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Abstract: Estimating evapotranspiration (ET), the main water output flux within basins, is an impor-
tant step in assessing hydrological changes and water availability. However, direct measurements of
ET are challenging, especially for large regions. Global products now provide gridded estimates of
ET at different temporal resolution, each with its own method of estimating ET based on various
data sources. This study investigates the differences between ERA5, GLEAM, and GLDAS datasets
of estimated ET at gridded points across Iran, and their accuracy in comparison with reference ET.
The spatial and temporal discrepancies between datasets are identified, as well as their co-variation
with forcing variables. The ET reference values used to check the accuracy of the datasets were
based on the water balance (ETwb) from Iran’s main basins, and co-variation of estimated errors
for each product with forcing drivers of ET. The results indicate that ETERA5 provides higher base
average values and lower maximum annual average values than ETGLEAM. Temporal changes at the
annual scale are similar for GLEAM, ERA5, and GLDAS datasets, but differences at seasonal and
monthly time scales are identified. Some discrepancies are also recorded in ET spatial distribution,
but generally, all datasets provide similarities, e.g., for humid regions basins. ETERA5 has a higher
correlation with available energy than available water, while ETGLEAM has higher correlation with
available water, and ETGLDAS does not correlate with none of these drivers. Based on the comparison
of ETERA5 and ETGLEAM with ETwb, both have similar errors in spatial distribution, while ETGLDAS

provided over and under estimations in northern and southern basins, respectively, compared to
them (ETERA5 and ETGLEAM). All three datasets provide better ET estimates (values closer to ETWB)
in hyper-arid and arid regions from central to eastern Iran than in the humid areas. Thus, the GLEAM,
ERA5, and GLDAS datasets are more suitable for estimating ET for arid rather than humid basins
in Iran.

Keywords: evapotranspiration; water balance; GLEAM; ERA5; GLDAS; Iran

1. Introduction

Evapotranspiration (ET) is the main water output flux from the water system [1]. The
amount of ET is regulated by available water and energy [1–3]. ET is the variable intercon-
necting land and climate, through joint hydro-climate variables. Thus, assessing changes in
ET is widely used to estimate hydrological changes [2,4]. However, direct measurements of
ET and its variations are more difficult than measuring other hydro-climate variables, such
as precipitation, temperature, and river discharge. Direct measurements of ET are possible
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for very limited and small regions, e.g., using flux towers, but ET estimations for wider
regions require different methods such as water balance and various global datasets [5].

The water balance is a widely accepted method for estimating ET over a wide area,
especially in basins with closed boundaries, and has been used in many studies [2,6].
In the water balance method, ET is calculated as ET = P-R-DS where P, R, and DS are
precipitation, runoff, and storage change, respectively, and DS is typically assumed to
be almost zero [2,7]. This assumption, however, can provide errors in ET calculations,
particularly in areas with significant withdrawals from groundwater and surface water
resources [6,8]. In this method, the spatial and temporal scale of ET is the same as for other
hydro-climate variables.

In addition to the water balance method, different global product datasets of ET,
created by improved remote sensing techniques and satellite equipment, are increasingly
available [5]. Different global product datasets of ET, generated using various efficient
remote sensing techniques and satellite equipment, are increasingly available [5]. More-
over, taking advantage of recent data-driven methods, the estimation accuracy of these
global product datasets is significantly enhanced [9]. As ET plays a pivotal role in the
land-atmosphere connection, it is essential to study and investigate various modeling
approaches in estimating ET relationship components such as soil evaporation, intercep-
tion, transpiration, and their interactions. Estimating these components is improved by
employing high-resolution datasets and updated interrogation approaches [9–11].

The main advantages of using global products for ET estimation are the high-spatial
extent with different temporal scales (e.g., daily), providing good feasibility for use at
spatial and temporal scales required for various purposes, without concerns about ground-
based data availability or the need to rely on time consuming field measurements. Each
global product dataset uses its own method for ET estimation based on different data
sources, and thus each dataset has its own specification. Models are considered to be
prognostic or diagnostic [12,13] on the basis of ET estimation. In the former case, ET is
calculated by modeling the budget components of water, requiring several input parameters
(e.g., alsike rainfall, air temperature radiation). In contrast, in the diagnostic models, remote
sensing-based observations are used with no need for prognostic calculations of water
availability. The main advantage of diagnostic models is that they need fewer prior data
about soil and vegetation characteristics for estimating balance elements of the energy.
Their disadvantage, on the other hand, is the existence of large temporal and spatial gaps
due to cloud cover and infrequent image accessibility defined by the satellite overpass
schedule [13–16]. ET estimates based on prognostic models are beneficial in applications
requiring time-continuous water budget data [12]. Additionally, before using a dataset for
a region, its spatial and temporal characteristics must be investigated [17–24]. This can be
done by comparing the dataset values with validated or measured data (reference), but it
would be difficult in the case ET due to the lack of data driven by the need for establishing
many measurement stations across large basins. Comparing and understating differences
between distinct spatio-temporal datasets is an essential strategy to use appropriate data
for ET assessments [5,17,18,24,25].

Several countries such as Iran, with extensive arid and semi-arid areas, inherently
face water shortages due to climate conditions [26], but these natural water shortages are
currently being intensified by human activities and climate change [2,7] and thus water
security is of increasing concern. To identify the different drivers for hydrological change
in arid and semi-arid areas and improve water management, ET losses are critical [6].
Accurate estimate of ET and its fluctuations can improve assessments in hydrological
monitoring programs and water management strategies, since ET is the main output flux
in dry and semi-dry regions [27,28]. Despite its importance, few studies have focused
on estimating ET at national and basin scales [29–31]. In Iran, annual-scale ET values
have been calculated for the period 1986–2016, based on the water balance equation [6].
However, no previous study has evaluated the use of global product ET datasets for Iran
and its basins despite of the growing potential of this type of datasets. To fill this research
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gap, the present study assesses the application of the GLEAM, ERA5, and GLDAS gridded
datasets of ET across Iran and its main basins, and investigates the reliability of using these
datasets in ET estimations. Differences in the datasets will be obtained by investigating
their statistical characteristics and their differences with reference values of ET and related
errors. This is done by performing a spatio-temporal assessment on ET values derived from
different gridded datasets (including GLDAS, GLEAM and ERA5) and then comparing
them with the reference ET (ET computed from water balance) in various temporal scales
during 1986–2018. Second, ET from the gridded datasets (ETGLEAM, ETERA5, and ETGLDAS)
are compared with those based on annual water balance (ETwb) at basin scale, considered
as the reference value for ET, by determining discrepancies and errors. To achieve this,
the ETERA5, ETGLEAM, and ETGLDAS values are aggregated at the basin scale in the same
period as ETwb (1986–2016). Understanding the reliability of each global dataset of ET
(ERA5, GLEAM, and GLDAS) over Iran and its main basins is helpful for water resource
management and to support policy making in order to improve water security.

2. Materials and Method

2.1. Study Area

Iran is located 25◦4’ N–39◦46’ N latitude and 44◦2’ E–63◦19’ E longitude (Figure 1a),
with access to the sea in north and south. The mean annual precipitation (P) over Iran is
311 mm, and the mean annual temperature (T) is 16.7 ◦C [6]. Based on the UNEP climate
classification [32], most parts of Iran have an arid and semi-arid climate, but some areas in
the north-west have a dry sub-humid climate, and the north has a humid climate based
on global aridity values (Figure 1b). Iran has 30 main independent basins with different
amounts of P and potential evapotranspiration (PET) based on their climate zones. In
Figure 1 each basin is represented by a specific official two-digit code. For example, basin
12 (Figure 1b) in the north of Iran has the highest mean annual precipitation (1187 mm),
whereas basin 47 located in the center has the lowest (77 mm). These basins have mean
annual PET of 787 and 1083 mm, respectively (Supplementary Table S1), about 10 times
higher than precipitation. Iran experiences high mean PET in June-August, the months
with lowest precipitation, and lowest PET during the Jan–March and October–December
when the precipitation is more than average (Figure 1c).

2.2. Methodology

2.2.1. Gridded ET Datasets

Since GLEAM, ERA5, and GLDAS gridded datasets, with distinct temporal time and
spatial resolution scales, are easily accessible for academics, they are chosen in the present
study. These cover long periods, enabling long-term evaluations in Iran in particular. How-
ever, the evaluation and comparison of the datasets are needed since the data source and
methodology are relatively different. Although in some studies GLEAM was considered
as a diagnostic method for ET estimation [33,34], other studies assume it as a prognostic
model due to ET estimates using stress factors derived from soil moisture [13,35]. The
diagnostic methods need much less knowledge of soil and vegetation characteristics (such
as root-zone depth). They depend rather on remote observations of surface states based
on sensing about humidity without overtly specifying moisture inputs into the system.
Moreover, such models may estimate fluxes over regions where existing rainfall data are
erroneous, or surface moisture is partly decoupled from local precipitation (owing to
irrigation, shallow water levels) as they do not depend on inputs of precipitation. Further,
since these models offer a robust connection to remote sensing applications established
to utilize the growing amount of accessible satellite imagery, they are becoming more
common [36]. For example, ALEXI [37,38] and MOD16 [39,40] are models for estimating
the ET based on diagnostic available models [13,33]. GLDAS, on the other hand, applies a
hybrid process of satellite- and ground-based measurements for ET estimation. In contrast,
ERA5 involves the latest reanalysis in the European Centre for Medium-Range Weather
Forecast’s family (ECMWF). The two latter models are combined as prognostic land surface
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methods [13,34,41,42]. Atmospheric forcing data (rainfall, radiation, wind, moisture, air
temperature) and variables associated with soil and vegetation (Leaf Area Index (LAI),
greenness, albedo, rooting depth, moisture-holding capacity, soil thermal and hydraulic
conductivity) are applied by prognostic models in order to solve the energy–water balance
along the soil–plant–atmosphere interface [14]. Then, in order to down-regulate ET from
a possible rate obtained by radiative and meteorological forcing drivers, soil moisture
estimates are applied. For applications requiring time-continuous water budget data,
prognostic-model-based ET estimates are advantageous. Further, such estimates are often
applied in order to provide background predictions needed by land data assimilation sys-
tems for the state observation integration (snow or soil moisture) with model-based energy
and water forecasts [14,36]. The following sub-sections present additional information
about each dataset.

Figure 1. (a) A: Digital elevation model (DEM) of Iran, location of its 30 main basins and spatial distribution of synoptic
stations, (b) climate classification of Iran based on aridity values (UNEP, 1997), and (c) mean monthly precipitation (P) and
mean potential evapotranspiration (PET) in Iran (1986–2020).

• GLEAM dataset

GLEAM (Global Land Evaporation Amsterdam Model), a land surface model, applies
satellite remote sensing forcing datasets to create a global ET dataset at a 0.25◦ × 0.25◦



Remote Sens. 2021, 13, 1816 5 of 20

latitude–longitude grid with daily temporal resolution. GLEAM estimates ET based
on satellite observations of transpiration, interception loss, bare soil evaporation, snow
sublimation, and open-water evaporation [43]. Intermediate outputs of the model used to
estimate ET include potential evaporation, root-zone soil moisture, surface soil moisture,
and evaporation.

To estimate PET using surface net radiation flux and near-surface air temperature
dataset, GLEAM model is employed the Priestley–Taylor equation [44]. Using microwave
vegetation optical depth (VOD) and root-zone soil moisture datasets, the estimated land
fractions PET, such as bare soil, tall canopy, and short canopy, are changed into actual
evaporation values based on a multiplicative evaporative stress factor. The root-zone soil
moisture values are estimated using a multi-layer running-water balance and in order to
eliminate random forcing errors, surface soil moisture data are also added to the soil profile.
In addition, interception loss is estimated separately in GLEAM using a Gash analytical
model [45]. Finally, to estimate actual ET values for water bodies and regions covered by
ice and/or snow, the adapted Priestley-Taylor equation is used. The GLEAM estimation
of actual ET values validated against eddy covariance towers worldwide and the errors
resulted through a triple-collocation analysis. The results were shown that the GLEAM
model generated more accurate evapotranspiration values than other available datasets
used to quantify the water balance over a broad range of hydrological catchments. The
GLEAM’s ET dataset was validated at 43 micrometeorological FLUXNET measurement
locations under different vegetation and climatic scenarios [46].

In this study, GLEAM version 3.3a was used to provide data for the period 1980–2018.
The recent 3.3a version of GLEAM, released in 2019, has three main updated parts:
(i) new assimilation method, (ii) new water balance method with more accurate infil-
tration, soil moisture, and vertical gradient, and (iii) more efficient evaporative stress
function [35,43,46]. The ETGLEAM dataset was downloaded in NetCDF format from
https://www.gleam.eu, accessed on 18 February 2021, [47].

• ERA5 dataset

The advanced re-analysis model ERA5 [48] was launched in 1950. ERA5 helps to
achieve a quality re-analysis of universal oceanic, atmospheric, and land surface fields
at hourly time steps, with a ~30 km horizontal resolution and 137 vertical pressure up
to 0.01 hPa from the surface up to a height of 80 km, leading to a high-quality reanalysis
of global atmospheric, oceanic, and land-surface fields at hourly time steps. In ERA5,
the surface energy partitioning is replaced the ERA-Interim by some improvements ini-
tiated in 1979 [48], including (i) improved solar irradiance forcing, greenhouse gases,
and stratospheric sulfate aerosols affecting the available surface energy, (ii) significant
high-spatial resolution, enabling the highly realistic representation of surface-atmosphere
interactions in complex lands, such as coastal or mountainous areas, and (iii) an im-
proved land surface model. The ETERA5 dataset for Iran, available for the same period as
GLEAM (1980–2018), was downloaded and extracted from Climate Data Store website
(https://cds.climate.copernicus.eu/, accessed on 10 July 2020).

• GLDAS dataset

The Ground System Information System (GLDAS) model consists of several offline
models which integrate large volume of observational data, and the Earth Information
System (LIS) with a resolution from 0.25 to 1 [49]. The GLDAS model estimates the optimal
soil and flow condition based on a combination of satellite and terrestrial data products
using advanced surface modeling and simulation techniques. The model was proposed by
four groups of scientists from the National Aeronautics and Space Administration (NASA),
the Goddard Space Flight Center (GSFC), the National Oceanic and Atmospheric Admin-
istration (NOAA), and the National Center for Environmental Prediction (NCEP). The
system simulates land surface parameters such as soil moisture and surface temperature,
and also fluxes such as evaporation and sensible heat using four land surface models

https://www.gleam.eu
https://cds.climate.copernicus.eu/
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(LSMs), including Community Land Model, NOAH, Mosaic, and Variable Infiltration
Capacity [50]. These models incorporate a large number of ground-based observations.

GLDAS provides an integrated dataset (https://ldas.gsfc.nasa.gov/gldas/, accessed
on 15 June 2020), which assimilates measurements that are based on ground and satellite
data. Using innovative data integration and complex land-surface modeling methods, it
has been developed to deliver different flux fields and land-surface states [51]. Global
fluxes are delivered with fine and coarse (0.01◦ and 0.25◦) spatial resolutions, from 3-hour
to monthly temporal scales. NASA’s Hydrology Data and Information Services Center
(http://disc.sci.gsfc.nasa.gov/hydrology, accessed on 17 June 2020) are the free sources
to download the GLDAS LSMs and detailed documentation on their forcing datasets. In
the present research, the ETGLDAS products are used at monthly temporal resolution and
a 0.25◦ × 0.25◦ spatial resolution from GLDAS 2.0. This product uses the land surface
variables including soil moisture and surface temperature, and fluxes such as precipitation
and sensible heat fluxes to simulate ET from NOAH products [50]. However, each of these
datasets has its own time scale, and we retrieved the daily datasets and aggregated them to
a monthly time scale.

2.2.2. ET Based on Water Balance

The fundamental water balance equation, as ET = P-R-DS (here, ET = Evapotran-
spiration, P = Precipitation, R = Runoff, and DS = water storage change), is a commonly
used strategy for estimating ET, which is called ET water balance (ETWB). This equation
is applicable for closed boundaries, such as basins. The annual water balance for the
30 main basins of Iran calculated by [6] is the first and only source of ET data for Iran’s
basins. To calculate the ETWB, it is necessary to determine P, R, and DS in advance. [6]
calculated P by using over 103 metrological stations. The area-weighted averaging method
was used to calculate the yearly average precipitation. To calculate R, each basin was
divided into several sub-basins based on the river network and elevation. At the outlet of
each new sub-division basin, one hydrometric station with continuous observed data over
1986–2016 was located. The R at each sub-division basin was calculated by dividing the
discharge of the related hydrometric station area. To determine the R at each main basin,
the sequence of sub-division basins was considered. Although most studies assume DS to
be neglectable [2,7], in areas with significant withdrawals from groundwater and surface
water resources this assumption can provide errors in ET calculation in regions which
ground or surface water alter significantly [8]. Thus, to determine the DS (water storage
changes), the summation of ground water and surface water storage changes instead of
assuming DS equal to zero was used. The DS time step had annual time scale and so the
computed ET had annual as well. All the data used to calculate ET using water balance
equation was based on observations. In the present study, ETwb is used as a reference when
evaluating the reliability of the investigated ET datasets.

In this study, monthly precipitation and temperature for the 30 basins of Iran are
calculated by the kriging method, using data at monthly time scale for the period 1986–
2016 from 103 synoptic stations provided by Iran’s Meteorological Organization (http:
//www.irimo.ir/, accessed on 10 April 2020) [52] (Figure 1b). All of these stations have
continuous monthly observation data. PET is determined after calculating the average
temperature for each basin using the Arora formula (Arora, 2002). Groundwater data for
each basin were provided by the Iranian Ministry of Energy (http://waterplan.moe.gov.ir/,
accessed on 5 April 2020) [53]. The GW information is reported in volume (MCM: million
cubic meters), but other hydro-climate data (P, PET, ET) are in mm. For comparison
purposes, the GW data are divided by basin area to convert the values to mm.

2.2.3. Comparison of ETERA5, ETGLEAM, and ETGLDAS

To compare ET from the global datasets ETERA5, ETGLEAM, and ETGLDAS, long-term
average values were calculated at each grid point in Iran over 1980–2018. Temporal
(monthly, seasonal, annual) variations were considered to gain a better understanding of

https://ldas.gsfc.nasa.gov/gldas/
http://disc.sci.gsfc.nasa.gov/hydrology
http://www.irimo.ir/
http://www.irimo.ir/
http://waterplan.moe.gov.ir/
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possible differences between the datasets. The difference between dataset values (ETERA5-
ETGLEAM, ETERA5-ETGLDAS, and ETGLEAM-ETGLDAS) were calculated in order to assess
spatial and temporal variations. Statistical characteristics on each season, including mean,
median, and standard deviation (SD), were used to obtain more information about differ-
ences in seasonal variations in ETERA5, ETGLEAM, and ETGLDAS. All of these comparisons
provided a better understanding of ET characteristics, variations, and differences between
the three global ET datasets over their full range values (ETERA5, ETGLEAM, and ETGLDAS).

Each product (ETERA5, ETGLEAM, and ETGLDAS) uses different sources of energy and
water (PET and P) for ET determination, which can be a source of error. Since ET is
controlled by available energy and water, PET was used in this study as a metric of available
energy. In the case of available water (input flux), both P and P + GW were considered. The
relationship between ETERA5, ETGLEAM, and ETGLDAS and PET, P, and P+GW. P and GW
were determined based on measurements at observation stations, whereas PET values were
calculated by Arora formulation (Arora, 2002) using the observed average temperature
in metrological stations (PET = 325 + 21 × T + 0.9 × T2, where T in ◦C). The Arora
formulation [54] was selected for consistency with calculation by [6].

For evaluating ETERA5, ETGLEAM, and ETGLDAS accuracy in Iran, the datasets were
compared with the ETwb reference values [6]. For this, ETERA5, ETGLEAM, and ETGLDAS
values were aggregated for each basin in the same period as ETwb (1986–2016). The
annual average for each basin was compared with ETwb as: ETwb-ETERA5, ETwb-ETGLEAM,
ETwb-ETGLDAS. Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) were
calculated for ETGLEAM, ETERA5, and ETGLDAS during the period 1986–2016, to show the
accuracy of estimation of each dataset compared with the reference value, i.e., the estimation
error related to each dataset. Both measures have been widely used to assess differences
between values in different studies [50,55–57]. MAE and RMSE are calculated as:

MAE =
∑n

i=1|yi − xi|
n

(1)

RMSE =

√
∑n

i=1(yi − xi)
2

n
(2)

where yi is the model (estimated) value, xi is the reference value, and n is the total number
of data points.

Since part of the error in the global datasets are related to the drivers of ET (available
energy and water), the co-variation of MAE for each dataset with PET and available water
fluxes (i.e., P and P+GW) was evaluated for each basin. Based on MAE and its co-variation
with ET drivers, the ETERA5, ETGLEAM, and ETGLDAS data were interpreted.

3. Result and Discussion

3.1. Spatial and Temporal Discrepancy in ETERA5, ETGLEAM, and ETGLDAS

Long-term gridded average of ETERA5, ETGLEAM, and ETGLDAS in Iran (1980–2018)
is illustrated in Figure 2a,c,e, respectively. All datasets show a wide spatial range of
ET (ETERA5: 40–1502 mm/yr, ETGLEAM: 31–1369 mm/yr, and ETGLDAS: 51–501 mm/yr),
although ETGLDAS range is much smaller compared with two other datasets. The general
spatial pattern of ET is similar between the three datasets while ETGLEAM and ETERA5 are
more alike, displaying for example, high values in the north of Iran, close to the Caspian
Sea, and at some grid points in the south close to the Persian Gulf and Oman sea (Figure 1a),
and low levels in central parts occupied by deserts. ETGLDAS shows a more extensive cover
of low values, extending over areas in the north, northwest, and western region of Iran.
The central to the south-eastern areas have a lower range of ET in all datasets, mostly in
desert-lands with arid and hyper-arid climate conditions (Figure 1b).
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Figure 2. Long term annual average (1980–2018) evapotranspiration (ET; mm/yr) and the long-
term annual average difference between datasets over Iran according to (a) the average of ETERA5,
(b) ETERA5-ETGLDAS, (c) the average of ETGLEAM, (d) ETERA5-ETGLDAS, (e) the average of ETGLDAS,
and (f) ETGLEAM-ETGLDAS.

For almost all parts of Iran, spatial discrepancies are available between ERA5 and
GLEAM datasets (Figure 2d), spanning a wide range of values (ETERA5-ETGLEAM: −864 mm
to 1343 mm). These discrepancies are not uniform and show prevalent spatial fluctuations,
but some general patterns are discernible. ETERA5 shows higher values than ETGLEAM in
south-western regions located in the Zagros mountains and also at some grid points close
to the southern coastline. In contrast, ETGLEAM indicates higher values than ETERA5 in
some northern parts and north-western regions, except for Lake Urmia (located in basin 30).
For areas located in central Iran, which are almost covered by desert, ETERA5 and ETGLEAM
show more similar values and lower than ETGLDAS (Figure 2e,f). Other regions do not
follow these general patterns. The comparison of ETGLDAS with the two other datasets
indicates higher ET on almost all parts of Iran, but in areas close to the sea (north and south
part, Figure 1a) the estimations are lower (Figure 2e,f).
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In addition to the spatial annual discrepancy between ETGLEAM, ETERA5 and ETGLDAS,
the datasets display temporal differences over months (Figure 3) and seasons (Figure 4).
The general pattern of temporal variation in three datasets (ERA5, Gleam, and GLDAS)
over months are similar (at annual scale): ET started to increase in January and reaches
maximum values in April–May. After the peak period, ET declines until reaching a
minimum at the end of September, followed by a somewhat quicker rise in November and
December for the ETGLDAS than the other two datasets (Figure 3a,c,e).

The ETERA5 has a higher base value than other datasets (minimum of ETERA5 = 12.3 mm,
Figure 3a,c,e) while ETGLEAM has higher maximum values (46.1 mm, Figure 3c). These
differences indicate that ETERA5 lower boundary is higher, and the maximum values of
ETERA5 and ETGLDAS are lower than ETGLEAM (Figure 3b,d,f). Over the periods January–
February and June–December, ETERA5 has a higher value than ETGLEAM (Figure 3b) and the
maximum differences happened in May, and reached −9.2 mm. The minimum difference
also occurred in February and corresponds to 2.3 mm. Over all the months, except February,
the ERA5 estimated ET higher than GLDAS dataset (Figure 3d). The minimum is 0.3 mm,
recorded in January, and a maximum of 9 mm occurred in August. Comparison of ET
estimations of GLEAM and GLDAS show that during the period February–October, GLEAM
provides higher values of ET (Figure 3f).

The box plots in Figure 4a show the seasonal statistical characteristics of ETGLEAM,
ETERA5, and ETGLDAS, including the median (horizontal black line), average (black point)
and SD (black box), and the range of estimated values (green dashed box). In all seasons,
ETGLEAM has a higher degree of variation (SD) than ETERA5 and ETGLDAS, except in autumn
when ETGLDAS has a higher range of values variation. In winter, the ET mean values
are very similar between all datasets (ETERA5 = 23.75 mm, ETGLDAS = 23.78 mm, and
ETGLEAM = 23.3 mm).

Figure 4b–d illustrate the seasonal discrepancies between ETGLEAM, ETERA5, and
ETGLDAS. During the winter season, ETERA5 and ETGLEAM are distributed on both sides of
the 1:1 line (Figure 4b). In spring, almost all ET points are located above the 1:1 line and
inclined to the GLEAM axis (vertical). During summer and autumn, all points are located
below the 1:1 line and inclined to the ERA5 axis (horizontal). A comparison between
ETERA5 and ETGLDAS (Figure 4c) indicates that during the spring and summer, the GLDAS
estimates higher values of ET and almost all points are located below the 1:1 line. However,
during the autumn and winter, the points are distributed on both sides of 1:1 line; thus, in
these seasons, they do not have special over/under differences. The comparison between
the distribution of estimated ETGLEAM and ETGLDAS values illustrates that GLDAS have
higher ET values, except in winter when points are distributed on both sides of 1:1 line
(Figure 4d).

3.2. Correlations of ETERA5, ETGLEAM, and ETGLDAS with Forcing Drivers

ET adjusted by available energy and water [2] to find the role of each controlling driver
in estimation of ET in the different datasets (ERA5, GLEAM, and GLDAS). It is important
to investigate the ET correlation with the forcing drivers as the ET is dominated by the
combination of climate and water inputs due to human activities [58,59]. To do that, the
co-variation of ETGLEAM, ETERA5, and ETGLDAS datasets with controlling drivers (available
energy and water) is investigated and shown in Figure 5. This investigation helps to reveal
each dataset’s limitations. To do this investigation, the PET is considered, as mentioned
before, for available energy. For available water, first P (precipitation) and second the
summation of precipitation and groundwater (P+GW) are considered, as groundwater is
an important source of water in semi-arid/arid regions [6,8].
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Figure 3. Long term (1980–2018) monthly average, maximum and minimum values of evapotranspiration (ET, mm) and
monthly average, maximum and minimum difference between datasets over Iran according to (a) the ETERA5 dataset,
(b) ETERA5–ETGLEAM, (c) the ETGLEAM dataset, (d) ETERA5–ETGLDAS, (e) the ETGLDAS dataset, and (f) ETGLEAM–ETGLDAS.
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Figure 4. Seasonal comparison of ETGLEAM, ETERA5, and ETGLDAS in Iran between 1980 and 2018. (a) Box plot of seasonal
ET values based on ERA5, GLDAS, GLEAM datasets, including average (black point), median (black line), standard
deviation (black box), and range of values (green dashed box), and average seasonal differences between (b) ETGLEAM and
ETERA5, (c) ETGLEAM and ETGLDAS, and (d) ETERA5 and ETGLDAS.
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Figure 5. Correlation of annual evapotranspiration (ET) according to the ERA5 (a,b,c), GLEAM datasets (d,e,f), and, GLDAS
datasets (g,h,i) with potential evapotranspiration (PET) (a,c,g), precipitation (P) (b,d,h), P + groundwater (GW) (c,f,i) over
1986–2016.

Figure 4a–c indicate the co-variation of ETERA5 with the PET, P and P+GW, respectively.
The ETERA5 has higher co-variation with PET than P and P+GW. Conversely, the ETGLEAM
shows lower co-variation with PET (R2 = 0.07) than P and P+GW, Figure 4d–f. The
co-variation of ETGLEAM with P is 0.26, which decreases when considering GW as an
additional water input flux (0.12) (Figure 5d–f). ETGLDAS has a low correlation with all
drivers (Figure 5g–i) comparing with the two other ET datasets (ERA5 and GLEAM). The
correlation of ETGLDAS with P is higher than other drivers, even than P+GW.

The ETGLEAM, ETERA5, and ETGLDAS have an inverse correlation with PET and a
positive correlation with input water fluxes (P and P+GW). These correlations indicate
that increasing PET causes a decrease in ET, since water limitation does not allow a higher
energy level to be more effective in improving ET. These findings are in accordance with
those from previous studies [58,60,61] that show the direct correlation between the ET
and water input flux, meaning that ET starts to increase by increasing the available water.
This confirms the available water as an effective factor in the ET across Iran. In addition,
all ET datasets have higher correlation with P than P+GW, implying that all datasets
used for estimation ET have lower consideration by groundwater changes (as depicted in
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Section 2.2.1). However, in semi-arid and arid regions groundwater are important sources
of water and has a pivotal role in ET [8].

3.3. Comparison of ETERA5, ETGLEAM, and ETGLDAS with ETwb in Iran’s Basins

Values of ETwb are available for each Iran’s basins at an annual scale for the period
1986–2016 [6]. These values, as well as the annual average ETERA5, ETGLEAM, and ETGLDAS
in the same period, aggregated per Iran’s basins, are shown in Figure 6. The ETwb indicates
a broader range of long-term average values comparing with ETGLEAM, ETERA5, and
ETGLDAS, although the minimum values of all three datasets are lower than ETwb, and the
maximum values of ETwb are higher than the maximum values of the datasets.

Figure 6. Long-term annual average evapotranspiration (ET, mm) in Iran’s basins during the period 1986–2016, according
to (a) ERA5, (b) GLEAM, (c) GLDAS, and (d) Water Balance (WB).

Comparing the results of the three global datasets (Figure 6a–c), some similarities
are apparent, e.g., high values in the northern basins (12, 14, and15) which have higher
level of average precipitation with humid climate condition, especially for ERA5 and
GLEAM, and lower values in central basins (46, 49, and 48) of Iran. These basins are
located in arid climate condition. The ETGLEAM is the dataset that has a wider spatial
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distribution of the lowest range (ET < 150 mm/yr) of ET among all of the considered ET
estimation datasets, and it includes ten basins in the center, east, and south-east of Iran
(42,44,45,46,47,48,49,51,52,53).

To estimate the discrepancies of ETERA5, ETGLEAM, and ETGLDAS with ETwb (ETwb as
reference ET) at basin-scale, their differences in the long-term annual average are calculated
as ETwb- ETERA5, ETwb- ETGLEAM, and ETwb- ETGLDAS (Figure 7). The discrepancies in the
three datasets compared with ETwb do not seem to follow any particular spatial variation
pattern. ETGLEAM and ETERA5 indicate similar discrepancies (without considering the
value of differences and just considering the over/under estimation) in some basins (e.g.,
14, 15, 47, 46, 23, 25, 27, 22, 28, 29), while in other basins (e.g., 12, 45, 43) their values
are completely different and in contrast between datasets. In northern basins (12, 14, 15)
and some southern basins (27, 28, 29), ETGLDAS indicates inverse values comparing with
ETERA5 and ETGLEAM with similar estimation (over/under) comparing with reference ET.

Figure 7. Spatial Discrepancy of annual average evapotranspiration (ET, mm) across the Iran’s 30 basins in the period
1980–2016 between different datasets and the reference values. (a) ETwb-ETERA5, (b) ETwb-ETGLEAM, and (c) ETwb-ETGLDAS.
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The lowest discrepancy values are for ETERA5, in basins 13 and 21 (1 mm), whereas in
ETGLDAS lowest discrepancies are recorded in basins 29 (1 mm), 49 (4 mm), and 24 (7 mm).
Moreover, all central basins have a discrepancy range of ±50 mm for the three datasets.
For ETERA5, basin 14 has the highest overestimation (379 mm) compared with ETwb. For
ETGLEAM, basins 11 have the highest overestimation (350 mm), while ETGLDAS in basins
14 has the biggest overestimation (711 mm), compared with ETwb. All these basins which
have highest over estimation of ET are located in northern part of Iran, with humid climate
and high level of average precipitation (P > 600 mm/yr).

In addition to assessing the discrepancy in ET datasets, it is necessary to evaluate
the error over the study period. The MAE and RMSE values of each basin dataset are
displayed in Figure 8a,b, respectively. The lowest MAE with ETERA5 is recorded in basin 46
(19 mm/yr), while in the case of ETGLEAM, basin 52 has the lowest MAE (23 mm/yr), and
the lowest MAE of ETGLDAS is for basin 46 (19 mm/yr). The highest MAE for ETERA5, and
ETGLDAS are observed in basin 14 (373 mm/yr and 710 mm/yr, respectively), and basin
11 (350 mm/yr) for ETGLEAM dataset. The largest difference between MAE of ETGLEAM,
ETERA5, and ETGLDAS is for basin 14, and the lowest is for basin 49. Generally, basins
located in arid and semi-arid, central and eastern parts of Iran had lower MAE values, and
basins located in humid northern parts had higher MAE (Figure 8).

Figure 8. Error estimation of annual average ETERA5, ETGLEAM, and ETGLDAS comparing with ETWB. (a) Mean Absolute
Error (MAE), and (b) Root Mean Square Error (RMSE).
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The lowest RMSE of ETERA5 and ETGLDAS were found in basin 46 with values of 22.9,
23.3 mm/yr, respectively. The lowest RMSE of ETGLDAS happens in basin 52 (28 mm/yr).
The highest RMSE of ETERA5 and ETGLDAS are determined in basin 14, while the highest
RMSE for ETGLEAM is observed in basin 11 (Figure 8b). Basin 14 has the most significant
difference in RMSE between ETGLEAM, ETERA5, and ETGLDAS, and basin 49 the least sig-
nificant. Generally, basins located in arid and semi-arid central and eastern parts of Iran
had lower MAE and RMSE, and basins located in humid northern parts had higher MAE
and RMSE (Figure 8). Considering the average MAE and RMSE for each dataset (Figure 8)
shows that ERA5 has a lower average error among the datasets studied.

Errors deriving from the hydro-climate variables used by each dataset are estimated
from the MAE for application of ETERA5, ETGLEAM, and ETGLDAS to Iran’s basins, and the
RMSE correlation with the ET forcing drivers are presented in Figure S1 of Supplementary
Materials. To determine the variables’ contribution, the co-variation of MAE with PET, P,
and P+GW is calculated for the three global datasets (Figure 9). As mentioned before, GW
is an important water source in semi-arid/arid regions such as in Iran and it cannot be
assumed as zero due to relevant water withdrawals during recent decades [6,62,63].

Figure 9. Co-variation of mean absolute error (MAE) of (a,b,c) ETERA5, (d,e,f) ETGLEAM, and (g,h,i) ETGLDAS with
(a,d,g) potential evapotranspiration (PET), (b,e,h) precipitation (P), and (c,f,i) P + groundwater (GW).
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The MAE, and RMSE of ETERA5 has an inverse correlation with PET and a positive
correlation with P and P+GW (Figure 9a–c, Figure S1a–c). Co-variation of MAE (ETERA5)
with P is greater than with other variables, and co-variation of MAE (ETERA5) with P and
P+GW are greater than with PET (Figure 9b,c and same for RMSE co-variation (Figure
S1a–c). This implies that most of the errors in ETERA5 derive from P values.

The MAE of ETGLEAM also shows an inverse correlation with PET and a positive
correlation with P and P+GW (Figure 9d–f), the RMSE has same correlation (Supplementary
Figure S1d–f). Co-variation of MAE, and RMSE (ETGLEAM) with PET is about twice
greater than with other variables. The co-variation of P and P+GW are similar, although
slightly higher for P. This indicates that most of the errors in ETGLEAM derive from PET,
representing available energy. The MAE, and RMSE of ETGLDAS is low and inverse while it
has a high and positive correlation with P and P+GW (Figure 9g–i, Supplementary Figure
S1g–i). Co-variations of MAE and RMSE (ETGLDAS) with P and P+GW are the same, and
they are greater than all co-variations investigated for ETERA5 and ETGLEAM (Figure 9,
Supplementary Figure S1). Thus, the major error of ETGLDAS derives from P values (input
water flux) like found by [18,64], confirming that the amount of precipitation and irrigation
are effective factors in increasing the GLDAS discrepancies. Moreover, the differences
between co-variation ETERA5, ETGLEAM, and ETGLDAS (Figure 9) with PET, P, and P+GW,
considering both MAE and RMSE values (Figure 8) indicate the high level of energy (PET),
and a lower amount of P as the causes for smaller discrepancies and errors in ET estimated
values of all datasets, which confirms that errors and discrepancies are related to how
driving forces of ET are taken into account [18]. Consequently, using these datasets for
hyper-arid and arid basins in Iran gives a lower error than using them for humid or colder
basins, agrees with the findings previous studies [33,65] that investigated ET over different
(various) climate conditions in Africa. It is necessary to consider the basin’s characteristics
once we want to select an ET dataset [5,66]. Most of Iran’s agricultural lands are located
in the north, west, and south-west of Iran’s basins [67], which showed higher MAE and
RMSE values than average. On the other hand, there is much less agricultural lands in
the central and eastern basins of Iran. Thus, these small areas may have been neglected
when the resolution of the data set is coarser, and this could be another reason for the
lower values of MAE and RMSE in semi-arid and arid areas. Therefore, this suggests that
human activities have a significant impact on ET which may not have been considered in
various models.

4. Conclusions

This study examines the differences in the ERA5, GLEAM, and GLDAS gridded ET
datasets over Iran and their spatiotemporal variations, and the accuracy of the datasets
through comparison with reference ET (ETWB, derived from water balance method). The
results show that these global datasets have similar temporal variability at the annual and
seasonal scales, but their estimates of ET vary in spatial and temporal extents. GLEAM
includes wider range of underestimation compared to the other two datasets (ERA5,
GLDAS) and GLDAS has wider overestimation compared to GLEAM and ERA5. While
the ERA5 has lower range of estimated ET values. In addition, the investigation of the
correlation between estimated ET and forcing ET factors (PET, P, and P+GW) helps to
understand the weakness points or strengths of each ET dataset for further improvements
in their methods to obtain accurate values of ET. All three datasets indicated low correlation
with storage change, which implies the weakness in estimating the ET over dry/semi dry
regions, as water input flux is important in semi-arid and arid areas.

Each global model uses its own specific procedure and input data. Hence, it is
necessary to evaluate their accuracy with the reference value of ET across Iran’s basins.
GLDAS overestimates ET values compared to ETWB in almost all basins. In the central
and eastern basins of Iran, ERA5 and GLEAM overestimated ET as well. Overall, based
on MAE and RMSE performance criteria, all ET datasets capture lees error in dryer basins
compared to basins with higher precipitation and a low level of available energy (PET).
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Thus, the datasets are more suitable for hyper-arid basins in Iran than for humid basins. In
the three datasets, the groundwater level is not an effective driver of errors, although it is
an essential variable in the water system, particularly in dry and semi-dry regions. The
result of this study can be used for developing the considered datasets to improve their
method and to increase their accuracy and get a better estimation of ET. In addition, the
result is useful for other studies about water resources in Iran, epically on a basin scale,
and to improve water management.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13091816/s1, Figure S1: Co-variation of RMSE of (a–c) ETERA5, (d–f) ETGLEAM, and (g-if)
ETGLDAS with (a,d,g) potential evapotranspiration (PET), (b,e,h) precipitation (P), and (c,f,i) P +
groundwater (GW), Table S1: Long-term annual average values of hydro-climate variables in the
main basins in Iran over the study period. PET = potential evapotranspiration, P = precipitation, over
Iran’s basin (1986–2016).
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