Inventory and GLOF Susceptibility of Glacial Lakes in Hunza River Basin, Western Karakorum
Abstract
:1. Introduction
2. Study Area
2.1. Bedrock Geology and Tectonics
2.2. Geography and Glaciers
3. Materials and Methods
3.1. Satellite Data
3.2. Glacial Lake Inventory
- Lake ID, where we assigned numbers such as Lake 1 to Lake 294;
- location of lake in longitude and latitude (WGS 1984);
- elevation of lake (m);
- lake area in km2;
- type of lake: Based on damming material, mapped glacial lakes were categorized as proposed by ICIMOD (2011) [32] by visual interpretation with Google Earth imageries.
- Moraine dammed lakes are waterbodies impounded by moraine.
- Ice dammed lakes are waterbodies impounded by ice, including the lakes that form on the surface of a glacier.
- Bedrock dammed lakes are formed in the depressions eroded and impounded by flat solid rock.
- Other glacial lakes included landslide lakes and are fed by snow and glacial melt, but damming material is not part of glacial process;
- distance of glacial lake from glacier in meters;
- aspect of lake;
- type: Lakes were also categorized into glacier fed or non-glacier fed on the basis of hydrological connection with glacial water sheds;
- lake drainage type: Lakes were classified into closed lakes or drained lakes based on outflow of water examined primarily from Google Earth.
3.3. Criteria for GLOF Susceptibility
3.4. Lake Volume Estimation
3.5. GLOF Susceptibility Assessment Using AHP
3.6. Uncertainty Estimation
4. Results
4.1. Glacial Lake Inventory
4.2. Identification of Lakes as Potential GLOFs
5. Discussion
5.1. Glacial Lake Dynamics and Climate Indicators
5.2. Lakes Prone to Catastrophic Outbursts Flood
5.3. GLOF Susceptibility Assessment
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, G. Science of the Total Environment Climate Change and Associated Spatial Heterogeneity of Pakistan: Empirical Evidence Using Multidisciplinary Approach. Sci. Total Environ. 2018, 634, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Rehman, N.; Sheikh, M.M.; Khan, A.M. Climate Change Projections for Pakistan, Nepal and Bangladesh for SRES A2 and A1B Scenarios Using Outputs of 17 GCMs Used in IPCC-AR4; GCISC-RR-03; Global Change Impact Studies Centre (GCISC): Islamabad, Pakistan, 2009. [Google Scholar]
- Ali, S.; Eum, H.-I.; Cho, J.; Dan, L.; Khan, F.; Dairaku, K.; Shrestha, M.L.; Hwang, S.; Nasim, W.; Khan, I.A. Assessment of Climate Extremes in Future Projections Downscaled by Multiple Statistical Downscaling Methods over Pakistan. Atmos. Res. 2019, 222, 114–133. [Google Scholar] [CrossRef]
- Khattak, M.S.; Babel, M.S.; Sharif, M. Hydro-Meteorological Trends in the Upper Indus River Basin in Pakistan. Clim. Res. 2011, 46, 103–119. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Liu, S.; Wei, J.; Jiang, Z. Heterogeneity of Glacial Lake Expansion and Its Contrasting Signals with Climate Change in Tarim Basin, Central Asia. Environ. Earth Sci. 2016, 75, 1–11. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Wang, W.; Yang, W. An Inventory of Glacial Lakes in the Third Pole Region and Their Changes in Response to Global Warming. Glob. Planet. Chang. 2015, 131, 148–157. [Google Scholar] [CrossRef]
- Cook, S.J.; Kougkoulos, I.; Edwards, L.A.; Dortch, J.; Hoffmann, D. Glacier Change and Glacial Lake Outburst Flood Risk in the Bolivian Andes. Cryosphere 2016, 2399–2413. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A Regional-Scale Assessment of Himalayan Glacial Lake Changes Using Satellite Observations from 1990 to 2015 Remote Sensing of Environment A Regional-Scale Assessment of Himalayan Glacial Lake Changes Using Satellite Observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Baig, S.U. Spatio—Temporal Analysis of Glacial Ice Area Distribution of Hunza River Basin, Karakoram Region of Pakistan. Hydrol. Process. 2018, 32, 1491–1501. [Google Scholar] [CrossRef]
- Farooqi, A.B.; Khan, A.H.; Mir, H. Climate Change Perspective in Pakistan. Pak. J. Meteorol. 2005, 2, 11–21. [Google Scholar]
- Ives, J.D.; Shrestha, R.B.; Mool, P.K. Formation of Glacial Lakes in the Hindu Kush-Himalayas and GLOF Risk Assessment; ICIMOD Kathmandu: Lalitpur, Nepali, 2010. [Google Scholar]
- Hong-yu, D. Lake Inventory and Potentially Dangerous Glacial Lakes in the Nyang Qu Basin of China between 1970 and 2016. J. Mt. Sci. 2020, 17, 851–870. [Google Scholar]
- Cherry, J.E.; Knapp, C.; Trainor, S.; Ray, A.J.; Tedesche, M.; Walker, S. Planning for Climate Change Impacts on Hydropower in the Far North. Hydrol. Earth Syst. Sci. 2017, 21, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ding, Y.; Liu, S.; Jiang, L.; Wu, K.; Jiang, Z.; Guo, W. Changes of Glacial Lakes and Implications in Tian Shan, Central Asia, Based on Remote Sensing Data from 1990 to 2010. Environ. Res. Lett. 2013, 8, 44052. [Google Scholar] [CrossRef]
- Senese, A.; Maragno, D.; Fugazza, D.; Soncini, A.; Agata, D.; Azzoni, R.S.; Minora, U.; Ul-hassan, R.; Khan, M.A.; Rana, A.S.; et al. Inventory of Glaciers and Glacial Lakes of the Central Karakoram National Park (CKNP—Pakistan). J. Maps 2018, 14, 189–198. [Google Scholar] [CrossRef]
- Ashraf, A.; Naz, R.; Iqbal, M.B. Geomorphology Altitudinal Dynamics of Glacial Lakes under Changing Climate in the Hindu Kush, Karakoram, and Himalaya Ranges. Geomorphology 2017, 283, 72–79. [Google Scholar] [CrossRef]
- Shijin, W.; Shitai, J. Evolution and Outburst Risk Analysis of Moraine-Dammed. J. Earth Syst. Sci. 2015, 124, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Emmer, A.; Vilímek, V. New Method for Assessing the Susceptibility of Glacial Lakes to Outburst Floods in the Cordillera Blanca, Peru. Hydrol. Earth Syst. Sci. 2014, 18, 3461–3479. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.D.; Reynolds, J.M. An Overview of Glacial Hazards in the Himalayas. Quat. Int. 2000, 65, 31–47. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-Wide Glacier Mass Balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Maharjan, S.B.; Mool, P.K.; Lizong, W.; Xiao, G.; Shrestha, F.; Shrestha, R.B.; Khanal, N.R.; Bajracharya, S.R.; Joshi, S.; Shai, S. The Status of Glacial Lakes in the Hindu Kush Himalaya-ICIMOD Research Report 2018/1; International Centre for Integrated Mountain Development (ICIMOD): Lalitpur, Nepali, 2018. [Google Scholar]
- Zhang, G.; Bolch, T.; Allen, S.; Linsbauer, A.; Chen, W.; Wang, W. Glacial Lake Evolution and Glacier—Lake Interactions in the Poiqu River Basin, Central Himalaya, 1964–2017. J. Glaciol. 2019, 65, 347–365. [Google Scholar] [CrossRef] [Green Version]
- Bhambri, R.; Hewitt, K.; Kawishwar, P.; Kumar, A.; Verma, A. Ice-Dams, Outburst Floods, and Movement Heterogeneity of Glaciers, Karakoram. Glob. Planet. Change 2019, 180, 100–116. [Google Scholar] [CrossRef]
- Bolch, T.; Pieczonka, T.; Mukherjee, K.; Shea, J. Brief Communication: Glaciers in the Hunza Catchment (Karakoram) Have Been Nearly in Balance since the 1970s. Cryosphere 2017, 11, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Cheng, W.; Zhang, Y.; Wang, N.; Zhao, S.; Zhou, C.; Chen, X.; Bao, A. Changes in Inland Lakes on the Tibetan Plateau over the Past 40 Years. J. Geogr. Sci. 2016, 26, 415–438. [Google Scholar] [CrossRef] [Green Version]
- Frey, H.; Huggel, C.; Paul, F.; Haeberli, W. Automated Detection of Glacier Lakes Based on Remote Sensing in View of Assessing Associated Hazard Potentials. Grazer Schriften Geogr. Raumforsch. 2010, 45, 261–272. [Google Scholar]
- Huggel, C.; Kääb, A.; Salzmann, N.; Group, G. GIS-Based Modeling of Glacial Hazards and Their Interactions Using Landsat-TM and IKONOS Imagery. Nor. Geogr. Tidsskr.Nor. J. Geogr. 2004, 58, 61–73. [Google Scholar] [CrossRef]
- Prakash, C. Outburst Susceptibility Assessment of Moraine- Dammed Lakes in Western Himalaya Using an Analytic Hierarchy Process. Earth Surf. Process. Landforms 2017, 2321, 2306–2321. [Google Scholar] [CrossRef]
- Aggarwal, S.; Rai, S.C.; Thakur, P.K.; Emmer, A. Geomorphology Inventory and Recently Increasing GLOF Susceptibility of Glacial Lakes in Sikkim, Eastern Himalaya. Geomorphology 2017, 295, 39–54. [Google Scholar] [CrossRef]
- Anacona, P.I.; Norton, K.P.; Mackintosh, A. Moraine-Dammed Lake Failures in Patagonia and Assessment of Outburst Susceptibility in the Baker Basin Moraine-Dammed Lake Failures in Patagonia and Assessment of Outburst Susceptibility in the Baker Basin. Nat. Hazards Earth Syst. Sci. 2014. [Google Scholar] [CrossRef]
- Bolch, T.; Pieczonka, T.; Benn, D.I. Multi-Decadal Mass Loss of Glaciers in the Everest Area (Nepal Himalaya) Derived from Stereo Imagery. Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Mool, P.K.; Maskey, P.R.; Koirala, A.; Joshi, S.P.; Wu, L.; Shrestha, A.B.; Eriksson, M.; Gurung, B.; Pokharel, B.; Khanal, N.R.; et al. Glacial Lakes and Glacial Lake Outburst Floods in Nepal; ICIMOD: Lalitpur, Nepali, 2011. [Google Scholar]
- Khadka, N.; Chen, X.; Nie, Y.; Thakuri, S.; Zheng, G.; Zhang, G. Evaluation of Glacial Lake Outburst Flood Susceptibility Using Multi-Criteria Assessment Framework in Mahalangur Himalaya. Front. Earth Sci. 2021, 8, 748. [Google Scholar] [CrossRef]
- Petrov, M.A.; Sabitov, T.Y.; Tomashevskaya, I.G.; Glazirin, G.E.; Chernomorets, S.S.; Savernyuk, E.A.; Tutubalina, O.V.; Petrakov, D.A.; Sokolov, L.S.; Dokukin, M.D. Glacial Lake Inventory and Lake Outburst Potential in Uzbekistan. Sci. Total Environ. 2017, 592, 228–242. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Gao, Y.; Yang, X.; Kattel, D.B.; Plateau, T. A First-Order Method to Identify Potentially Dangerous Glacial Lakes in a Region of the Southeastern Tibetan Plateau A First-Order Method to Identify Potentially Dangerous Glacial Lakes in a Region of the Southeastern Tibetan Plateau. Mt. Res. Dev. 2011. [Google Scholar] [CrossRef]
- Zanchi, A.; Gaetani, M. The Geology of the Karakoram Range, Pakistan: The New 1: 100,000 Geological Map of Central-Western Karakoram. Ital. J. Geosci. 2011, 130, 161–262. [Google Scholar]
- Debon, F. Incipient India-Eurasia Collision and Plutonism: The Lower Cenozoic Batura Granites (Hunza Karakorum, North Pakistan). J. Geol. Soc. Lond. 1995, 152, 785–795. [Google Scholar] [CrossRef]
- Li, J.; Sheng, Y. An Automated Scheme for Glacial Lake Dynamics Mapping Using Landsat Imagery and Digital Elevation Models: A Case Study in the Himalayas. Int. J. Remote Sens. 2012, 33, 5194–5213. [Google Scholar] [CrossRef]
- Nie, Y.; Liu, Q.; Liu, S. Glacial Lake Expansion in the Central Himalayas by Landsat Images, 1990–2010. PLoS ONE 2013, 8, e83973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardelle, J.; Arnaud, Y.; Berthier, E. Contrasted Evolution of Glacial Lakes along the Hindu Kush Himalaya Mountain Range between 1990 and 2009. Glob. Planet. Chang. 2011, 75, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat Water Index Methods for Automated Water Classification in Eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Kougkoulos, I.; Cook, S.J.; Jomelli, V.; Clarke, L.; Symeonakis, E.; Dortch, J.M.; Edwards, L.A.; Merad, M. Science of the Total Environment Use of Multi-Criteria Decision Analysis to Identify Potentially Dangerous Glacial Lakes. Sci. Total Environ. 2018, 621, 1453–1466. [Google Scholar] [CrossRef]
- Chen, X.; Chen, F.; Zhou, A.; Huang, X.; Tang, L.; Wu, D.; Zhang, X.; Yu, J. Vegetation History, Climatic Changes and Indian Summer Monsoon Evolution during the Last Glaciation (36,400–13,400 Cal Yr BP) Documented by Sediments from Xingyun Lake, Yunnan, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 410, 179–189. [Google Scholar] [CrossRef]
- Wilcox, A.C.; Wade, A.A.; Evans, E.G. Drainage Events from a Glacier-Dammed Lake, Bear Glacier, Alaska: Remote Sensing and Field Observations. Geomorphology 2014, 220, 41–49. [Google Scholar] [CrossRef]
- Gruber, F.E.; Mergili, M. Regional-Scale Analysis of High-Mountain Multi-Hazard and Risk Indicators in the Pamir (Tajikistan) with GRASS GIS. Nat. Hazards Earth Syst. Sci. 2013, 13, 2779–2796. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Lohani, A.K.; Singh, R.D.; Chaudhary, A.; Thakural, L.N. Glacial Lakes and Glacial Lake Outburst Flood in a Himalayan Basin Using Remote Sensing and GIS. Nat. Hazards 2012, 62, 887–899. [Google Scholar] [CrossRef]
- Hall, D.K.; Bayr, K.J.; Schöner, W.; Bindschadler, R.A.; Chien, J.Y.L. Consideration of the Errors Inherent in Mapping Historical Glacier Positions in Austria from the Ground and Space (1893–2001). Remote Sens. Environ. 2003, 86, 566–577. [Google Scholar] [CrossRef]
- Hanshaw, M.N.; Bookhagen, B. Glacial Areas, Lake Areas, and Snow Lines from 1975 to 2012: Status of the Cordillera Vilcanota, Including the Quelccaya Ice Cap, Northern Central Andes, Peru. Cryosphere 2014, 8, 359–376. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Xie, M.; Wu, Y. Quantitative Analysis of Lake Area Variations and the Influence Factors from 1971 to 2004 in the Nam Co Basin of the Tibetan Plateau. Chin. Sci. Bull. 2010, 55, 1294–1303. [Google Scholar] [CrossRef]
- Ashraf, A.; Naz, R.; Roohi, R. Glacial Lake Outburst Flood Hazards in Hindukush, Karakoram and Himalayan Ranges of Pakistan: Implications and Risk Analysis. Geomat. Nat. Hazards Risk 2012, 5705. [Google Scholar] [CrossRef] [Green Version]
- Rashid, I.; Majeed, U.; Jan, A.; Glasser, N.F. The January 2018 to September 2019 Surge of Shisper Glacier, Pakistan, Detected from Remote Sensing Observations Geomorphology The January 2018 to September 2019 Surge of Shisper Glacier, Pakistan, Detected from Remote Sensing Observations. Geomorphology 2019, 351, 106957. [Google Scholar] [CrossRef]
- Huggel, C.; Kääb, A.; Haeberli, W.; Teysseire, P. Remote Sensing Based Assessment of Hazards from Glacier Lake Outbursts: A Case Study in the Swiss Alps. Can. Geotech. J. 2002, 39, 316–330. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Buchroithner, M.F.; Peters, J.; Baessler, M.; Bajracharya, S. Identification of Glacier Motion and Potentially Dangerous Glacial Lakes in the Mt. Everest Region/Nepal Using Spaceborne Imagery. Nat. Hazards Earth Syst. Sci. 2008, 8, 1329–1340. [Google Scholar] [CrossRef] [Green Version]
- Begam, S. Mapping of Moraine Dammed Glacial Lakes and Assessment of Their Areal Changes in the Central and Eastern Himalayas Using Satellite Data. J. Mt. Sci. 2019, 16, 77–94. [Google Scholar] [CrossRef]
- Prakash, C.; Nagarajan, R. Glacial Lake Changes and Outburst Flood Hazard in Chandra Basin, North-Western Indian Himalaya. J. Mt. Sci. 2018, 5705. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Descriptions |
---|---|
Latitude | 35°54′00″N–37°05′00″N |
Longitude | 74°02′00″E–75°48′00″E |
Total basin area | 13,730 km2 |
13,734 km2 | |
Lowest elevation | 1461 m |
Highest elevation | 7850 m |
Mean elevation | 5038.73 m |
Standard dev. | 811.17 |
Glacier coverage (%) | 28.29% (Calculated from RGI–V.6.0 dataset in this study 30%–39%° |
Total glacier area | 3886 km2 (calculated from RGI–V.6.0 dataset in this study) |
No. of glaciers | 1352 (extracted from RGI-V.6.0 dataset in this study)data |
Parameters | Critical Values | Index Values (Ci) | Method/Source | References |
---|---|---|---|---|
Area of the lake | >0.1 km2 High 0.02–0.1 km2 Medium 0.01–0.02 km2 low | 1 0.5 0.25 | Satellite Imagery | Aggarwal et al., 2017 and Bolch et al., 2011 |
Volume of the lake | 10 × 106 m3–100 × 106 m3 High 1 × 106 m3–10 × 106 m3 Medium <1 × 106 m3 low | 1 0.5 0.25 | Empirical formula | Kougkoulos et al., 2018 |
Type of the lake | Moraine dammed lake High Ice dammed lake Medium Bedrock dammed lake and Other type lake low | 1 0.5 0.25 | Google Earth | ICIMOD, 2011 |
Free board level | <5 m High 5–15 m Medium >15 m low | 1 0.5 0.25 | Google Earth/SRTM | Emmer and Vilimek, 2013 and Worni et al., 2013 |
Moraine width to height ratio | <1 High 1.0–2.0 Medium >2 low | 1 0.5 0.25 | Google Earth/SRTM | Wang et al., 2013 |
Aspect | SE, S, SW N, NE, NW, E, WE, W | 1 0.5 | SRTM | Huggel et al., 2002 |
Drainage | Closed, Open | 1 0.5 | Google Earth/Satellite Imagery | Huggel et al., 2002 |
Distance from Glacier | <80 m High 80–600 m Medium >600 m low | 1 0.5 0.25 | RGI v.6/Satellite Imagery | Wang et al., 2011 |
Slope of the lake | >20° High 3 to 20° Medium <3° low | 1 0.5 0.25 | SRTM | Wang et al., 2013 |
Lake Growth per Decade (2008–2018) | >100% High 50–100% Medium >50% low | 1 0.5 0.25 | Satellite Imagery | Bolch et al., 2011 |
Extreme Meteorological events | Frequent: High Sporadic: Medium Unlikely: Low | 1 0.5 0.25 | AIRS/TRMM | Huggel et al., 2004 |
Criteria | Area | Volume | Type | Freeboard level | W/H ratio | Aspect | Drainage | Distance from glacier | Slope | Lake growth | Climate variables |
Area | 1 | 0.50 | 3.00 | 0.33 | 3.00 | 3.00 | 0.50 | 0.50 | 1.00 | 0.20 | 0.33 |
Volume | 2 | 1 | 3.00 | 0.5 | 1.00 | 2 | 1.00 | 0.33 | 1.00 | 0.33 | 0.33 |
Type | 0.33 | 0.33 | 1 | 0.33 | 2.00 | 2 | 0.50 | 0.33 | 0.33 | 0.33 | 0.20 |
Freeboard level | 3 | 2.00 | 3.00 | 1 | 3.00 | 5.00 | 1.00 | 1.00 | 2.00 | 0.33 | 0.20 |
W/H ratio | 0.33 | 1 | 0.50 | 0.33 | 1 | 2.00 | 0.50 | 1.00 | 0.33 | 0.33 | 0.33 |
Aspect | 0.33 | 0.50 | 0.50 | 0.20 | 0.50 | 1 | 0.50 | 0.33 | 0.33 | 0.33 | 0.20 |
Drainage | 2 | 1 | 2.00 | 1.00 | 2.00 | 2.00 | 1 | 0.33 | 1.00 | 0.33 | 0.33 |
Distance from glacier | 2 | 3.00 | 3.00 | 1.00 | 1.00 | 3.00 | 3.00 | 1 | 0.50 | 0.33 | 0.33 |
Slope | 1 | 1.00 | 3.00 | 0.50 | 3.00 | 3.00 | 1.00 | 2.00 | 1 | 0.20 | 0.33 |
Lake growth | 5 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 5.00 | 1 | 1.00 |
Climate variables | 3 | 3.00 | 5.00 | 5.00 | 3.00 | 5.00 | 3.00 | 3.00 | 3.00 | 1.00 | 1 |
Parameters | Criteria | Rank |
---|---|---|
Extreme meteorological events | 0.21 | 1 |
Lake growth | 0.19 | 2 |
Freeboard level | 0.10 | 3 |
Distance from glacier | 0.10 | 4 |
Slope | 0.08 | 5 |
Drainage | 0.07 | 6 |
Area | 0.06 | 7 |
Volume | 0.06 | 8 |
Moraine width to height ratio | 0.05 | 9 |
Type of lake | 0.04 | 10 |
Aspect | 0.03 | 11 |
Lake ID | Area (km2) | Volume (m3) | Type | Freeboard (m) | Dam width to Height Ratio | Aspect | Drainage Type | Distance from Glacier (m) | Slope (°) | Lake Growth 2008–2018 (%) | Extreme Meteorological Events | Final Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lake 30 | 0.13 | 1,914,435.99 | M | 0 | 0.25 | E | D | 25.3 | 5.34 | 96.18 | High | 0.78 |
Lake 31 | 0.03 | 237,955.26 | B | NA | NA | E | C | 284.5 | 5.74 | 23.98 | High | 0.50 |
Lake 53 | 0.03 | 252,724.20 | M | 1.21 | 1.6 | S | D | 29.78 | 5.72 | 160.72 | High | 0.83 |
Lake 57 | 0.03 | 259,453.24 | I | NA | NA | SW | C | 0 | 6.25 | 269.59 | High | 0.72 |
Lake 220 | 0.05 | 620,096.11 | M | 8.23 | 3 | E | C | 2505.6 | 9.87 | 88.07 | High | 0.62 |
Lake 273 | 5.1 | 340,301,839 | O | NA | NA | W | D | 3612.5 | 14.73 | −10.51 | High | 0.51 |
Outburst susceptibility assessment of Past GLOF events | ||||||||||||
Shisper Lake | 0.3 | 6,501,922 | I | NA | NA | S | C | 0 | 22.15 | 124.84 | High | 0.94 |
Passu Lake | 0.16 | 2,588,878 | M | 0 | 0.16 | E | D | 11.8 | 5.34 | 4.88 | High | 0.69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muneeb, F.; Baig, S.U.; Khan, J.A.; Khokhar, M.F. Inventory and GLOF Susceptibility of Glacial Lakes in Hunza River Basin, Western Karakorum. Remote Sens. 2021, 13, 1794. https://doi.org/10.3390/rs13091794
Muneeb F, Baig SU, Khan JA, Khokhar MF. Inventory and GLOF Susceptibility of Glacial Lakes in Hunza River Basin, Western Karakorum. Remote Sensing. 2021; 13(9):1794. https://doi.org/10.3390/rs13091794
Chicago/Turabian StyleMuneeb, Fakhra, Siddique Ullah Baig, Junaid Aziz Khan, and Muhammad Fahim Khokhar. 2021. "Inventory and GLOF Susceptibility of Glacial Lakes in Hunza River Basin, Western Karakorum" Remote Sensing 13, no. 9: 1794. https://doi.org/10.3390/rs13091794
APA StyleMuneeb, F., Baig, S. U., Khan, J. A., & Khokhar, M. F. (2021). Inventory and GLOF Susceptibility of Glacial Lakes in Hunza River Basin, Western Karakorum. Remote Sensing, 13(9), 1794. https://doi.org/10.3390/rs13091794