | 30 | 124 |
23 | 20081130 | 90.5 | 73.82 | 59.9 | Landsat7-ETM+ | 30 | 124 |
24 | 20091016 | 90.66 | 73.82 | 60.06 | Landsat7-ETM+ | 30 | 124 |
25 | 20101104 | 90.51 | 73.77 | 59.84 | Landsat7-ETM+ | 30 | 124 |
26 | 20111006 | 91.24 | 74.18 | 60.61 | Landsat7-ETM+ | 30 | 124 |
27 | 20121008 | 90.59 | 73.77 | 60.22 | Landsat7-ETM+ | 30 | 124 |
28 | 20131019 | 90.48 | 73.77 | 59.97 | Landsat8-OLI | 30 | 124 |
29 | 20141006 | 89.63 | 73.05 | 59.52 | Landsat8-OLI | 30 | 124 |
30 | 20151009 | 88.9 | 72.42 | 58.85 | Landsat8-OLI | 30 | 124 |
31 | 20161214 | 88.84 | 72.2 | 58.77 | Landsat8-OLI | 30 | 124 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, J.; Wang, Y.; Zhou, M.; Deng, S.; Li, Z.; Wang, Z. Variations in Channel Centerline Migration Rate and Intensity of a Braided Reach in the Lower Yellow River. Remote Sens. 2021, 13, 1680. https://doi.org/10.3390/rs13091680
Xia J, Wang Y, Zhou M, Deng S, Li Z, Wang Z. Variations in Channel Centerline Migration Rate and Intensity of a Braided Reach in the Lower Yellow River. Remote Sensing. 2021; 13(9):1680. https://doi.org/10.3390/rs13091680
Chicago/Turabian StyleXia, Junqiang, Yingzhen Wang, Meirong Zhou, Shanshan Deng, Zhiwei Li, and Zenghui Wang. 2021. "Variations in Channel Centerline Migration Rate and Intensity of a Braided Reach in the Lower Yellow River" Remote Sensing 13, no. 9: 1680. https://doi.org/10.3390/rs13091680
APA StyleXia, J., Wang, Y., Zhou, M., Deng, S., Li, Z., & Wang, Z. (2021). Variations in Channel Centerline Migration Rate and Intensity of a Braided Reach in the Lower Yellow River. Remote Sensing, 13(9), 1680. https://doi.org/10.3390/rs13091680