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Abstract: The estimation of micro-Range (m-R) is important for micro-motion feature extraction
and imaging, which provides significant supports for the classification of a precession cone-shaped
target. Under low signal-to-noise ratio (SNR) circumstances, the modified Kalman filter (MKF)
will obtain broken segments rather than complete m-R tracks due to missing trajectories, and the
performance of the MKF is restricted by unknown noise covariance. To solve these problems, a
noise-robust m-R estimation method, which combines the adaptive Kalman filter (AKF) and the
random sample consensus (RANSAC) algorithm, is proposed in this paper. The AKF, where the
noise covariance is not required for the estimation of the state vector, is applied to associate m-R
trajectories for higher estimation accuracy and lower wrong association probability. Due to missing
trajectories, several associated segments which are parts of the m-R tracks can be obtained by the
AKF. Then, the RANSAC algorithm is utilized to associate the segments and the complete m-R tracks
can be obtained. Compared with the MKF, the proposed method can obtain complete m-R tracks
instead of several segments, and avoids the influence of unknown noise covariance under low SNR
circumstances. Experimental results based on electromagnetic simulation data demonstrate that the
proposed method is more precise and robust compared with traditional methods.

Keywords: micro-range estimation; precession cone-shaped target; micro-motion dynamics; trajec-
tory association

1. Introduction

With increasing human activities in outer space, research of space targets has attracted
more and more attention [1,2]. Usually, a target, or any structure on a target, undergoes
micro-motion dynamics in addition to bulk motion. Precession is one of the typical micro-
motions for space targets, such as cone-shaped targets [3–6]. The precession dynamic
induces modulations on echoes, from which micro-Range (m-R) can be obtained [7,8]. By
estimating and analyzing scattering centers’ m-R, high-resolution radar imaging, together
with the motion and structure parameters, can be precisely acquired [5].

A scattering model of the precession cone-shaped target is proposed in [9–11]. There
are three scattering centers on the model, one is located on the smooth apex of the cone
and the other two are located at the intersection of the circular edge and the bottom plane,
respectively. There are some weak scattering centers on the cone-shaped target whose
scattering power is lower or close to noise power. Therefore, the sidelobes of dominant
scattering centers and high noise interference make it difficult for m-R estimation of weak
scattering centers in a low signal-to-noise ratio (SNR) condition.

Recently, many methods have been proposed to estimate m-R from wideband radar
echoes. These methods can be divided into two categories: image domain methods
and signal domain methods. In image domain methods, m-R curves can be extracted
from the range–time image [12–14]. In [13], the generalized Radon transform with the
CLEAN technique (GRT-CLEAN) is proposed to obtain each m-R curve, respectively, by
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searching for the peak of the parameter domain spectrogram. In the parameter domain
spectrogram, the sinusoidal curve in range–time can be mapped to a point in the parameter
domain by the generalized Radon transform (GRT) [12,13], and the CLEAN technique [15]
is applied to reduce the effect of unavoidable sidelobes in the range–time image. The
radon transform can accomplish the connection of broken segments and the selection of
overlapped segments. However, this method bears a heavy computational burden for
constructing a multidimensional parameter domain spectrogram. A improved genetic
algorithm with the CLEAN technique (GA-CLEAN) is proposed in [14], which converts
the complex imaging problem to a parametric optimization problem. Compared with the
GRT-CLEAN method, this algorithm is not required to construct the spectrogram, and has
a good convergence property. However, the limited range resolution of the range–time
image limits the estimation accuracy of image domain methods.

Signal domain methods can obtain a super-resolution range estimation to improve
estimation accuracy. There are two types of signal domain method. The first type of method
obtains a super-resolution m-R estimation result by analyzing signal subspace [16–18].
In [18], estimation of signal parameters via rotational invariance techniques (ESPRIT),
which exploits the rotational invariance of the underlying signal subspace, is applied
to estimate m-R. However, this method is ineffective since it obtains the wrong signal
subspace under high noise interference. In the second type of signal domain, trajectories of
scattering centers are extracted by the sparse signal representation algorithm, and then the
trajectory association algorithm is applied to associate the trajectories. In [19], the Kalman
filter is applied to associate trajectories. However, the Kalman filter suffers from the
intersecting trajectory and spurious trajectory problems. In [20], a modified Kalman filter
(MKF) is proposed to associate the intersecting trajectories for instantaneous frequency
estimation. In the MKF, the Kalman filter is used to associate the trajectories and the
trajectory correction strategy is applied to correct wrong association. However, since
trajectories of the weak scatter center cannot be extracted under low SNR circumstances,
several associated segments, not the complete m-R tracks, will be obtained by the MKF. In
addition, the MKF, where the process covariance initialized without any prior knowledge,
is usually inaccurate or mismatched, provides poor performance in robustness, and results
in wrong associations, especially under low SNR circumstances. Substantial association
corrections will increase the cost time.

In this paper, a trajectory association method, which combines the adaptive Kalman
filter (AKF) [21] and the random sample consensus (RANSAC) algorithm [22], is proposed
to obtain complete m-R tracks and deal with the unknown noise covariance problem in a
low SNR circumstance. In the proposed method, the AKF, which avoids the influence of the
unknown covariance matrix of process noise, is applied to associate m-R trajectories. The
AKF estimates the state vector by prior error covariance, which is directly reconstructed
through online excavating of the posterior prior error covariance sequence, instead of
needing the covariance matrix of process noise. Due to the missing trajectories, several
associated segments which are parts of the m-R tracks can be obtained. Then, the RANSAC
algorithm is utilized to associate the segments by estimating the parameters of each m-R
track model. The RANSAC algorithm finds the parametric model for each m-R track, which
contains maximum inlier trajectories, from many hypothetic parametric models, and the
complete m-R tracks can finally be obtained.

There are many variants of the RANSAC algorithm. In [23], a good sample consensus
(GOODSAC), which replaces random sampling with an assessment driven selection of
good samples, can foster precision and proper utilization of computational resources.
However, a GOODSAC relies on the priori mathematical or geometric model to produce a
list of good samples. In this paper, since there is no priori information of the mathematical
or geometric model, a GOODSAC is not applicable for the connection step. In [24], a locally
optimized RANSAC improves the performance by choosing better samples. In this paper,
all trajectories in one segment are used to form a sample set, and we perform a complete
search to test all sample sets formed by all segments to ensure precise estimation results.
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Therefore, samples do not need to be chosen, and the locally optimized RANSAC is
not applicable for the connection step. Maximum Likelihood SAC (MLESAC) utilizes
probability distribution of error by inlier and outlier to evaluate a hypothesis [25]. It adopts
the same sampling strategy as RANSAC to generate putative solutions, but chooses the
solution that maximizes the likelihood of inliers and outlier rather than the number of
inliers. In this paper, since almost all the outliers have been filtered out in the associated
step, MLESAC should provide almost the same results, with more computation burden
compared to the RANSAC algorithm. We will offer a more detailed analysis with the
comparative experiment in Section 4. In [26], the Randomized RANSAC (R-RANSAC)
performs a preliminary test to reduce time. Hypothesis evaluation is only performed when
the generated hypothesis passes the preliminary test. However, a valid hypothesis may be
mistakenly rejected by the preliminary test [27]. In summary, to obtain precise and robust
results, the RANSAC algorithm is chosen to associate the segments.

Compared with the MKF, the proposed method can obtain complete m-R tracks instead
of segments, and has a better performance on the estimation accuracy and time cost. Firstly,
by estimating the parameters of the m-R track model in the proposed method, the complete
m-R tracks rather than segments can be obtained, which overcome the shortcoming of the
MKF. Secondly, when noise covariance is inaccurate or mismatched, the proposed method
can obtain higher accuracy estimation results and decrease wrong association probability
under low SNR circumstances. Since the covariance matrix of process noise is not required
for the calculation of prior error covariance, the performance of AKF is not affected by the
unknown covariance matrix of process noise. Finally, since it decreases wrong associations
and association corrections, the AKF can significantly reduce time cost. Compared with
ESPRIT, the proposed method has better noise robustness. Compared with image domain
methods, the proposed method can obtain a super-resolution range estimation to improve
estimation accuracy. Experimental results on electromagnetic simulation data demonstrate
that the proposed method is more accurate and more time-saving compared with the
methods introduced above.

The organization of this paper is as follows. The signal model and trajectory extraction
method are provided in Section 2. The proposed association method is developed in
Section 3. The detailed experimental results, based on electromagnetic simulation data, are
given in Section 4. Section 5 concludes this paper.

2. Signal Model and Trajectory Extraction
2.1. Geometric Model and Signal Model

In this section, the geometric model and the signal model of the precession cone-
shaped target are introduced. Figure 1 shows the model in the coordinate system O−XYZ,
where the precession center of the target is located at the origin O. The target spins around
the target symmetry axis at an angular velocity ws, and rotates around the axis ΩN at
an angular velocity wc, which forms the precession motion. For simplicity, ΩN and the
radar line-of-sight (rLOS) are on the YOZ plane, and the symmetry is located at the Z-axis
initially. The precession angle between the coning axis and the symmetric axis is α, and the
initial target line-of-sight angle between the symmetric axis and the rLOS is β. The distance
between the precession center and the radar is R0.
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Figure 1. Geometric model for precession target.

In this scattering center model, the target contains three main scattering centers, where
the scattering center P2 and P3 are located at the intersection of the circular edge, and the
bottom plane and P1 is located on the smooth apex of the cone. The initial coordinate of the
scattering center P1 is p10 = (0, 0, H) and the initial coordinates of the scattering center P2
and P3 are p20 = (0, ra,−h) and p30 = (0,−ra,−h), where H denotes the distance between
the precession center and the apex of the cone, h is the distance between the precession
center and the bottom plane, and ra is the radius of the bottom plane. In this paper, we
ignore the influence of bulk motion. According to [5], the range between scattering centers
and radar can be obtained by

r1(t) = R0 − (H − h) cos γ(t)
r2(t) = R0 + h cos γ(t) + ra sin γ(t)
r3(t) = R0 + h cos γ(t)− ra sin γ(t)
cos γ(t) = cos α cos(α + β)− sin α sin(α + β) cos(wct)

(1)

where γ(t) denotes the angle between the rLOS and the symmetric axis at t time step. The
micro-Range curve of P1 is sinusoidal and the micro-Range curves of P2 and P3 can be
described as sinusoidal curves, approximately [4].

Here, the transmitted signal st(t) is the linear frequency modulated signal

st(t) = rect
(

t
Tp

)
exp(j2π fct + jπµt2) (2)

where rect(t/Tp) denotes a rectangular pulse of the pulse width TP, fc denotes the radar
center frequency, and µ denotes the linear frequency modulated coefficient with the band-
width B = µTp. According to [28], the high-frequency scattering responses of a target can
be described as a sum of responses from individual scattering centers, approximately. The
echoes of the space target in a pulse are denoted as

sr(t) =
I

∑
i=1

airect(
t− Ri

Tp
) exp(j2π fc(t− Ri) + jπu(t− Ri)

2) (3)

where I is the number of scattering centers on the target, Ri denotes the distance between
the ith scattering center and the radar which is assumed to be constant in a pulse, ai is the
corresponding scattering coefficient of the ith scattering center, and c denotes the wave
propagation velocity.
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To obtain the range profile, the “dechirp” processing technique [29] is applied to obtain

si f (t) = sr(t) · sre f (t)

=
I

∑
i=1

airect
(

t−2Ri/c
Tp

)
exp

(
−j 4πu

c

(
t− 2Rre f

c

)
R∆ − j 4π

c fcR∆ + j 4πu
c2 R2

∆

) (4)

where the reference signal sre f (t) can be written as

sre f (t) = rect(
t− 2Rre f /c

Tre f
) · exp(j2π fc(t−

2Rre f

c
) + jπu(t̂−

2Rre f

c
)

2

) (5)

In the reference signal, the relative range R∆ = Ri − Rre f , Rre f denotes reference
range, Tre f denotes the reference pulse width, which is a little greater than Tp. Usually,
u
c2 R2

∆ << fcR∆
c . Then, Equation (5) can be written as

si f (t̃) =
I

∑
i=1

airect
(

t̃− 2R∆/c
Tp

)
exp

(
−j4π

R∆

c
(
ut̃ + fc

))
(6)

where t̃ = t− 2Rre f
c , t ∈

(
0, Tp

]
. We proceed P times down-sampling in time t̃ where the

sampling interval is4t = Tp
P . Then, the discrete frequency echoes can be expressed by

si f (p) =
I

∑
i=1

ai exp(−j
4πR∆

c
fp) (7)

where fp = fc + p B
P . Let rn = n∆r, n = 1, 2, . . . , N where N∆r denotes the scene swath.

Then, the over-complete basis is constructed as follows:

X[n, p] = exp(−j4πrn fp/c) (8)

Taking into account the noise, the echoes can be rewritten as

S1×P = A1×N XN×P + noise (9)

where A = [0, 0, . . . , ai, . . . 0] denotes the sparse coefficient vector of the echoes. Obviously
A[n] = ai when Ri − Rre f = R∆ = n∆r. The interval ∆r determines the range extraction
precision which should be sufficiently small for constructing the over-complete dictionary
and the super-resolution range estimation.

2.2. Trajectory Extraction via the Sparse Signal Representation Algorithm

In this section, the orthogonal matching pursuit (OMP) algorithm, which is a kind of
sparse signal representation algorithm, is applied to obtain the m-R trajectories. According
to the signal model of the space coning-shaped target introduced above, A denotes the
scattering coefficients from the target scattering centers, and the indexes of non-zero
elements denote the ranges between scattering centers and radar. A, which is a sparse
vector, can be estimated by solving the following sparse optimization problem

Â = argmin
A
‖A‖0 s.t. ‖S− AX‖2 < δ (10)

where ‖·‖2 denotes the l2 norm, ‖·‖0 denotes the l0 norm, and δ denotes the noise power,
which can be regarded as the heat noise from the receiver and accurately obtained by
estimating the power of the non-target region in the HRRPs [30,31].

Solving Equation (10) is an NP-hard problem. The OMP algorithm can be used for
(10) to attain the approximate solution. OMP is an iterative greedy algorithm. In this
algorithm, the column of X, which is most strongly correlated with the residual, is chosen,
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and the corresponding element in Â can be calculated in the meantime. Then, the residual
is updated by subtracting the contribution of this signal component at each iteration
until residual power is lower than noise power δ. The estimated coefficient vector Â can
be obtained at last where the non-zero elements are the scattering coefficients and the
indexes of non-zero elements correspond to the range cells of scattering centers. The range
of scattering centers can be regarded as the extracted scattering center trajectories. The
extracted scattering center trajectories are shown in Figure 2.
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In the low SNR condition, the power of echoes of the weak scattering center is close
to noise power, and the inevitable estimation error makes the estimated noise power δ
larger than that of the weak scattering center. Therefore, it may be impossible to extract
the weak scattering centers and a large number of spurious trajectories are extracted
undesirably. Besides, near the intersection of m-R curves, the multiple signal components
are not separated for the limitation of resolution in the OMP algorithm. Hence, the range
estimation of scattering centers is inaccurate and the scattering centers may be missing
near the intersection.

3. Trajectory Association by Adaptive Kalman Filter

In this section, we propose an algorithm combining the AKF and the RANSAC
algorithm for associating the trajectories. The associated method can associate the trajectory
of the same scattering center, and the associated method can also filter out spurious
trajectories extracted from the noise component. After that, the track of the scattering
center, which is regarded as the m-R curve of the scattering center, can be obtained. In [20],
a trajectory association method based on the MKF is proposed to estimate the instantaneous
frequency. In MKF, the Kalman filter is applied to associate trajectories, and the trajectory
correction strategy is applied to correct wrong associations. For the association of m-R
trajectories, the missing trajectories of weak scattering centers will make the track broken.
In addition, the process noise matrix, which is initialed without any prior knowledge, is
usually inaccurate, or even mismatched. To solve these problems, the AKF, which does not
rely on prior and correct knowledge about the dynamical model, is applied to associate the
trajectories, and the broken segments are processed to obtain the complete m-R track. The
details of the proposed method are given in the following.
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Due to precession dynamics, the m-R tracks are modulated as sinusoidal. Therefore,
to describe the trajectory association problem, the discrete system with the linear Gaussian
dynamic and measurement model is proposed, which satisfies the following equation:{

Xi
k+1 = FXi

k + ni
k, ni

k ∼ N(0, Rn)

Yi
k = diag(χi

k) ∗ (CXi
k) + (E− diag(χi

k))v
i
k, vi

k ∼ N(0, Rv)
(11)

where Xi
k is the state vector of ith scattering center at time step k, ni

k is the process noise,
which is a zero-mean Gaussian random process with the covariance Rn, and F is the state
transition matrix. Additionally, the measurement Yi

k originates from ith scattering center
at time step k, where χi

k ∈ {0, 1} indicates whether the ith scattering center is measured
at time step k. χi

k = 0 indicates the scattering center is missing and the measurement is
regarded as the random noise trajectory. vi

k denotes the measurement noise, which is a
zero-mean Gaussian random process with the covariance Rv. E is the identity matrix and
C is the measurement matrix. The process noise ni

k and the measurement noise vi
k are

statistically independent.
In the range–time domain, the instantaneous m-R track can be described as a smooth

scattering center track, and the constant velocity (CV) model is adapted to describe its

shape. In the CV model, the state vector is Xi
k = [xi

k,
.
xi

k]
T

, where xi
k denotes the range and

.
xi

k =
xi

k−xi
k−1

∆t denotes the velocity, and the velocity is approximately constant in a short
time. ∆t denotes the time between two contiguous time steps. The state transition matrix

F =

[
1 0
1 1

]
and the measurement matrix C =

[
1 0
0 0

]
are assumed to be invariant

with time. The proposed method is summarized in Algorithm 1.

Algorithm 1. The associated method combining the AKF and the RANSAC algorithm.

Input: extracted trajectories Y1:T , inlier threshold τR
1: for each time step k do
2: for each track do
3: get the prediction of the state vector Xi

k|k−1 = FXi
k−1|k−1.

4: compute the inlier set J.
5: if J = ∅
6: let yi

k = CX̂i
k.

7: else
8: let yi

k = mean(J).
9: end if
10: calculate P̂i

k|k−1, X̂i
k|k and update the parameters in AKF

11: use the trajectory correction strategy if association mistakes occur.
12: end for
13: end for
14: use the associated segments to estimate the parameters of each m-R model by the RANSAC
algorithm

For each track, the AKF is applied to associate the trajectory at each time step. Firstly,
the one-step Kalman predictor is used to obtain the prediction of the state vector Xi

k at
k time step (Line 3):

Xi
k|k−1 = FXi

k−1|k−1 (12)

Then, for filtering out the spurious trajectories and finding out the associated trajecto-
ries, the trajectories in the associated inlier set J are regarded as scattering center trajectories.
The associated inlier set can be obtained by

J =

{
ykj|
∣∣∣ykj − x̂i

k

∣∣∣ < τr

2
,

∣∣∣∣∣ykj − x̂i
k

4t
− .̂

x
i
k

∣∣∣∣∣ < τv

}
(13)
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where ykj denotes the jth extracted trajectory at the time step k. τr and τv denote the inlier
criterion of range and velocity, respectively. For the limitation of radar range resolution, the
extracted trajectories in the prediction range cell are regarded as the trajectories of the track.
Therefore, let τr equal to the range resolution of radar and let τv = τr/∆t. The criterion of
velocity can avoid the association error at the intersection of two tracks, where the states of
two tracks are close, but the velocities of two tracks have a considerable difference. Due
to the influence of the spurious trajectories, there may be more than one trajectory in the
inlier set. If J is not empty, the mean value of the inlier set is regarded as the range of
the corresponding scattering center. If J is empty, the scattering center is regarded to be
missing at this time step where χi

k = 0 and the predicted range Cx̂i
k is regarded as the range

of the missing trajectory (Line 4–9).
Next, update the state vector using the extracted trajectory by the AKF at the current

time step. In the AKF, the corresponding prior covariance is replaced by the prior error
covariance through the online excavating posterior sequence. P̂i

k|k−1, which denotes the
estimation of the prior error covariance, can be obtained by

P̂i
k|k−1 = P̂i

k−1|k−2 + ∆P̂i∗
k−1 (14)

∆P̂i∗
k−1 =

(
∆X̂i

k−1∆X̂iT
k−1 − Ki

k−1CP̂i
k−1|k−2

)/
(k− 1) (15)

∆X̂i
k−1 = X̂i

k|k − X̂i
k|k−1 (16)

where Ki
k−1 denotes the Kalman gain matrix for i the track at k − 1 time step and X̂i

k|k
denotes the posterior estimate for state Xi

k. P̂i
k|k−1 is constructed by P̂i

k−1|k−2, which denotes
the estimation of prior error covariance at the previous time step. It is obvious that the
calculation of P̂i

k|k−1 does not rely on process noise covariance Rn. Therefore, the AKF can
eliminate the influence of the unknown covariance matrix of process noise. The parameters
of the AKF at the time step k are updated as follows (Line 10):

X̂i
k|k = X̂i

k|k−1 + Ki
k

(
yi

k − CX̂i
k|k−1

)
(17)

Ki
k = P̂i

k|k−1CT
(

CP̂i
k|k−1CT + Rv

)−1
(18)

After the AKF associates the trajectories, we use the trajectory correction strategy
if association mistakes occur (Line 11), which is detailed in [20]. Repeat the associated
step by AKF (Line 3–10) and the trajectory correction strategy (Line 11) in the dwell time
and, then, several m-R segments can be obtained due to the missing trajectories. The
RANSAC algorithm is utilized to associate the segments by estimating the parameters of
each m-R track model (Line 14). The RANSAC algorithm is a technique that estimates the
parameters of a single from a batch of cluttered measurements. Here, we provide a simple
introduction to this algorithm. The RANSAC algorithm consists of two repeated steps:
a hypothesis generation step and a hypothesis validation step. During the hypothesis
generation step, a minimum subset is used to form a hypothesis. Define a minimum subset
Z0 as Z0 ⊂ Z, where Z is the set of cluttered measurements. The measurements in Z0 can
generate a hypothesis model f (Γ), where Γ denotes the parameters of this model. During
the hypothesis validation step, the inlier number of the hypothesis model is quantified:

χ= num({ |z− f (Γ)| < τR, z ∈ Z}) (19)

where z denotes the element in the set Z and τR denotes the inlier threshold. Repeat the
two steps several times and find the best model f (Γmax) which contains the most inliers
from the generated hypothesis models.

We set the inlier threshold τR = τr/2 and set the hypothesis model f (Γ) as a sinusoidal
function, since the m-R track is modelled as sinusoidal. Since the trajectories in the segment
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must be the inliers of the hypothesis model of this segment due to the association by the
AKF, each hypothesis model can be directly established by each segment. Here, we use the
cftool MATLAB toolbox to estimate sinusoidal parameters for each segment. The quantity
of segments is far less than that of trajectories, so that the proposed method generates a few
hypothesis models and takes a short amount of time. To ensure precise estimation results,
we calculate the inliers of every hypothesis model and use all trajectories of one segment
as a set of samples.

4. Experimental Results

In this section, we use the electromagnetic computation data of the cone-shaped
target in the comparison experiment to analyze the robustness of the proposed algorithm,
and show the estimation and computational advantages compared with conventional
algorithms. The electromagnetic computation data were obtained by FEKO using the
physical optics (PO) method. The cone-shaped target in the experiments is shown in
Figure 1. With reference to other papers [9,10,19,20], we set simulation parameters of the
target model and the signal model. The basic simulation parameters are listed in Table 1.
The time cost in Experiment 1 and Experiment 2 of the original paper was the executed
time from the beginning of processing the echo data to obtaining the m-R estimation result.
Our experiments were executed on an Intel Core CPU i7-7700 @ 3.60 GHz, and the RAM
was 8 GB. The software platforms were Windows 10 and MATLAB 2017. In aiming to show
good performance in solving the missing trajectory and trajectory intersection problems,
we chose two sets of data under different circumstances, where β was 120 and 110 degrees,
respectively, in Experiment 1 and Experiment 2. When β = 120◦, the power scattered by
the weak scattering center P1 was far less than that scattered by the other scattering centers.
Therefore, a large number of missing trajectories and spurious trajectories existed, which
made the track broken. When β = 110◦, the trajectory of scattering center P1 intersected
with that of scattering center P2, and the intersection made it difficult to associate. We
compared the performance of the proposed method with the existing methods, such as
the MKF [20], the RANSAC algorithm [22], the Kalman filter [19], the ESPRIT [18], the
GRT-CLEAN method [13], and the GA-CLEAN method [14]. For the RANSAC algorithm,
we used the RANSAC algorithm to process the m-R trajectories directly instead of the
associated segments. In Experiment 3, we discuss the influence of different process noise
covariance matrixes on the estimation accuracy of the AKF and the MKF. In Experiment 4,
we compared the performance of the RANSAC and other variants.

Table 1. The basic simulation parameters.

Parameter Value Parameter Value

Radar carrier frequency fc 10 GHz Precession center
height h 1 m

Pulse repletion frequency pr f 500 Hz Precession angle α 5◦

Bandwidth B 4 GHz Precession rate wc 4πrad/s
Target height H 3 m Frequency step ∆ f 20 MHz

Target bottom radius ra 1 m

Experiment 1: In this experiment, we set the target line-of-sight angle β = 120◦. The power
scattered by the weak scattering center P1 was far less than that scattered by the other scattering
centers.

Figure 3a shows the range–time image when SNR = 10 dB and the dwell time is
0.5 seconds. In this experiment, the scattering coefficients could be roughly estimated by
the OMP algorithm, and the normalized estimated scattering coefficients were a1 = 0.09,
a2 = 1 and a3 = 0.30. Obviously, the echo energy scattered by P3 was about 100 times than
that scattered by the weak scattering center P1. Figure 3b shows the trajectory extraction
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result by the OMP algorithm. We could find that there were many missing trajectories
when the dwell time was 0.25 s, making the m-R track of P1 disconnected.
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Figure 3c,d shows the associated segments obtained by the AKF and the MKF, respec-
tively. In these figures, curves in different colors represent different segments. The missing
trajectory and the inaccurate estimation make the inlier radio decrease, and the new track
is created by the RANSAC algorithm. Therefore, the track of P1 obtained by the MKF is
broken into two segments. Figure 4a–f shows the estimated range results and true ranges
for different methods, respectively. The proposed method and the RANSAC algorithm can
obtain accurate m-R estimation. ESPRIT cannot obtain an accurate m-R estimation of the
weak scattering center P1 under a low SNR circumstance. The wrong associations by the
Kalman filter occur when the missing trajectories exist. The GRT-CLEAN and GA-CLEAN
algorithms can obtain complete and accurate m-R curves, but they are restricted by the
range resolution of the m-R image.
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To evaluate the estimation accuracy and time cost of these methods, the mean variation
of estimated root-mean-square errors (MRMSEs) with different SNRs and the time cost for
different methods are given in Table 2. The MRMSE can be obtained by

MRMSE = mean
i

√√√√(
N

∑
i=0

(
ri

t − r̂i
t
)2
)/

N (20)

where ri
t denotes the true m-R of scatterer Pi at t time step and r̂i

t denotes the estimated m-R
of scatterer Pi at t time step. Since the MRMSE of the proposed method and the MKF are
approximate, we use the relative MRMSE and relative time cost to analyze the performance.
The relative MRMSE can be calculated by RMKF− RAKF, where R denotes the MRMSE, and
relative time cost can be calculated by TMKF − TAKF, where T denotes time cost. When the
relative MRMSE and the relative time cost are positive, the proposed method has a better
performance in estimation accuracy and time cost. Since the MKF cannot obtain a complete
track, we use the RANSAC algorithm to process the segments and obtain the complete
m-R tracks for the calculation of the relative MRMSE and time cost. In Table 2, results
underlined indicate that the estimation results are the most accurate, or time costs are the
lowest, and results in bold indicate that the estimation results are the second-most accurate,
or the time costs are the lowest. ESPRIT cannot estimate the m-R of weak scattering center,
so that we do not discuss this method in the table.

Table 2. MRMSE and time cost of m-R estimation when β = 120◦. Results underlined indicate that the estimation results
are the most accurate or time costs are the lowest, and results in bold indicate that the estimation results are the second-most
accurate or the time costs are the lowest.

9 dB 10 dB 11 dB 12 dB 15 dB 20 dB

MRMSE(m)

KALMAN 0.2377 0.2023 0.1962 0.1939 0.0374 0.0051

RANSAC 0.0053 0.0053 0.0053 0.0052 0.0052 0.0050

GRT-CLEAN 0.0236 0.0236 0.0235 0.0235 0.0235 0.0235

GA-CLEAN 0.0239 0.0238 0.0238 0.0238 0.0238 0.0237

AKF 0.0055 0.0054 5.4654 × 10−3 5.4306 × 10−3 5.3624 × 10−3 5.3401 × 10−3

MKF 0.0193 0.0056 5.4865 × 10−3 5.4426 × 10−3 5.3652 × 10−3 5.3429 × 10−3

RMKF − RAKF(mm) 13.856 0.2089 0.0211 0.0120 0.0028 0.0028

Time cost(s)

KALMAN 0.0304 0.0328 0.0296 0.0300 0.0295 0.0329

RANSAC 746.75 756.49 742.16 736.25 755.67 724.02

GRT-CLEAN 56.022 55.987 55.951 55.847 56.006 55.919

GA-CLEAN 19.063 19.092 19.110 19.053 19.008 19.028

AKF 42.171 10.933 5.4887 2.9378 2.4502 2.4552

MKF 61.758 21.7638 6.8817 3.0055 2.4649 2.4000

TMKF − TAKF(s) 19.5868 10.8309 1.3930 0.0677 0.0147 −0.0552

It is evident that the Kalman filter takes the least time, but its noise robustness is poor.
Under the circumstance when SNR ≤ 15 dB, it cannot associate trajectories correctly due
to the influence of missing trajectories and spurious trajectories. GRT-CLEAN and GA-
CLEAN algorithms obtain less accurate estimation results for relying on the resolution of
the range–time image. The RANSAC can obtain the most accurate results, but the time cost
of the RANSAC is far more than that of the proposed method. The proposed method can
effectively deal with the missing trajectories and spurious trajectories problem, especially
in the case of a low signal-to-noise ratio. In Table 2, the proposed method has a lower
MRMSE than the MKF, especially under low SNR circumstances. When the SNR ≤ 15 dB,
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the proposed method cost less time than the MKF. The proposed method can obtain a
higher accuracy estimation and decline the wrong association probability, and the number
of association corrections by the RANSAC algorithm is decreased, which significantly
reduces time cost. When SNR > 15 dB, both the MKF and AKF can avoid the existence of
the wrong association, and the calculation of prior error covariance in AKF brings a little
more computational burden compared with the error covariance matrix estimation step
in MKF. Therefore, the proposed method costs a little more time than the MKF. Overall,
the proposed method has a better performance in both accuracy and time cost than other
methods.

Experiment 2: In this experiment, we set the target line-of-sight angle β = 110◦. The trajectory of
scattering center P1 intersected with that of scattering center P2.

Under the condition where the initial target line-of-sight angle is 110◦, the range
between the scattering center P1 and the radar along the rLOS is close to that between the
scattering center P2, and the radar which makes the m-R tracks of two scattering centers
intersected. Figure 5a shows the range–time image when SNR = 10 dB and the dwell time
was 0.5 s. Figure 5b shows the trajectory extraction result by the OMP algorithm. The
intersection makes it difficult to associate the trajectories. Figure 5c,d shows the associated
segments obtained by the AKF and the MKF, respectively. Obviously, the intersection
increased the wrong association probability and made the track broken.
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Figure 6a–f shows the estimated m-R results and the true m-R curves for different
methods. It is obvious that there was a wrong association obtained by the Kalman filter
near the intersection, which made the trajectory of the scattering center P1 associate with
the trajectory of the scattering center P2. In the meantime, the trajectory of the scattering
center P2 was shaken near the intersection because of the influence of spurious trajectories.
The proposed method and the RANSAC algorithm could obtain accurate m-R estimation.
The ESPRIT algorithm could not obtain the correct estimation results for the influence of
the weak signal power of scattering center P1 and P2. The Kalman filter obtained the wrong
association near the intersection. The GRT-CLEAN and GA-CLEAN algorithms could
obtain complete and accurate m-R curves, but they were restricted by the range resolution
of the m-R image.
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In Table 3, results underlined indicate that the estimation results are the most accurate
or the time costs are the lowest, and results in bold indicate that the estimation results are
the second-most accurate or the time costs are the lowest. As is shown in this table, the
Kalman filter cannot correctly associate the trajectories near the intersections in all cases of
SNR, even if it costs the least time. The GRT-CLEAN and the GA-CLEAN can extract m-R
curves, but the low range resolution of the range–time image will result in poor accuracy
of parameter searching, and m-R estimation accuracy will be worse. The OMP algorithm
in the proposed method can obtain a super-resolution m-R estimation result. Therefore,
the estimation accuracy of GRT-CLEAN and the GA-CLEAN is not as good as that of our
algorithm. The time cost of the RANSAC is far more than that of the proposed method. The
AKF has a better performance on estimation accuracy than the MKF, and the AKF cost less
time in a low SNR circumstance. When the signal-to-noise ratio is reduced, the proposed
method guarantees accurate estimation results while costing only a small amount of time.
In summary, its performance for estimation and time cost is significantly better than other
traditional methods.

Table 3. MRMSE and time cost of m-R estimation when β = 110◦. Results underlined indicate that the estimation results are
the most accurate or the time costs are the lowest, and results in bold indicate that the estimation results are the sec-ond-most
accurate or the time costs are the lowest.

9 dB 10 dB 11 dB 12 dB 15 dB 20 dB

MRMSE(m)

KALMAN 0.9567 0.8315 0.4360 0.1600 0.0750 0.0715

RANSAC 0.0026 0.0024 0.0023 0.0023 0.0023 0.0023

GRT-CLEAN 0.0271 0.0271 0.0271 0.0270 0.0270 0.0270

GA-CLEAN 0.0259 0.0259 0.0256 0.0257 0.0254 0.0250

AKF 0.0034 0.0034 0.0034 0.0032 0.0031 3.1952 × 10−3

MKF 0.0442 0.0151 0.0037 0.0034 0.0032 3.2375 × 10−3

RMKF − RAKF(mm) 40.775 11.660 0.3432 0.2241 0.0572 0.0423

Time cost(s)

KALMAN 0.0297 0.0301 0.0293 0.0302 0.0323 0.0294

RANSAC 771.16 769.49 764.25 789.23 775.22 762.21

GRT-CLEAN 55.642 55.666 55.549 55.625 55.632 55.652

GA-CLEAN 19.146 19.145 19.079 19.085 19.069 19.062

AKF 57.814 20.251 11.119 9.7701 8.3932 8.3796

MKF 78.855 29.787 12.588 10.314 8.3570 8.2540

TMKF − TAKF(s) 21.041 9.5364 1.4689 0.5443 −0.0362 −0.1256

Experiment 3: The influence of different process noise covariance matrixes on the estimation
accuracy of the AKF and the MKF.

In this experiment, the SNR of echoes were set to be 10 dB and the initial target line-
of-sight angle was β = 120◦. The process noise covariance matrixes were Rn= diag(q, q),
where q denotes the diagonal element of the Rn and q is set to range from 0.1 to 1. We used
two sets of data, where the precession rates were set to be wc = 4πrad/s and wc = 6πrad/s.
Figure 7 shows the range–time image when the precession rates were wc = 4πrad/s and
wc = 6πrad/s, respectively. We found that the m-R tracks on wc = 4πrad/s were smoother
than those on wc = 6πrad/s. Therefore, the theoretical diagonal element of the process
noise covariance matrix should be larger when wc = 6πrad/s. Figure 8 shows the MRMSE
of the AKF and MKF with different process noise covariance matrixes, where the blue
markers show the MRMSE of the MKF and the red markers show the MRMSE of the AKF.
In Figure 8a, the MRMSE is smallest when the noise variance of MKF is Rn= diag(0.6, 0.6),
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indicating that q = 0.6 is closest to the theoretical noise variance when wc = 4πrad/s.
Since the calculation of the AKF does not need the noise variance, the MRMSEs with
different process noise covariance are the same, and the MRMSE of the AKF is lower than
that of the MKF. In Figure 8b, the MRMSE is the smallest when the noise variance of MKF
is Rn= diag(0.7, 0.7), indicating that q = 0.7 is closest to the theoretical noise variance
when wc = 6πrad/s, which is a little larger than when wc = 4πrad/s. The experimental
results demonstrate that the AKF can obtain higher estimation accuracy than the MKF with
different process noise covariance matrixes.
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Experiment 4: In this experiment, we compared the performance of the RANSAC and other variants.

In this experiment, the initial target line-of-sight angle was β = 120◦. Other parameters
are listed in Table 1 of the original paper. We used the AKF to obtain the associated segments
and used the RANSAC, the MLESAC, and the R-RANSAC to connect the segments,
respectively. As the GOODSAC and the locally optimized RANSAC were not are not
applicable, we did not discuss and compare these two methods in this experiment. The
MRMSE and time cost are provided in Table 4:
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Table 4. MRMSE and time cost of the RANSAC, the MLESAC, and the R-RANSAC.

9 dB 10 dB 11 dB 12 dB 15 dB 20 dB

MRMSE(m)

MLESAC 0.0054 0.0054 0.0053 0.0053 0.0053 0.0053

RANSAC 0.0054 0.0054 0.0053 0.0053 0.0053 0.0053

R-RANSAC 0.0078 0.0061 0.0053 0.0053 0.0053 0.0053

RRANSAC − RMLESAC(m) 0.742 × 10−6 0.004 × 10−6 0.001 × 10−6 0 0 0

Time cost(s)

MLESAC 3.5614 3.2568 1.7424 1.5443 1.5203 1.1494

RANSAC 3.2700 3.1342 1.6425 1.4562 1.4269 1.0216

R-RANSAC 3.1277 3.0191 1.5948 1.4259 1.4176 1.0077

As is shown in Table 4, the MMRSE of the MLESAC and the RANSAC is the same
because almost all the outliers were filtered out in the associated step by the AKF. However,
the time cost of MLESAC is more than that of RANSAC for the calculation of probability
distribution of error by inlier and outlier. The R-RANSAC costs less time because of the
preliminary test. However, the test may reject the inlier segment, which makes the method
less robust. In the proposed method, the cost time of the associated step of the AKF is far
more than that of the connected step by RANSAC. To obtain precise and robust results, the
RANSAC algorithm is chosen to associate the segments.

5. Conclusions

In this paper, we proposed a micro-Range estimation method combining the AKF
and the RANSAC algorithm for a cone-shaped space target. To solve the unknown noise
covariance problem and obtain complete m-R tracks in a low SNR circumstance, the AKF,
which does not rely on the covariance matrix of process noise, was applied to associate
the trajectories, and the RANSAC algorithm was used to obtain the complete m-R tracks
by estimating the parameters of each m-R track. Compared with the MKF, the proposed
method could obtain more accurate estimation results and complete m-R tracks. Compared
with the Kalman filter and ESPRIT, the proposed method had a better performance on noise
robustness and estimation accuracy. Compared with the GRT-CLEAN and GA-CLEAN
methods, the proposed method had a fewer computational burden and obtained more
precise estimation results. The proposed method can be applied in post-processing of ISAR
image formation to improve precision and robustness. Its application in the imaging of
a cone-shaped target and other space targets, such as rotating space debris, is part of our
future research.
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