Temporal Variability of Oceanic Mesoscale Events in the Gulf of California
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Oceanic Mesoscale Events
2.3. Oceanic Mesoscale Events and Climate Indices
3. Results
3.1. Annual Analysis (1998–2019) of the Observed Oceanic Mesoscale Events in the Gulf of California
3.2. Interannual Variability of Oceanic Mesoscale Events in the Gulf of California and Climate Indices (MEI and PDOI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oschlies, A.; Garçon, V. Eddy-induced enhancement of primary production in a model of the North Atlantic. Nature 1998, 394, 266–269. [Google Scholar] [CrossRef]
- López-Calderón, J.; Manzo-Monroy, H.; Santamaría-del-Ángel, E.; Castro, R.; González-Silvera, A.; Millán-Núñez, R. Mesoscale variability of the Mexican Tropical Pacific using TOPEX and SeaWiFS data. Cienc. Mar. 2006, 32, 539–549. [Google Scholar] [CrossRef]
- Fu, L.-L.; Chelton, D.B.; Le Traon, P.-Y.; Morrow, R. Eddy Dynamics From Satellite Altimetry. Oceanography 2010, 23, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Alpers, W.; Brandt, P.; Lazar, A.; Dagorne, D.; Sow, B.; Faye, S.; Hansen, M.W.; Rubino, A.; Poulain, P.-M.; Brehmer, P. A small-scale oceanic eddy off the coast of West Africa studied by multi-sensor satellite and surface drifter data. Remote Sens. Environ. 2013, 129, 132–143. [Google Scholar] [CrossRef]
- Cruz Gómez, R.C.; Monreal Gómez, M.A.; Nikolaevich Bulgakov, S. Efecto de los vórtices en sistemas acuáticos y su relación con la química, biología y geología. Interciencia 2008, 33, 741–746. [Google Scholar]
- Kahru, M.; Fiedler, P.C.; Gille, S.T.; Manzano, M.; Mitchell, B.G. Sea level anomalies control phytoplankton biomass in the Costa Rica Dome area. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kahru, M.; Mitchell, B.G.; Gille, S.T.; Hewes, C.D.; Holm-Hansen, O. Eddies enhance biological production in the Weddell-Scotia Confluence of the Southern Ocean. Geophys. Res. Lett. 2007, 34, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Dufois, F.; Hardman-Mountford, N.J.; Greenwood, J.; Richardson, A.J.; Feng, M.; Matear, R.J. Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing. Sci. Adv. 2016, 2, e1600282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaube, P.; Chelton, D.B.; Samelson, R.M.; Schlax, M.G.; O’Neill, L.W. Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping. J. Phys. Oceanogr. 2015, 45, 104–132. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.-R.; Chai, F.; Yuan, Y. Impact of mesoscale eddies on chlorophyll variability off the coast of Chile. PLoS ONE 2018, 13, e0203598. [Google Scholar] [CrossRef]
- Chaigneau, A.; Eldin, G.; Dewitte, B. Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Prog. Oceanogr. 2009, 83, 117–123. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.; Xiu, P.; Chai, F.; Shi, M.; Guo, P. Oceanic eddy formation and propagation southwest of Taiwan. J. Geophys. Res. Ocean. 2011, 116, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lluch-Cota, S.E.; Aragón-Noriega, E.A.; Arreguín-Sánchez, F.; Aurioles-Gamboa, D.; Jesús Bautista-Romero, J.; Brusca, R.C.; Cervantes-Duarte, R.; Cortés-Altamirano, R.; Del-Monte-Luna, P.; Esquivel-Herrera, A.; et al. The Gulf of California: Review of ecosystem status and sustainability challenges. Prog. Oceanogr. 2007, 73, 1–26. [Google Scholar] [CrossRef]
- García-Morales, R.; López-Martínez, J.; Valdez-Holguin, J.E.; Herrera-Cervantes, H.; Espinosa-Chaurand, L.D. Environmental Variability and Oceanographic Dynamics of the Central and Southern Coastal Zone of Sonora in the Gulf of California. Remote Sens. 2017, 9, 925. [Google Scholar] [CrossRef] [Green Version]
- Zamudio, L.; Hogan, P.; Metzger, E.J. Summer generation of the Southern Gulf of California eddy train. J. Geophys. Res. Ocean. 2008, 113, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Robles-Tamayo, C.M.; Valdez-Holguín, J.E.; García-Morales, R.; Figueroa-Preciado, G.; Herrera-Cervantes, H.; López-Martínez, J.; Enríquez-Ocaña, L.F. Sea Surface Temperature (SST) Variability of the Eastern Coastal Zone of the Gulf of California. Remote Sens. 2018, 10, 1434. [Google Scholar] [CrossRef] [Green Version]
- Brusca, R.; Hendrickx, M.E. Invertebrate biodiversity and conservation in the Gulf of California. In The Gulf of California Biodiversity and Conservation; Brusca, R., Ed.; The University of Arizona Press: Tucson, AZ, USA, 2010; pp. 72–95. [Google Scholar]
- Páez-Osuna, F.; Sanchez-Cabeza, J.A.; Ruiz-Fernández, A.C.; Alonso-Rodríguez, R.; Piñón-Gimate, A.; Cardoso-Mohedano, J.G.; Flores-Verdugo, F.J.; Carballo, J.L.; Cisneros-Mata, M.A.; Álvarez-Borrego, S. Environmental status of the Gulf of California: A review of responses to climate change and climate variability. Earth-Sci. Rev. 2016, 162, 253–268. [Google Scholar] [CrossRef]
- Arreguín-Sánchez, F.; Del Monte-Luna, P.; Zetina-Rejón, M.J.; Albáñez-Lucero, M.O. The Gulf of California Large Marine Ecosystem: Fisheries and other natural resources. Environ. Dev. 2017, 22, 71–77. [Google Scholar] [CrossRef]
- Melo, F.J.F.R.; Suárez-Castillo, A.; Amador-Castro, I.G.; Gastélum-Nava, E.; Espinosa-Romero, M.J.; Torre, J. Bases para el ordenamiento de la pesca artesanal con la participación del sector productivo en la Región de las Grandes Islas, Golfo de California. Cienc. Pesq. 2018, 26, 81–100. [Google Scholar]
- Lanz, E.; López-Martínez, J.; Nevárez-Martínez, M.; Dworak, J.A. Small pelagic fish catches in the Gulf of California associated with sea surface temperature and chlorophyll. Calif. Coop. Ocean. Fish. Investig. Rep. 2009, 50, 134–146. [Google Scholar]
- Early, J.J.; Samelson, R.M.; Chelton, D.B. The Evolution and Propagation of Quasigeostrophic Ocean Eddies*. J. Phys. Oceanogr. 2011, 41, 1535–1555. [Google Scholar] [CrossRef]
- Nurser, A.J.G.; Zhang, J.W. Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange. J. Geophys. Res. Ocean. 2000, 105, 21851–21868. [Google Scholar] [CrossRef]
- Contreras-Catala, F.; Sánchez-Velasco, L.; Lavín, M.F.; Godínez, V.M. Three-dimensional distribution of larval fish assemblages in an anticyclonic eddy in a semi-enclosed sea (Gulf of California). J. Plankton Res. 2012, 34, 548–562. [Google Scholar] [CrossRef] [Green Version]
- Apango-Figueroa, E.; Sánchez-Velasco, L.; Lavín, M.F.; Godínez, V.M.; Barton, E.D. Larval fish habitats in a mesoscale dipole eddy in the gulf of California. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2015, 103, 1–12. [Google Scholar] [CrossRef]
- Castelao, R.M.; Mavor, T.P.; Barth, J.A.; Breaker, L.C. Sea surface temperature fronts in the California Current System from geostationary satellite observations. J. Geophys. Res. Ocean. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Kahru, M.; Di Lorenzo, E.; Manzano-Sarabia, M.; Mitchell, B.G. Spatial and temporal statistics of sea surface temperature and chlorophyll fronts in the California Current. J. Plankton Res. 2012, 34, 749–760. [Google Scholar] [CrossRef] [Green Version]
- Castelao, R.M.; Wang, Y. Wind-driven variability in sea surface temperature front distribution in the California Current System. J. Geophys. Res. Ocean. 2014, 119, 1861–1875. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Liu, H.; Lin, P.; Yuan, Y.; Chai, F. Seasonal and Interannual Variability in the Sea Surface Temperature Front in the Eastern Pacific Ocean. J. Geophys. Res. Ocean. 2021, 126, 1–17. [Google Scholar] [CrossRef]
- McGillicuddy, D.J. Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale. Annu. Rev. Mar. Sci. 2016, 8, 125–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lluch-Cota, S.E.; Arias-Aréchiga, J.P. Sobre la importancia de considerar la existencia de centros de actividad biológica para la regionalización del océano: El caso del Golfo de California. In Centros de Actividad Biológica del Pacífico Mexicano; Lluch-Belda, D., Elourduy-Garay, J.F., Lluch-Cota, S.E., Pnce-Díaz, G., Eds.; Centro de Investigaciones Biológicas del Noroeste, SC: La Paz, Mexico, 2000; ISBN 970-18-6285-6. [Google Scholar]
- Lluch-Cota, S.E.; Parés-Sierra, A.; Magaña-Rueda, V.O.; Arreguín-Sánchez, F.; Bazzino, G.; Herrera-Cervantes, H.; Lluch-Belda, D. Changing climate in the Gulf of California. Prog. Oceanogr. 2010, 87, 114–126. [Google Scholar] [CrossRef]
- Beier, E. A Numerical Investigation of the Annual Variability in the Gulf of California. J. Phys. Oceanogr. 1997, 27, 615–632. [Google Scholar] [CrossRef]
- Gutiérrez, O.Q.; Marinone, S.G.; Parés-Sierra, A. Lagrangian surface circulation in the Gulf of California from a 3D numerical model. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, A.; Marinone, S.G.; Parés-Sierra, A. Efecto de la variabilidad espacial y temporal del viento sobre la circulación en el Golfo de California. Ciencias Mar. 2005, 31, 357–368. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, J.M.; Lavin, M.F.; Marinone, S.G. A Description of Geotrophic Gyres in the Southern Gulf of California. In Nonlinear Processes in Geophysical Fluid Dynamics; Velasco Fuentes, O.U., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 237–255. [Google Scholar]
- Lavín, M.F.; Castro, R.; Beier, E.; Godínez, V.M.; Amador, A.; Guest, P. SST, thermohaline structure, and circulation in the southern Gulf of California in June 2004 during the North American Monsoon Experiment. J. Geophys. Res. Ocean. 2009, 114. [Google Scholar] [CrossRef]
- Hofmann, E.E.; Powell, T.M. Environmental Variability Effects on Marine Fisheries: Four Case Histories. Ecol. Appl. 1998, 8, S23–S32. [Google Scholar] [CrossRef] [Green Version]
- Carrillo, L.; Lavín, M.F.; Palacios-Hernández, E. Seasonal Evolution of the Geostrophic Circulation in the Northern Gulf of California. Estuar. Coast. Shelf Sci. 2002, 54, 157–173. [Google Scholar] [CrossRef]
- Castro, R.; Lavín, M.F.; Beier, E.; Amador, A. Structure of mesoscale eddies in the southern Gulf of California during cruise NAME-2 (August 2004). In Proceedings of the AGU Spring Meeting, Boulder, CO, USA, May 2007. [Google Scholar]
- Pegau, W.S.; Boss, E.; Martínez, A. Ocean color observations of eddies during the summer in the Gulf of California. Geophys. Res. Lett. 2002, 29, 6-1–6-3. [Google Scholar] [CrossRef] [Green Version]
- Cayula, J.-F.; Cornillon, P. Edge Detection Algorithm for SST Images. J. Atmos. Ocean. Technol. 1992, 9, 67–80. [Google Scholar] [CrossRef]
- Diehl, S.F.; Budd, J.W.; Ullman, D.; Cayula, J.-F. Geographic Window Sizes Applied to Remote Sensing Sea Surface Temperature Front Detection. J. Atmos. Ocean. Technol. 2002, 19, 1105–1113. [Google Scholar] [CrossRef]
- García-Reyes, M.; Largier, J.L.; Sydeman, W.J. Synoptic-scale upwelling indices and predictions of phyto- and zooplankton populations. Prog. Oceanogr. 2014, 120, 177–188. [Google Scholar] [CrossRef]
- Dabuleviciene, T.; Kozlov, I.E.; Vaiciute, D.; Dailidiene, I. Remote Sensing of Coastal Upwelling in the South-Eastern Baltic Sea: Statistical Properties and Implications for the Coastal Environment. Remote Sens. 2018, 10, 1752. [Google Scholar] [CrossRef] [Green Version]
- Strub, P.T.; Kosro, P.M.; Huyer, A. The nature of the cold filaments in the California Current system. J. Geophys. Res. Ocean. 1991, 96, 14743–14768. [Google Scholar] [CrossRef]
- Artal, O.; Sepúlveda, H.H.; Mery, D.; Pieringer, C. Detecting and characterizing upwelling filaments in a numerical ocean model. Comput. Geosci. 2019, 122, 25–34. [Google Scholar] [CrossRef]
- Jones, B.H.; Mooers, C.N.K.; Rienecker, M.M.; Stanton, T.; Washburn, L. Chemical and biological structure and transport of a cool filament associated with a jet-eddy system off northern California in July 1986 (OPTOMA21). J. Geophys. Res. Ocean. 1991, 96, 22207–22225. [Google Scholar] [CrossRef]
- Martínez Flores, G.; Nava Sánchez, E.H.; Zaitzev, O. Teledetección de plumas de material suspendido influenciadas por escorrentía en el sur del golfo de california. Cicimar Oceánides 2011, 26, 1–18. [Google Scholar] [CrossRef]
- Fiedler, P.C.; Talley, L.D. Hydrography of the eastern tropical Pacific: A review. Prog. Oceanogr. 2006, 69, 143–180. [Google Scholar] [CrossRef]
- Portela, E.; Beier, E.; Barton, E.D.; Castro, R.; Godínez, V.; Palacios-Hernández, E.; Fiedler, P.C.; Sánchez-Velasco, L.; Trasviña, A. Water Masses and Circulation in the Tropical Pacific off Central Mexico and Surrounding Areas. J. Phys. Oceanogr. 2016, 46, 3069–3081. [Google Scholar] [CrossRef] [Green Version]
- Bodenhofer, U.; Kothmeier, A.; Hochreiter, S. APCluster: An R package for affinity propagation clustering. Bioinformatics 2011, 27, 2463–2464. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. Available online: https://cran.r-project.org/package=factoextra (accessed on 10 January 2021).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: AnRPackage for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Marinone, S.G. A three-dimensional model of the mean and seasonal circulation of the Gulf of California. J. Geophys. Res. Ocean. 2003, 108, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Calderon, J.; Martinez, A.; Gonzalez-Silvera, A.; Santamaria-Del-Angel, E.; Millan-Nuñez, R. Mesoscale eddies and wind variability in the northern Gulf of California. J. Geophys. Res. Ocean. 2008, 113, 1–13. [Google Scholar] [CrossRef]
- Lluch-Cota, S.-E. Coastal upwelling in the eastern Gulf of California. Oceanol. Acta 2000, 23, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Badan-Dangon, A.; Koblinsky, C.J.; Baumgartner, T. Spring and summer in the Gulf of California: Observations of surface thermal patterns. Oceanol. Acta 1985, 8, 13–22. [Google Scholar]
- Paden, C.A.; Abbott, M.R.; Winant, C.D. Tidal and atmospheric forcing of the upper ocean in the Gulf of California: 1. Sea surface temperature variability. J. Geophys. Res. Ocean. 1991, 96, 18337–18359. [Google Scholar] [CrossRef]
- Ripa, P. Toward a Physical Explanation of the Seasonal Dynamics and Thermodynamics of the Gulf of California. J. Phys. Oceanogr. 1997, 27, 597–614. [Google Scholar] [CrossRef]
- Lavin, M.F.; Marinone, S.G. An Overview of the Physical Oceanography of the Gulf of California. In Nonlinear Processes in Geophysical Fluid Dynamics; Velasco Fuentes, O.U., Sheinbaum, J., Ochoa, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 173–204. [Google Scholar]
- Pantoja, D.A.; Marinone, S.G.; Parés-Sierra, A.; Gómez-Valdivia, F. Modelación numérica de la hidrografía y circulación estacional y de mesoescala en el Pacífico Central Mexicano. Ciencias Mar. 2012, 38, 363–379. [Google Scholar] [CrossRef]
- Herrera-Cervantes, H.; Lluch-Cota, D.B.; Lluch-Cota, S.E.; Gutiérrez-de-Velasco, S. The ENSO signature in sea-surface temperature in the Gulf of California. J. Mar. Res. 2007, 65, 589–605. [Google Scholar] [CrossRef]
- Navarro-Olache, L.F.; Lavín, M.F.; Alvarez-Sánchez, L.G.; Zirino, A. Internal structure of SST features in the central Gulf of California. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 673–687. [Google Scholar] [CrossRef]
- Lavín, M.F.; Beier, E.; Gómez-Valdés, J.; Godínez, V.M.; García, J. On the summer poleward coastal current off SW México. Geophys. Res. Lett. 2006, 33, L02601. [Google Scholar] [CrossRef]
- Godínez, V.M.; Beier, E.; Lavín, M.F.; Kurczyn, J.A. Circulation at the entrance of the Gulf of California from satellite altimeter and hydrographic observations. J. Geophys. Res. Ocean. 2010, 115, C04007. [Google Scholar] [CrossRef]
- Gómez-Valdivia, F.; Parés-Sierra, A.; Flores-Morales, A.L. The Mexican Coastal Current: A subsurface seasonal bridge that connects the tropical and subtropical Northeastern Pacific. Cont. Shelf Res. 2015, 110, 100–107. [Google Scholar] [CrossRef]
- Lavín, M.F.; Durazo, R.; Palacios, E.; Argote, M.L.; Carrillo, L. Lagrangian Observations of the Circulation in the Northern Gulf of California. J. Phys. Oceanogr. 1997, 27, 2298–2305. [Google Scholar] [CrossRef]
- Mascarenhas, A.S., Jr.; Castro, R.; Collins, C.A.; Durazo, R. Seasonal variation of geostrophic velocity and heat flux at the entrance to the Gulf of California, Mexico. J. Geophys. Res. Ocean. 2004, 109, 07008. [Google Scholar] [CrossRef]
- Kessler, W.S. The circulation of the eastern tropical Pacific: A review. Prog. Oceanogr. 2006, 69, 181–217. [Google Scholar] [CrossRef]
- Robles-Tamayo, C.M.; García-Morales, R.; Valdez-Holguín, J.E.; Figueroa-Preciado, G.; Herrera-Cervantes, H.; López-Martínez, J.; Enríquez-Ocaña, L.F. Chlorophyll a Concentration Distribution on the Mainland Coast of the Gulf of California, Mexico. Remote Sens. 2020, 12, 1335. [Google Scholar] [CrossRef] [Green Version]
PC1 | ||
Variable | Correlation | p-Value |
MEI | 0.84 | 1.35 × 10−6 |
PDOI | 0.75 | 5.47 × 10−5 |
Cyclonic | 0.55 | 7.53 × 10−3 |
Filaments | 0.52 | 1.30 × 10−2 |
Coastal upwelling | −0.68 | 4.89 × 10−4 |
Anticyclonic | −0.70 | 3.09 × 10−4 |
PC2 | ||
Variable | Correlation | p-Value |
Filaments | 0.75 | 5.95 × 10−5 |
Cyclonic | 0.55 | 8.32 × 10−3 |
MEI | −0.46 | 3.04 × 10−2 |
PDOI | −0.54 | 9.09 × 10−3 |
PC1 | ||
Variable | Correlation | p-Value |
PDOI | 0.90 | 1.53 × 10−8 |
MEI | 0.88 | 6.69 × 10−8 |
Intrusion | 0.56 | 6.97 × 10−3 |
Cyclonic | 0.52 | 1.26 × 10−2 |
Filaments | −0.77 | 2.78 × 10−5 |
Coastal upwelling | −0.85 | 6.95 × 10−7 |
PC2 | ||
Variable | Correlation | p-Value |
Anticyclonic | 0.77 | 2.68 × 10−5 |
Intrusion | 0.52 | 1.37 × 10−3 |
Cyclonic | −0.49 | 2.01 × 10−2 |
PC1 | ||
Variable | Correlation | p-Value |
PDOI | 0.88 | 4.62 × 10−8 |
MEI | 0.85 | 7.31 × 10−7 |
Intrusion | 0.80 | 7.85 × 10−6 |
Filaments | −0.74 | 9.13 × 10−5 |
Coastal upwelling | −0.76 | 3.39 × 10−5 |
PC2 | ||
Variable | Correlation | p-Value |
Cyclonic | 0.89 | 4.03 × 10−8 |
Anticyclonic | 0.83 | 1.71 × 10−6 |
Filaments | −0.44 | 3.80 × 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farach-Espinoza, E.B.; López-Martínez, J.; García-Morales, R.; Nevárez-Martínez, M.O.; Lluch-Cota, D.B.; Ortega-García, S. Temporal Variability of Oceanic Mesoscale Events in the Gulf of California. Remote Sens. 2021, 13, 1774. https://doi.org/10.3390/rs13091774
Farach-Espinoza EB, López-Martínez J, García-Morales R, Nevárez-Martínez MO, Lluch-Cota DB, Ortega-García S. Temporal Variability of Oceanic Mesoscale Events in the Gulf of California. Remote Sensing. 2021; 13(9):1774. https://doi.org/10.3390/rs13091774
Chicago/Turabian StyleFarach-Espinoza, Edgardo Basilio, Juana López-Martínez, Ricardo García-Morales, Manuel Otilio Nevárez-Martínez, Daniel Bernardo Lluch-Cota, and Sofia Ortega-García. 2021. "Temporal Variability of Oceanic Mesoscale Events in the Gulf of California" Remote Sensing 13, no. 9: 1774. https://doi.org/10.3390/rs13091774
APA StyleFarach-Espinoza, E. B., López-Martínez, J., García-Morales, R., Nevárez-Martínez, M. O., Lluch-Cota, D. B., & Ortega-García, S. (2021). Temporal Variability of Oceanic Mesoscale Events in the Gulf of California. Remote Sensing, 13(9), 1774. https://doi.org/10.3390/rs13091774