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Abstract: Data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission can
be used to monitor changes in terrestrial water storage (TWS). In this study, we exploit the TWS
observations from a new temporal gravity field model, Tongji-Grace2018, which was developed
using an optimized short-arc approach at Tongji University. We analyzed the changes in the TWS and
groundwater storage (GWS) in each of the nine major river basins of the Chinese mainland from April
2002 to August 2016, using Tongji-Grace2018, the Global Land Data Assimilation System (GLDAS)
hydrological model, in situ observations, and additional auxiliary data (such as precipitation and
temperature). Our results indicate that the TWS of the Songliao, Yangtze, Pearl, and Southeastern
River Basins are all increasing, with the most drastic TWS growth occurring in the Southeastern River
Basin. The TWS of the Yellow, Haihe, Huaihe, and Southwestern River Basins are all decreasing, with
the most drastic TWS loss occurring in the Haihe River Basin. The Continental River Basin TWS has
remained largely unchanged over time. With the exception of the Songliao and Pearl River Basins,
the GWS results produced by the Tongji-Grace2018 model are consistent with the in situ observations
of these basins. The correlation coefficients for the Tongji-Grace2018 model results and the in situ
observations for the Yellow, Huaihe, Yangtze, Southwestern, and Continental River Basins are higher
than 0.710. Overall, the GWS results for the Songliao, Yellow, Haihe, Huaihe, Southwestern, and
Continental River Basins all exhibit a downward trend, with the most severe groundwater loss
occurring in the Haihe and Huaihe River Basins. However, the Yangtze and Southeastern River
Basins both have upward-trending modeled and measured GWS values. This study demonstrates
the effectiveness of the Tongji-Grace2018 model for the reliable estimation of TWS and GWS changes
on the Chinese mainland, and may contribute to the management of available water resources.

Keywords: GRACE; terrestrial hydrology; groundwater storage; the nine major river basins of
Chinese mainland; in situ observations

1. Introduction

The GRACE satellite mission, which was jointly developed by the National Aeronau-
tics and Space Administration (NASA) and the German Space Flight Center (GSFC), was
successfully launched in March 2002 [1]. As of October of 2017, GRACE satellites have
collected ~15 years of observational data, which provides important data support for moni-
toring large-scale mass changes in various surface features. Previous studies have used
GRACE observational data as constraints in model inversions of temporal gravity fields.
Research groups working at locations such as the Center for Space Research (CSR) of the
University of Texas at Austin, Geo Forschungs Zentrum Potsdam (GFZ), NASA Jet Propul-
sion Laboratory (JPL), and Graz University of Technology (UT Graz) have all employed
a dynamic approach to the gravity field inversion [2,3]. Using a modified short-arc ap-
proach, Chen et al. produced the Tongji-GRACE01, Tongji-GRACE02, and Tongji-Grace2018
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models [4–6]. For the HUST-Grace2016 model, the group at the Huazhong University of
Science and Technology relied on a modified dynamic approach [7]. These temporal gravity
field models are available on the ICGEM website [8]. Additionally, researchers at CSR
and JPL developed GRACE mascon solutions that are based on the mass concentration
method [9,10]. Due to the availability of the GRACE satellites to monitor changes in surfi-
cial features at a spatial resolution of ~300 km and at an equivalent water height (EWH) of
1 cm, analyzing data from GRACE satellites has become one of the most effective methods
of monitoring macro-scale TWS changes. Some of the most common methods of analyzing
water storage changes include in situ observations, infrared or microwave remote sensing
satellite data, and numerical simulations [11–13]. However, because there are very few
in situ observations, it is challenging to continuously monitor the water storage changes
in a large area. Remote sensing satellite images only capture information about storage
changes in surficial water bodies, and do not provide any insight into storage changes in
subterranean water bodies. Furthermore, numerical simulations are limited by the accuracy
of the model parameters, which can be difficult to constrain. Using GRACE satellite data
to monitor TWS changes is advantageous because this method addresses some of these
shortcomings and limitations.

Because GRACE has observed TWS, including groundwater, soil moisture, and snow
water, it is possible to estimate groundwater variations using other climate models and/or
in situ observations for soil moisture and snow water. GRACE products combined with
other hydrological data have been widely used in evaluating GWS changes in many
regions, e.g., northern India [14,15], California’s Central Valley and Mid-Atlantic Region
of the United States [16–18], the North China Plain (NCP) and West Liaohe River Basin of
China [19–21], and Australia [22]. However, there are currently few studies on TWS and
GWS changes in the nine major river basins of the Chinese mainland. In this study, we used
Tongji-Grace2018, the GLDAS hydrological model, in situ observations, and meteorological
data (such as precipitation and temperature) to comprehensively analyze the TWS and
GWS changes in each of the nine major river basins of the Chinese mainland from April
2002 to August 2016.

2. Study Area

Due to factors such as location, water vapor source, and topographical conditions,
the spatial distribution of water resources in China is extremely uneven; water is much
more plentiful along the southeast coast than it is in the northwest inland region. The
eastern and southern regions are in subtropical and temperate monsoon climate areas.
The wet season encompasses summer and autumn, whereas the dry season consists of
spring and winter. The western and northern regions of China are located in temperate
continental and highland climate zones; these climate zones are characterized by relatively
low annual precipitation values. According to the spatial distribution of water resources,
the Resource and Environmental Science and Data Center (RESDC) at the Chinese Academy
of Sciences [23] divides China into nine major river basins: the Songliao River Basin (SLRB),
the Yellow River Basin (YERB), the Haihe River Basin (HARB), the Huaihe River Basin
(HURB), the Yangtze River Basin (YARB), the Pearl River Basin (PERB), the Southeastern
River Basin (SERB), the Southwestern River Basin (SWRB), and the Continental River Basin
(CORB) (Figure 1). The acreage, vegetation coverage, and climatic conditions of each basin
are shown in Table 1.
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Figure 1. The nine major river basins in China. (1) Songliao River Basin (SLRB); (2) Yellow River 
Basin, (YERB); (3) Haihe River Basin (HARB); (4) Huaihe River Basin (HURB); (5) Yangtze River 
Basin, (YARB); (6) Pearl River Basin (PERB); (7) Southeastern River Basin (SERB); (8) Southwestern 
River Basin (SWRB); (9) Continental River Basin (CORB). The black dots represent the locations of 
the in situ observations. 

Table 1. Overview of the nine major river basins [23]. 

River Basin Area\104 km2 Vegetation Climate 
SLRB ~123.76 farmland, forest Temperate monsoon climate 
YERB ~80.89 farmland, grassland Temperate monsoon climate, Temperate continental climate 
HARB ~31.69 farmland, forest Temperate monsoon climate, Temperate continental climate 
HURB ~32.38 farmland Temperate monsoon climate 
YARB ~179.81 farmland, forest Subtropical monsoon climate 
PERB ~56.90 forest Subtropical monsoon climate 
SERB ~23.72 farmland, forest Subtropical monsoon climate 
SWRB ~85.26 forest, grassland Subtropical monsoon climate, Highland climate 
CORB ~333.89 grassland, desert Highland Climate, Temperate continental climate 

3. Data and Methodology 
3.1. Terrestrial Water Storage Estimates Using the GRACE Model 

In this study, we used the Tongji-Grace2018 model [6] from April 2002 to August 
2016, and used spherical harmonic coefficients that are truncated to the degree and order 
of 60. Based on the work of Wahr [24], the EWH of the global surface mass changes can 
be calculated using the GRACE model: Δℎሺ𝜃, 𝜆ሻ = ఘೌೡଷఘೢ ∑ ∑ 𝑃ୀஶୀ ሺ𝑐𝑜𝑠 𝜃ሻ ଶାଵଵା 𝑤ሺΔ𝐶 𝑐𝑜𝑠 𝑚 𝜆  Δ𝑆 𝑠𝑖𝑛 𝑚 𝜆ሻ  (1)

where 𝑎 is the radius of the Earth at the equator (~6378 km), 𝜌௩ is the average density 
of the Earth (~5517 kg/m3), 𝜌௪ is the average density of water (1000 kg/m3), 𝑤 is the 
Gaussian filter coefficient, and Δ𝐶ሜΔ𝑆ሜ  are the variations in the Stokes coefficients. 
These variations are calculated by subtracting the average value of the model between 
April 2002 and August 2016 from the model for each month in that time period. Further 
parameter descriptions can be found in Wahr [24]. 

Figure 1. The nine major river basins in China. (1) Songliao River Basin (SLRB); (2) Yellow River
Basin, (YERB); (3) Haihe River Basin (HARB); (4) Huaihe River Basin (HURB); (5) Yangtze River
Basin, (YARB); (6) Pearl River Basin (PERB); (7) Southeastern River Basin (SERB); (8) Southwestern
River Basin (SWRB); (9) Continental River Basin (CORB). The black dots represent the locations of
the in situ observations.

Table 1. Overview of the nine major river basins [23].

River Basin Area\104 km2 Vegetation Climate

SLRB ~123.76 farmland, forest Temperate monsoon climate

YERB ~80.89 farmland, grassland Temperate monsoon climate,
Temperate continental climate

HARB ~31.69 farmland, forest Temperate monsoon climate,
Temperate continental climate

HURB ~32.38 farmland Temperate monsoon climate
YARB ~179.81 farmland, forest Subtropical monsoon climate
PERB ~56.90 forest Subtropical monsoon climate
SERB ~23.72 farmland, forest Subtropical monsoon climate

SWRB ~85.26 forest, grassland Subtropical monsoon climate,
Highland climate

CORB ~333.89 grassland, desert Highland Climate, Temperate
continental climate

3. Data and Methodology
3.1. Terrestrial Water Storage Estimates Using the GRACE Model

In this study, we used the Tongji-Grace2018 model [6] from April 2002 to August 2016,
and used spherical harmonic coefficients that are truncated to the degree and order of
60. Based on the work of Wahr [24], the EWH of the global surface mass changes can be
calculated using the GRACE model:

∆h(θ, λ) =
aρave

3ρw

∞

∑
n=0

n

∑
m=0

Pnm(cos θ)
2n + 1
1 + kn

wn
(
∆Cnm cos mλ + ∆Snm sin mλ

)
(1)

where a is the radius of the Earth at the equator (~6378 km), ρave is the average density
of the Earth (~5517 kg/m3), ρw is the average density of water (1000 kg/m3), wn is the
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Gaussian filter coefficient, and ∆Cnm∆Snm are the variations in the Stokes coefficients.
These variations are calculated by subtracting the average value of the model between
April 2002 and August 2016 from the model for each month in that time period. Further
parameter descriptions can be found in Wahr [24].

3.2. Surface Water Storage Estimates with the GLDAS Model

The GLDAS was jointly developed by the Goddard Space Flight Center (GSFC) and
the National Centers for Environmental Prediction (NCEP) [25]. This model uses remote
sensing satellite data and surface observational data as the inputs for four land surface
process hydrological models: NOAH, VIC, CLM, and MOSAIC. Based on model simulation
and data assimilation algorithms, the model outputs are the global surface state variables
and the flux data. In this study, we employed the soil moisture (SM) and snow water
equivalent (SWE) outputs of the GLDAS-NOAH model. These outputs, which have a
spatial resolution of 1◦ and a temporal resolution of one month, cover the same time period
as the GRACE model.

3.3. Groundwater Storage Estimates with the GRACE and GLDAS Models

According to the terrestrial water storage balance equation, the change in the ground-
water storage can be calculated by subtracting the changes in the surface water storage
(SWS) (from the GLDAS hydrological model) from the change in the TWS (from the GRACE
model) [26,27]:

∆GWS = ∆TWS− ∆SMS− ∆SWES (2)

where ∆GWS is the change in the groundwater storage, ∆TWS is the change in the ter-
restrial water storage (via the GRACE model), ∆SMS is the change in the soil moisture
storage (via the GLDAS hydrological model), and ∆SWES is the change in the snow water
equivalent (via the GLDAS hydrological model).

3.4. Groundwater Storage Estimates from In Situ Observations

The in situ observations were sourced from the “China Geological Environment
Monitoring Groundwater Level Yearbook”, which was published by the China Institute of
Geological Environment Monitoring (CIGEM) [28]. We analyzed data that was collected
from 349 groundwater wells between 2005 and 2016. As shown in Figure 1, the number of
groundwater wells is higher in eastern China than it is in western China. When using these
in situ observations to analyze the changes in the regional groundwater, it is necessary to
multiply the water level change by the reference specific yield value to convert that water
level change into a regional groundwater storage change [18,29]:

∆GWS =
∑N

i SiCi∆hi

∑N
i Ci

(3)

where ∆h is the groundwater level change value observed in a given well (m), N is the
number of subareas with groundwater wells in the study region, C is the area of the grid
where the groundwater wells are located, and S is the reference specific yield value for
a given basin. For each basin, Table 2 shows the number of groundwater wells and the
reference specific yield value [19,30–33].

Table 2. The number of groundwater wells and the reference specific yield value, S, for each river
basin.

River
Basin Number S River

Basin Number S River
Basin Number S

SLRB 76 0.04 HURB 81 0.03 SERB 4 0.03
YERB 72 0.03 YARB 51 0.03 SWRB 10 0.03
HARB 15 0.06 PERB 13 0.03 CORB 27 0.01



Remote Sens. 2021, 13, 1851 5 of 19

3.5. Precipitation and Temperature

Precipitation and temperature are the main factors that cause temporal and spatial
changes in the regional TWS. The monthly surface precipitation and temperature data
used in this study were downloaded from the China Meteorological Data Network [34].
These data are based on the precipitation and temperature values recorded at more than
2400 meteorological stations. To translate these individual data points into monthly grid
cell surface temperatures or precipitation values (resolution of 0.5◦ × 0.5◦), spatial inter-
polation was performed using the Thin Plate Spline (TPS) algorithm in the ANUSPLIN
software [30,35,36]. Figure 2 shows the spatial variation in the monthly average precipita-
tion values and the monthly average temperature values from April 2002 to August 2016
on the Chinese mainland.
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3.6. The Scaling Factor

By processing the GRACE model via Gaussian filtering [24,37] and a de-striping error
algorithm [38–40], we effectively suppressed most of the signal noise. However, this also
reduced the overall strength of the signal. A scale factor can be applied to correct this
leakage error in the model. We calculated a scaling factor k that minimizes the sum of
squared residuals of σoriginal and kσf iltered [41]:

min = ∑
(

σoriginal − kσf iltered

)2
(4)

where σoriginal is the time series of regional SWS changes calculated by the GLDAS hy-
drological model before filtering, and σf iltered is the time series of regional SWS changes
calculated by the GLDAS model after processing with the same filtering method as the
GRACE model. By multiplying the time series of regional terrestrial water changes calcu-
lated by the GRACE model by the scaling factor k, the signal that has been weakened by
the filtering process can be partially restored.

3.7. Workflow

The data processing workflow for this study is shown in Figure 3.
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(1) Due to issues such as poor sensor performance and insufficient energy supply [42],
there are some data gaps in the GRACE satellite data; however, using data from adjacent
months, we used interpolation to retrieve these missing data points [43–45]. Because
GRACE data cannot obtain the degree-1 coefficients, the degree-1 coefficients calculated by
Swenson et al. can be used [46]. Due to their poor quality, the C20 coefficients obtained
by the GRACE satellite can be replaced by the C20 coefficients determined by satellite
laser ranging (SLR) observations [47,48]. To further process the GRACE model, we made
glacial isostatic adjustment (GIA) corrections [49]. Due to the satellite orbit and the data
post-processing methods, the temporal gravity field model includes high-frequency noise
and “stripe” errors in the north–south direction. To reduce this noise, we applied Gaussian
filtering [24] and Duan de-striping error algorithms [38] to the data. Additionally, we
used the scale factor to correct the data leakage error. Because the aforementioned data
processing removes the tidal and non-tidal atmospheric and oceanic influences from the
gravity field model, it is possible to determine the EWH values for the global TWS changes.
Finally, we used the latitude cosine weighted average method to calculate the regional
changes in the terrestrial water storage (4TWS) [50].

(2) After expanding the GLDAS gridded data so that its degree and order match those
of the GRACE model, we calculated the regional SWS changes (4SMS +4SWES).

(3) For the groundwater well observational data, we pre-processed the data, calculated
the change in the regional groundwater level, and multiplied that value by the reference
specific yield of that region to obtain the change in the local groundwater storage (4GWS).
Ultimately, this value was compared to the regional GWS changes estimated with the
GRACE and GLDAS models.

(4) Finally, we analyzed the precipitation, temperature, and water resources bulletin
data to try to determine the factors driving the regional TWS and GWS variations.

4. Results and Discussion
4.1. Data Processing

Without applying any filters, the Tongji-Grace2018 model calculated the trend of the
spatial changes in China’s regional TWS from April 2002 to August 2016 (Figure 4a). We
observed distinct hydrological signals in the Tianshan Mountains, the North China Plain,
and the southwestern part of China. However, there are still some stripe signal errors
in the north–south direction, indicating that noise reduction algorithms are necessary,
even in the model with low-noise. We then processed the Tongji-Grace2018 model by
combining the Duan de-striping method with a Gaussian filter with radius of 150, 200, 250,
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and 300 km. After applying the 150 km Gaussian filter, the high-frequency noise in the
model was noticeably diminished (Figure 4b). After using the Duan algorithm to remove
the model stripe signal errors, our study area showed a relatively smooth hydrological
signal (Figure 4c). As shown in Figure 4c–f, the strength of the hydrological signal in the
Tongji-Grace2018 model was inversely proportional to the Gaussian filter radius. Further-
more, when the Gaussian filter radius was greater than or equal to 200 km, there was no
appreciable difference in the spatial variations in the hydrological signal.

After applying the Gaussian filters to the model, we determined the scale factors
required to recover the leaked signals in each of the nine major river basins (Table 3).
Multiplying the TWS time series from the GRACE model by the corresponding scale factor
partially restored the strength of the signals that were weakened by post-processing. The
magnitude of the scale factor for each basin increased with the Gaussian filtering radius
(Table 3); this observation corresponds with our earlier assertion that a larger filter radius
corresponded to more signal leakage in the model. The optimal combination of filtering
algorithm minimizes the signal leakage of the model. Ultimately, we selected the processing
combination that includes the 150 km Gaussian filter and the Duan de-striping algorithm,
applied these algorithms to the Tongji-Grace2018 model, and calculated the TWS changes
in the nine major river basins of the Chinese mainland.

Table 3. Scale factors for river basin signal recovery with various Gaussian filter radius.

River Basin
Scale Factor

150 km 200 km 250 km 300 km

SLRB 1.048 1.081 1.121 1.166
YERB 1.036 1.060 1.087 1.116
HARB 1.073 1.120 1.173 1.230
HURB 1.144 1.247 1.371 1.506
YARB 1.014 1.022 1.030 1.034
PERB 1.082 1.136 1.195 1.257
SERB 1.101 1.171 1.253 1.345
SWRB 0.961 0.939 0.920 0.906
CORB 0.981 0.972 0.966 0.963

4.2. The Relationship between Precipitation and the GRACE and GLDAS Models

It is important to understand how the precipitation and the GLDAS model in each
basin affect the calculated TWS changes in the Tongji-Grace2018 model. First, we calculated
the annual phase and the annual amplitude of the TWS time series produced by the
Tongji-Grace2018 model, the SWS time series produced by the GLDAS model, and the
precipitation time series. Additionally, we calculated the correlation coefficient between
the TWS time series and the SWS time series (i.e., the Tongji-Grace2018 and GLDAS
models), the correlation coefficient between the TWS time series and the precipitation
time series (i.e., the Tongji-Grace2018 model and the precipitation data), and the annual
phase difference between the TWS time series and the precipitation time series (Table 4).
With the exception of the Haihe and Continental River Basins, the correlation between
the Tongji-Grace2018 model and the GLDAS model was greater than 0.55. In general,
the correlation coefficient between the Tongji-Grace2018 model and the GLDAS model
increased with the precipitation in each basin.
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Figure 4. Spatial variations in the TWS in China for different combinations of the Duan de-striping method and the Gaussian
filter radius. (a) The Tongji-Grace2018 model without applying any filters; (b) The Tongji-Grace2018 model after applying
the 150 km Gaussian filter; (c) The Tongji-Grace2018 model after applying the Duan de-striping method and the 150 km
Gaussian filter; (d) The Tongji-Grace2018 model after applying the Duan de-striping method and the 200 km Gaussian
filter; (e) The Tongji-Grace2018 model after applying the Duan de-striping method and the 250 km Gaussian filter; (f) The
Tongji-Grace2018 model after applying the Duan de-striping method and the 300 km Gaussian filter.
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Table 4. Characteristics of the TWS (Tongji-Grace2018 model), SWS (GLDAS model), and precipitation time series.

River
Basin

Tongji-Grace2018 GLDAS Precipitation

Annual Am-
plitude/mm

Annual
Phase/◦

Annual
Ampli-

tude/mm

Annual
Phase/◦

Tongji-
Grace2018

& GLDAS 1

Annual Am-
plitude/mm

Annual
Phase/◦

Tongji-
Grace2018

& Precipitation 1

Time
Lag/Month 2

SLRB 9.0 151.9 1.3 268.0 0.79 53.7 195.3 0.24 +1.5

YERB 10.2 283.7 12.8 308.5 0.55 47.1 203.8 0.07 2.6

HARB 29.5 311.9 13.2 299.7 0.35 55.0 201.5 −0.08 3.7

HURB 31.1 298.1 24.3 284.4 0.81 74.0 197.4 0.17 3.2

YARB 44.8 222.4 19.5 208.2 0.78 74.3 183.5 0.62 1.3

PERB 74.8 230.5 53.9 200.6 0.85 113.4 178.6 0.49 1.7

SERB 48.1 176.9 41.4 154.1 0.76 93.3 163.9 0.62 0.5

SWRB 80.1 243.0 48.9 254.6 0.61 65.1 197.9 0.54 1.5

CORB 10.0 186.6 6.4 125.0 0.19 19.5 197.5 0.51 +0.4

1 Column labels with “&” are columns of correlation coefficient; 2 “+” indicates an advanced time lag.

With respect to the precipitation changes, we found that the TWS changes in the
Yellow, Haihe, and Huaihe River Basins have longer lag times of 2.6, 3.7, and 3.2 months,
respectively; the corresponding correlation coefficients between the TWS time series and
the precipitation time series for these basins are 0.07, −0.08, and 0.17. These low correlation
coefficients could be caused by the high agricultural demand for water in the Huang-Huai-
Hai area in the spring and summer, where the precipitation cannot offset the water loss
due to crop irrigation [20,51]. In the Yangtze, Pearl, and Southwestern River Basins, the
time lag between the precipitation and the TWS change is 1.5 months. The correlation
coefficients between the precipitation time series and the TWS time series are 0.62, 0.49, and
0.54, respectively, indicating that rainfall is an important factor affecting the TWS changes
in these three basins. In the Southeastern and Continental River Basins, changes in the
TWS are consistent with the observed changes in the precipitation. The TWS changes in
the Songliao River Basin actually precede the precipitation by ~1.5 months. In this case, the
cooler conditions found at higher latitudes may cause the water resources to be stored in
the form of ice and snow during the winter [52].

4.3. Terrestrial Water Storage in the Nine Major River Basins

Distinct variations were observed in the TWS changes in the nine major river basins
of China (Figure 4c). The TWS changes observed in the northern Songliao River Basin,
the middle Yangtze River Basin, the Pearl River Basin, the Southeastern River Basin, the
southeastern Southwestern River Basin, and the southeastern Continental River Basin
exhibited an increasing trend, whereas the TWS changes in the southern Songliao Basin, the
Haihe River Basin, the eastern Yellow River Basin, the northwestern Southwestern River
Basin, and the northwestern Continental River Basin exhibited a long-term decreasing
trend (Figure 4c). Figure 5 shows the changes in the TWS (Tongji-Grace2018 model), the
SWS (GLDAS model), the precipitation, and the temperature for each basin. During the
study period, the TWS of the Songliao, Yellow River, Haihe, Huaihe, and the Southwestern
River Basins declined, whereas the TWS of the Yangtze, Pearl, and Southeastern River
Basins increased. The TWS of the Continental River Basin was largely unchanged.
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Figure 5. The TWS time series for each river basin. The red curve represents the regional TWS changes (Tongji-Grace2018
model), the purple curve represents the 13 month moving average of the TWS changes, the black straight line is the TWS
trend line, the green curve is the SWS (SMS + SWES) (GLDAS hydrological model), and the blue column is the monthly
rainfall. The grey column is the annual rainfall anomaly, which is obtained by subtracting the average yearly rainfall value
from the annual rainfall. The yellow column is the annual temperature anomaly, which is obtained by subtracting the
average yearly temperature from the annual temperature.

Although the overall TWS trend in the Songliao River Basin was consistent with the
TWS increasing slowly at a rate of 1.23 ± 0.93 mm/year, the TWS in this area fluctuated



Remote Sens. 2021, 13, 1851 11 of 19

wildly during certain time periods. The TWS was very low at the end of 2007 and 2012,
and very high in 2013. The monthly precipitation in the Songliao River Basin in 2007 did
not exceed 95 mm; the total annual precipitation that year was significantly lower than
the average yearly precipitation. Additionally, the annual temperatures in 2007 and 2008
were abnormally high, resulting in increased ground evapotranspiration. Most parts of
the Songliao River Basin received very little rainfall from October 2011 to February 2012.
The “China Flood and Drought Disaster Bulletin” [53] indicates that the Songliao River
Basin was plagued by severe droughts during these periods. After June 2012, the rainfall
gradually increased, which alleviated the earlier drought conditions, caused the annual
temperature to decline precipitously, and reduced the amount of ground evapotranspira-
tion. By 2013, the yearly rainfall in the Songliao River Basin had increased significantly. In
August 2013, the lower reaches of the Heilongjiang River, the upper reaches of the Nenjiang
River, and the upper reaches of the Hunhe River all experienced severe flooding. During
this period, the TWS of the Songliao River Basin reached its highest value since 2002. Ac-
cording to the data in the “Songliao River Basin Water Resources Bulletin”, the total water
supply of the Songliao River Basin declined slightly from 2000 to 2003, increased from
2003 to 2010, and has remained stable since 2010. The surface water supply was the single
largest contributor to the total water supply. Because both the agricultural irrigation water
consumption and the total water supply increased at similar growth rates, we infer that the
total water supply was heavily influenced by the agricultural irrigation demand for water.
From 2003 to 2012, the proportion of the total water consumption in Heilongjiang Province
in the Songliao River Basin that was attributed to farm water consumption increased from
65.5% to 78.6% [52].

Due to the similar climate and environmental conditions, the TWS changes observed
in the Yellow, Haihe, and Huaihe River Basins all followed the same trend of initially
increasing and then decreasing. As shown in Figure 5, the Huaihe River Basin is located in
the eastern coastal area, where the TWS changes are larger and exhibit obvious seasonal
variations. In 2002, the rainfall in the Huang-Huai-Hai region was very low and the annual
accumulated temperature was relatively high. Because the terrestrial water in the Yellow,
Haihe, and Huaihe River Basins could not be replenished, the TWS fell to a very low
value at the end of 2002. In 2003, the rainfall in the Huang-Huai-Hai region gradually
increased, causing the TWS of the Yellow and Haihe River Basins to grow at a rate of
63.04 ± 5.85 mm/year and 58.24 ± 8.0 mm/year, respectively. Between June and July 2003,
continuous rainstorms occurred in the Huaihe River Basin, resulting in an anomalously
high annual rainfall of 360 mm. The resulting flooding disasters were the worst floods to
befall that region since 1991. From the end of 2002 to the beginning of 2004, the TWS of the
Huai River Basin increased rapidly at a rate of 101.82 ± 3.46 mm/year.

After 2004, the TWS of the Yellow, Haihe, and Huaihe River Basins began to gradually
decrease. From 2004 to 2006, the precipitation anomalies in the Yellow River Basin were
all negative, which drove the TWS down. In the following eight years (2007–2014), the
alternating positive and negative rainfall anomalies in the Yellow River Basin resulted in
a relatively balanced TWS time series. In 2015, little rainfall and higher temperatures in
the Yellow River Basin caused the TWS to fall to its lowest level since 2002. According to
the “China Water Resources Bulletin” [53], the total water supply of the Yellow River Basin
increased at an annual rate of 161 × 106 m3 from 2004 to 2017. In 2011, the entire water sup-
ply volume reached 40.44 × 109 m3 in the midst of rising temperatures, increasing ground
evapotranspiration, and a dwindling terrestrial water supply [54]. Between 2004 and 2009,
the terrestrial water in the Haihe River Basin decreased at a rate of −21.49 ± 1.87 mm/year.
From 2010 to 2013, the cooler temperatures and the heavy rainfall in 2012 resulted in the
TWS of the Haihe River Basin gradually recovering at a rate of 4.55 ± 2.03 mm/year. From
2014 to the beginning of 2016, the precipitation declined and the annual temperature was
abnormally high. During this time, the TWS of the Haihe River Basin decreased at a rate of
−44.33 ± 4.99 mm/year.
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In July 2016, the average rainfall in the Haihe River Basin reached 140 mm. Due
to the heavy rains in this time period, the Haihe River Basin quickly transitioned from
a dry region to a region experiencing significant flooding. The terrestrial water supply
was quickly replenished; the heavy rainfall allowed the TWS to rebound by mid-2016
(Figure 5). Between 2004 and 2009, the rainfall surplus and deficit years in the Huaihe
River Basin alternated, resulting in a relatively static terrestrial water storage trend. From
2010 to 2015, the rainfall anomalies in the Huaihe River Basin were all negative. In this
area, the rainfall anomaly was not positive until 2016. During this period, the TWS of
the Huaihe River Basin exhibited a downward trend. From 2004 to 2016, the TWS of
the Yellow, Haihe, and Huaihe River Basins decreased at rates of −5.60 ± 0.68 mm/year,
−11.61 ± 1.11 mm/year, and −12.10 ± 0.82 mm/year, respectively. Throughout the entire
study period, the TWS of the Yellow River, Haihe, and Huaihe River Basins decreased
at rates of −4.15 ± 0.74 mm/year, −10.96 ± 1.00 mm/year, and −9.40 ± 1.10 mm/year,
respectively.

Because the Yangtze, Pearl, Southeastern, and Southwestern River Basins are all
located in areas with subtropical monsoon climate conditions, the precipitation is highly
seasonal; the precipitation is high in the summer and autumn, and low in the winter and
spring. Unsurprisingly, the TWS of these basins also exhibit significant seasonality. In the
seasons with abundant rainfall, the TWS increases; in the seasons with less rainfall, the
TWS decreases. The correlation coefficients for the TWS and precipitation time series in the
Yangtze, Pearl, Southeastern, and Southwestern River Basins are 0.62, 0.49, 0.62, and 0.54,
respectively, indicating that rainfall is an important factor that heavily influences the TWS
changes in these river basins.

According to the “China Flood and Drought Disaster Bulletin” [36], severe floods
occurred in 2010, 2012, and 2016 in and around the Yangtze River Basin; the largest flood
since 1998 occurred in 2016. The water level in both Dongting Lake and Poyang Lake
exceeded the flood warning line for up to 29 days. Although the TWS of the Yangtze
River Basin had been at a relatively high level for the previous three years (Figure 5), the
low annual rainfall and unusually high temperatures resulted in very low TWS values
in Yangtze River Basin in 2006, 2011, and 2013. In May 2011, the water level of Poyang
Lake, Dongting Lake, and Honghu Lake were 85%, 24%, and 31% lower than the annual
average water level, respectively. From 2003 to 2004, the rainfall in the Pearl and the
Southeastern River Basins was relatively low, which resulted in lower TWS values in these
two river basins. After 2004, the increasing precipitation allowed the TWS to gradually
rebound. The Pearl River Basin suffered continuous heavy rainfall in June 2008, causing
severe floods in the cities of Jiangxi, Hunan, Guangdong, Guangxi, and Guizhou. In
2009 and 2011, the lack of rainfall resulted in severe drought conditions in the Pearl River
Basin. Because the drought conditions persisted for multiple years, the water storage of
the main reservoirs in this area in 2011 was dangerously low; these low water storage
values culminated in the saltiest tide in the Pearl River Estuary since 2005 [55]. A rare
winter flood occurred in south China in November of 2015, with the Pearl River Basin
showing extremely high levels of rainfall; more than 30 rivers (e.g., the Xijiang, Luoqing,
Guijiang, and Xiangjiang Rivers) had water levels that surpassed their warning water
level. This period of flooding corresponds to a jump in the TWS values from the Tongji-
Grace2018model in this region. Terrestrial water storage in the Pearl River Basin decreased
at a rate of −44.31 ± 9.68 mm/year between 2002 and 2004, and increased at a rate of
7.58 ± 1.22 mm/year between 2005 and 2016. For the entire study period, the TWS of the
Yangtze, Pearl, and the Southeastern River Basins increased at rates of 4.50± 0.46 mm/year,
5.00 ± 1.11 mm/year, and 7.34 ± 1.02 mm/year, respectively.

Conversely, during that same time period, the TWS in the Southwestern River Basin
exhibited a distinct downward trend. There has been a TWS deficit in this area since
2009. From 2002 to 2004, both the annual rainfall and the TWS of the Southwestern River
Basin were relatively stable. In 2005 and 2006, both the precipitation and the TWS in the
Southwestern River Basin were relatively low. Heavy rainfall in 2008 slowed the decline
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of the terrestrial water storage in the Southwestern River Basin. However, with very little
precipitation, high annual temperatures, and intense ground evapotranspiration, droughts
plagued this area from autumn of 2009 to spring of 2010 [56]. In March of 2010, the TWS of
the Southwestern River Basin dropped to its lowest level since 2002.

Because the Continental River Basin is located in an area with arid and semi-arid
climate conditions, this river basin is usually very dry. As shown in Figure 4, the TWS
of the southern and northwestern Continental River Basin (i.e., the Tianshan region) has
experienced a severe TWS loss. In contrast, the TWS of the southeastern Qinghai Province
has slightly increased. The TWS variation in the Continental River Basin is within ±3 cm
and is characterized by a certain interannual periodicity (Figure 5). From 2002 to 2016,
the monthly rainfall in the Continental River Basin did not exceed 60 mm, indicating that
rainfall had a relatively small impact on the observed TWS changes in the Continental
River Basin. In 2003, 2005, and from 2011 to 2012, the annual temperature anomaly in
the Continental River Basin was negative, causing a corresponding increase in the TWS.
From 2006 to 2007 and from 2013 to 2016, the TWS decreased when the yearly temperature
anomaly was positive. As such, we conclude that the TWS of the Continental River Basin is
greatly affected by temperature changes. Higher temperatures result in more intense ground
evapotranspiration, which reduces the terrestrial water storage. From 2002 to 2016, the TWS of
the Continental River Basin slowly decreased at a rate of −0.15 ± 0.33 mm/year.

4.4. GWS Results from the GRACE Models and In-Situ Well Observations

We quantified the modeled regional GWS changes by subtracting the SWS time series
(GLDAS model) from the TWS time series (Tongji-Grace2018 model). We compared these
GWS results to the in situ GWS observational data collected from groundwater wells in
terms of RMSE, correlation coefficient, and long-term trends (Figure 6). It can be seen from
Figure 6 that the RMSE between the modeled and measured groundwater storages changes
in the Haihe, Pearl, and Southeastern River Basins are relatively large, and are 6.045, 5.089,
and 6.621 cm, respectively. The RMSE between the modeled and measured groundwater
storages changes in other river basins are all less than 3.4 cm.

The drought conditions in 2012 caused the GWS of the Songliao River Basin to fall
rapidly (Figure 6). However, plentiful precipitation and low temperatures allowed the
groundwater of the Songliao River Basin to be mostly replenished at the beginning of 2014.
The modeled and measured GWS shrinkage rates in the Songliao River Basin from 2005 to
2016 are −6.52 ± 1.15 mm/year and −4.25 ± 0.76 mm/year, respectively. According to the
“China Water Resources Bulletin”, the ongoing demand for agricultural irrigation caused
the groundwater in the basin to decrease gradually over time.

Similar to the TWS trends in these regions, the modeled GWS values for the Yellow,
Haihe, and Huaihe River Basins all initially increased and then decreased. In 2003, a
positive precipitation anomaly and a negative temperature anomaly led to increased
surface water infiltration and groundwater replenishment in the Huang-Huai-Hai region.
From 2002 to 2005, the GWS of the Yellow, Haihe, and Huaihe River Basin increased at rates
of 29.36 ± 9.41 mm/year, 24.55 ± 16.82 mm/year, and 53.05 ± 17.68 mm/year, respectively.
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Figure 6. Comparison of the GWS results from the GRACE models and from the in situ observations in each river basin; ρ
represents the correlation coefficient between the measured and modeled GWS values from January of 2005 to August of 2016.

Since 2005, the GWS of the Yellow River and Haihe River Basins has continued to
decrease. A GWS deficit in the Yellow River Basin has existed since 2011. From 2013 to
2017, higher temperatures in the Yellow River Basin led to increased evapotranspiration,
lower surface water levels, and a lack of groundwater recharge. From 2002 to 2014, the
TWS and SWS time series of the Haihe River Basin were largely consistent with one another
(Figure 5). However, since 2014, the difference between the SWS and the TWS time series
has gradually increased, indicating that the consumption of groundwater is increasing.
Overall, the correlation coefficient between the TWS and the SWS time series in the Haihe
River Basin is 0.350 (Table 4). It is likely that this low correlation coefficient is related to the
severe groundwater deficit.
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In 2014 and 2015, the Haihe River Basin experienced relatively high temperatures
and very little rainfall. Specifically, from July to August 2015, most of northern China
was plagued by drought. The evapotranspiration process consumes a large amount of
water stored in the soil and causes the demand for agricultural irrigation and groundwater
pumping to intensify. In the following three years, the GWS of the Haihe River Basin
declined rapidly. According to the “China Water Resources Bulletin”, from 2004 to 2016,
the proportion of the water supply in the Haihe River Basin that came from groundwater
sources increased from 53% to 67%. In the Haihe River Basin, the modeled and measured
GWS values are largely consistent with one another. From 2005 to 2016, the correlation
coefficients for the modeled and measured GWS in the Yellow River and Haihe River Basins
are 0.796 and 0.608, respectively. The modeled and measured GWS shrinkage rates for the
Yellow River Basin are −8.76 ± 0.72 mm/year and −5.88 ± 0.29 mm/year, respectively,
and those of the Haihe River Basin are−17.65± 1.69 mm/year and−8.35± 1.76 mm/year,
respectively.

Both the Huaihe and the Haihe River Basins are located in important grain-producing
regions. As such, both of these regions require considerable water resources. According to
the “China Water Resources Bulletin”, the annual groundwater supply of the Huaihe River
Basin during our study period was about 17× 109 m3. However, because this groundwater
supply only accounts for 20–30% of the total annual water supply, we conclude that the
Huaihe River Basin is not heavily dependent on groundwater sources. Furthermore, the
rainfall in the Huaihe River Basin is twice that of the Haihe River Basin; as such, the latter
location must rely more heavily on groundwater sources for replenishment. Between 2005
and 2012, the GWS of the Huaihe River Basin decreased slowly; the modeled and measured
groundwater shrinkage rates are −2.26 ± 2.59 mm/year and −1.89 ± 0.72 mm/year,
respectively. With little rainfall and high temperatures, both the groundwater storage
and the groundwater recharge in the Huaihe River Basin decreased precipitously; the
modeled and measured GWS shrinkage rates for this period are −15.67 ± 7.12 mm/year
and −5.52 ± 1.49 mm/year, respectively. From 2005 to 2016, the correlation coefficient for
the modeled and measured GWS time series in the Huaihe River Basin is 0.710.

The GWS of the Yangtze, Pearl, Southeastern, and Southwestern River Basins all
exhibit obvious seasonality, with lower GWS values in winter and spring, and higher
GWS values in summer and autumn. From 2002 to 2004, the modeled GWS growth
rates in the Yangtze and the Southwestern River Basins are 20.94 ± 7.23 mm/year and
13.71 ± 9.86 mm/year, respectively. In 2004 and 2005, the very low annual rainfall val-
ues in the Pearl and Southeastern River Basins caused the GWS to shrink at rates of
−5.39 ± 11.71 mm/year and −16.11 ± 21.78 mm/year, respectively. From 2005 to 2016,
due to changes in the TWS, the GWS in the Yangtze, Pearl, and Southeastern River Basins
increased and the groundwater storage in the Southwestern River Basin decreased; the rates
of change for the modeled GWS time series in the Yangtze, Pearl, Southeastern, and South-
western River Basins are 4.67± 0.98 mm/year, 6.43± 1.40 mm/year, 11.35± 1.89 mm/year,
and −9.04 ± 1.07 mm/year; the rates of change for the measured GWS time series in the
Yangtze, Pearl, Southeastern, and Southwestern River Basins are 3.19 ± 0.47 mm/year,
−1.37 ± 0.79 mm/year, 6.65 ± 2.37 mm/year, and −2.61 ± 0.42 mm/year. The correlation
coefficients for the modeled and measured GWS time series in the Yangtze, Pearl, South-
eastern, and Southwestern River Basins are 0.731, 0.147, 0.307, and 0.732, respectively. The
low correlation coefficients of the Pearl and Southeastern River Basins are attributed to the
lack of groundwater well stations and the poor data quality in these areas.

Our GWS results for the Continental River Basin indicate that the GWS increased
at a rate of 9.98 ± 3.71 mm/year from 2002 to 2004. However, the implementation of
ecological restoration projects in this region has increased the local water consumption in
recent years [57]. Furthermore, the groundwater demand from both plants and humans
has increased. According to statistical data from the “China Water Resources Bulletin”,
the groundwater supply of the Continental River Basin has been steadily increasing on
a yearly basis, resulting in a decrease in groundwater in this basin. From 2005 to August
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2016, the modeled and measured GWS values changed at rates of −5.31 ± 0.54 mm/year and
−4.42 ± 0.32 mm/year; the correlation coefficient between these two GWS data sets is 0.741.

5. Conclusions

GRACE gravity satellites provide valuable data sets that can be used to monitor
changes in terrestrial water resources. In this study, we utilized the Tongji-Grace2018 model,
the GLDAS model, in situ well observations, and precipitation and temperature time series
to comprehensively analyze the changes in the terrestrial water and groundwater storage
of the nine major river basins on the Chinese mainland from April 2002 to August 2016.

The seasonal precipitation and temperature variations are the major drivers of TWS
changes in the Yangtze, Pearl, Southeastern, and Southwestern River Basins. In these
basins, the correlation coefficients for the TWS and precipitation time series are larger
than 0.49. The TWS changes in the Songliao, Yellow, Haihe, and Huaihe River Basins are
more moderate, with little to no evidence of seasonality. Other than the presence of certain
interannual variations, the TWS in the Continental River Basin has been relatively stable.
Overall, the TWS values of the Songliao, Yangtze, Pearl, and Southeastern River Basins are
increasing, the TWS values of the Yellow, Haihe, Huaihe, and Southwestern River Basins
are decreasing, and the TWS value of the Continental River Basin is balanced.

The modeled and measured groundwater storage time series of the Yangtze, South-
eastern, and Southwestern River Basins all exhibit obvious seasonal changes. Except for
the Pearl River Basin, the modeled and measured GWS time series are consistent with
one another. From January 2005 to August 2016, the correlation between the modeled and
measured groundwater storage changes in the Songliao, Pearl, and Southeastern River
Basins was low, whereas the correlation coefficients for the other basins were all larger
than 0.60. Due to factors such as precipitation, temperature, and human activity, the
groundwater storage values of the Songliao, Yellow, Haihe, Huaihe, Southwestern, and
Continental River Basins have all declined, whereas the groundwater storage values of
the Yangtze and Southeastern River Basins have increased over time. Due to the large
number of groundwater wells located in the Yellow, Huaihe, Yangtze, and Continental
River Basins, the modeled and measured groundwater storage changes are in agreement
with one another.

Through the above research results, we obtained the changes in TWS and GWS in
the nine major river basins of the Chinese mainland. By comparing the groundwater
changes calculated by the model with the in situ well observations, we demonstrated the
effectiveness of using the Tongji-Grace2018 model combined with the hydrological model
to estimate regional GWS. However, due to the limitation of the spatial resolution of the
GRACE satellite gravity field model, we are currently analyzing the TWS and GWS on the
Chinese mainland from a macro perspective. In future studies, it is hoped that techniques
such as downscaling and data assimilation can be used to improve the resolution of the
GRACE model, thereby improving the accuracy of estimating changes in terrestrial water
and groundwater storage.
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