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Abstract: Semantic segmentation has been a fundamental task in interpreting remote sensing imagery
(RSI) for various downstream applications. Due to the high intra-class variants and inter-class
similarities, inflexibly transferring natural image-specific networks to RSI is inadvisable. To enhance
the distinguishability of learnt representations, attention modules were developed and applied to RSI,
resulting in satisfactory improvements. However, these designs capture contextual information by
equally handling all the pixels regardless of whether they around edges. Therefore, blurry boundaries
are generated, rising high uncertainties in classifying vast adjacent pixels. Hereby, we propose
an edge distribution attention module (EDA) to highlight the edge distributions of leant feature
maps in a self-attentive fashion. In this module, we first formulate and model column-wise and
row-wise edge attention maps based on covariance matrix analysis. Furthermore, a hybrid attention
module (HAM) that emphasizes the edge distributions and position-wise dependencies is devised
combing with non-local block. Consequently, a conceptually end-to-end neural network, termed as
EDENet, is proposed to integrate HAM hierarchically for the detailed strengthening of multi-level
representations. EDENet implicitly learns representative and discriminative features, providing
available and reasonable cues for dense prediction. The experimental results evaluated on ISPRS
Vaihingen, Potsdam and DeepGlobe datasets show the efficacy and superiority to the state-of-the-art
methods on overall accuracy (OA) and mean intersection over union (mIoU). In addition, the ablation
study further validates the effects of EDA.

Keywords: semantic segmentation; remote sensing imagery; covariance matrix analysis; edge distri-
butions; end-to-end neural network

1. Introduction

Semantic segmentation, a fundamental task for interpreting remote sensing imagery
(RSI), is currently essential in various fields, such as water resource management [1,2],
land cover classification [3–5], urban planning [6,7] and precision agriculture [8,9] and so
forth. This task strives to produce a raster map that refers to an input image by assigning
a categorical label to every pixel [10]. The observed objects and terrain information are
easily recognized and analyzed with the labeled raster map, contributing to structuralized
and readable knowledge. However, the reliability and availability of the transformed
knowledge are tremendously conditioned on the accuracy of semantic segmentation.

Conventional segmentation methods of remote sensing imagery are essentially im-
plemented by statistically analyzing the prior distributions. For example, Arivazhagan
et al. [11] extracted and combined wavelet statistical features and co-occurrence features,
characterizing the textures at different scales. As a result, the experiments on monochrome
images achieved comparable performance. For segmenting plant leaves, Gitelson A. and
Merzlyak M. [12] developed a new spectral index, green normalized difference vegetation
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index (GNDVI), based on the spectral properties. Although it works well, the specifying
spectral range occupation leads to finite application. Likewise, the normalized difference
index for ASTER 5–6 was devised incorporating several vegetation indices [13]. This index
helps the model segment the major crops by grouping crop fields with similar values.
Subsequently, Blaschke T. summarized these methods as object-based image analysis for
remote sensing (OBIA), utilizing spectral and spatial information in an integrative fash-
ion [14]. To sum up, the traditional methods are target-specific and spectra-fixed, making
the segmentation model not robust. Moreover, concerning the arrival of the big data era,
this kind of approach is far from usable when individually working on the task.

More recently, machine learning models were extensively applied to classify pixels
following handcrafted features. For example, Yang et al. [15] captured texture and context
by fusing Texton descriptor and the association potential in the conditional random field
(CRF) framework. Mountrakis et al. [16] reviewed the support vector machine (SVM)
classifiers in remote sensing. SVM resorts to a small number of training samples while
reaching comparable accuracy. Random forest (RF) also exhibits its strong ability to classify
remote sensing data with high dimensionality and multicollinearity [17]. Nevertheless,
conventional machine learning methods are not automative and intelligent. Although the
efficiency is acceptable, the accuracy is criticized, especially for multi-sensor and multi-
platform data.

Since the successful development of convolutional neural networks (CNNs), numerous
studies have examined the application of CNNs. CNNs have demonstrated the power-
ful capacity of feature extraction and object representations compared with traditional
methods in machine learning. One of the most significant breakthroughs was the fully
convolutional neural network (FCN) [18]. FCN is the first end-to-end framework, allowing
the deconvolution layer to recover feature maps. However, the major drawback is the
accompanying information loss in shrinking and dilating features’ spatial size. To alleviate
the transformation loss, an encoder-decoder segmentation network (a.k.a. SegNet) [19] was
designed with a symmetrical architecture. In the encoder, the indexes of the largest pixels
are recorded. As to the corresponding decoder stage, the recorded pixels are re-assigned
to the same position. Similarly, U-Net [20] retains the detailed information better with the
skip connections between encoder and decoder. The initial implementation of medical
images verifies the remarkable progress compared to FCN and SegNet. In addition, these
works revealed that comprehensively capturing contextual information enables accurate
segmentation results.

Endeavoring to enrich the learnt representations with contextual information, the
atrous convolution was proposed [21]. This unit adjusts a rate to convolve the adjacent
pixels for generating the central position’s representations. DeepLab V2 [22] built a novel
atrous spatial pyramid pooling (ASPP) module to sample features at different scales.
Furthermore, DeepLab V3 [23] integrated global average pooling to embed more helpful
information. Considering the execution efficiency, DeepLab V3+ [24] opted for Xception as
the backbone and depth-wise convolution. Unfortunately, enlarging the receptive field will
cause edge distortions, where the surrounding pixels are error-prone.

Regarding the geographic objects’ properties of RSI, context aggregation is advocated.
Even for the same class, the scale of the optimal segments is different. Therefore, the
context aggregation methods are devoted to minimizing the heterogeneity of intra-class
objects and maximize the heterogeneity of inter-class objects by fusing the multi-level
feature maps at various scales. For example, Zhang et al. [25] designed a multi-scale
context aggregation network. This network encodes the raw image by the high-resolution
network (HRNet) [26], in which four parallel branches are presented to generate four sizes
of feature maps. Then, these are enhanced with corresponding tricks before concatenation.
Results on the ISPRS Vaihingen and Potsdam datasets are competitive. Coincidentally,
a multi-level feature aggregation network (MFANet) [27] was proposed with the same
motivation. Two modules, channel feature compression (CFC) and multi-level feature
aggregation upsample (MFAU), were designed to reduce the loss of details and make the
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edge clear. Moreover, Wang et al. [28] defined a cost-sensitive loss function in addition to
fuse multi-scale deep features.

Alternatively, the attention mechanism was initially applied to boost the performance
for labeling natural images. SENet [29] built a channel-wise attention module that recali-
brates the channel weights with learnt relationships between arbitrary channels. In this
way, SENet could help the network pay more attention to the channels with complementary
information. Concerning spatial and channel correlations simultaneously, CBAM [30] and
DANet [31] were implemented and achieved perceptible improvements results on natural
image data. The following proposed self-attention fashion further optimizes the representa-
tions. The non-local neural network [32] was proposed to learn the position-wise attention
maps both in spatial and channel domains. Regarding the capability of self-attentively
modeling the long-range dependencies, ACFNet [33] offered a coarse-to-fine segmentation
pipeline. The self-attention module also inspired the proposal of OCRNet [34], in which
relational context is extracted and fed for prediction, sharping object’s boundaries.

While the attention modules are transplanted to RS, the diversity and easily-confused
geo-objects are well-distinguished than before [35]. To this end, many variant networks
that introduce attention rationale were investigated. CAM-DFCN [36] incorporates channel
attention to FCN architecture for using multi-modal auxiliary data to enhance the dis-
tinguishability of features. HMANet [37] adaptively captures the correlations that lie in
space, channel and category domains effectively. This model benefits from the extensible
self-attention mechanism. Li et al. [38] disclosed that the most challenging task is recogniz-
ing and accepting the diverse intra-class variance and inconspicuous inter-class variance.
Thereby, the SCAttNet integrates the spatial and channel attention to form a lightweight
yet efficient network. More recently, Lei et al. [39] proposed LANet, which bridges the gap
between high- and low-level features by embedding the local focus from high-level features
with the designed patch attention module. In terms of the successful cases of attention-
based methods, it is concluded that the attention modules can strengthen the separability
of learned representations, making the error-prone objects more distinguishable. Marma-
nis et al. [40] pointed out that edge regions contain implicated semantically meaningful
boundaries. However, the existing attentive techniques equally learn the representation for
every pixel. As a result, the surrounding pixels of edges are easily misjudged, tending to
the blurry edge region even rising high uncertainties of long-distance pixels.

To perceive and transmit edge knowledge, Marmanis et al. combined semantically
informed edge detection with encoder-decoder architecture. Then, the class boundaries
are explicitly modeled, adjusting the training phase. This memory-efficient method yields
more than 90% accuracy on the ISPRS Vaihingen benchmark. Afterward, PEGNet [41]
presented a multipath atrous convolution module to generate dilated edge information
across canny and morphological operations. Thus, the edge-region maps help the network
identify the pixels around edges with high consistency. In addition, a recalibrate module is
regulated by training loss to guide the misclassified pixels, reporting an overall accuracy of
more than 91% of the Vaihingen dataset.

To sum up, the commonly used combination of boundary detector and segmentation
network is complex with much more time-costs. The independent boundary detector
requires corresponding loss computation and an embedded interface of the trunk network.
In addition, the existing methods are far from adaptively extracting and injecting edge dis-
tributions. Hence, the purpose of this study includes two aspects: (1) the edge knowledge is
urgent to be explicitly modeled and incorporated into learnt representations, facilitating the
network’s discriminative capability in labeling pixels that position at marginal areas; (2) the
extraction and incorporation of edge distributions should be learnable and end-to-end
trainable without breaking the inherent spatial structure.

Generally, CNNs have demonstrated superiority in segmenting remote sensing im-
agery by learning local patterns. Nevertheless, the remote sensing imagery always covers
wide-range areas and observes various ground objects. This property makes the networks
insufficient and leads to the degradation of accuracy. Furthermore, although the attention
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modules brought astounding improvements by learning contextual information, equally
processing edges induce blur around boundaries, which indirectly causes massive misclassi-
fied pixels. Hence, it is necessary to incorporate the edge distributions to assist the network
in enhancing edge delineation and recognizing various objects. Motivated by the attention
mechanism and two-dimensional principal component analysis (2DPCA) diagram [42],
we found that injecting edge distributions with a learnable way is available. Therefore, in
this study, we firstly formulate and re-define the covariance matrix inspired by 2DPCA. To
refine the representations, two perspectives of efforts are devoted. One is learning edge
distributions modelled by the re-defined covariance matrix following the inherently spatial
structure of encoded feature maps. The other is the employment of the non-local block, a
typical self-attention module with high efficiency, to enhance the representations with local
and global contextual information. Therefore, the hybrid strategy makes the segmentation
network determine the dominating features and filter irrelevant noise. In summary, the
contributions are as follows,

(1) Inspired by the image covariance analysis of 2DPCA, the covariance matrix (CM)
is re-defined with learnt feature maps in the network. Then, the edge distribution
attention module (EDA) is devised based on the covariance matrix analysis, modeling
the dependencies of edge distributions in a self-attentive way explicitly. Through
the column-wise and row-wise edge attention maps, the vertical and horizontal
relationships are both quantified and leveraged. Specifically, in EDA, the handcrafted
feature is successfully combined with learnt ones.

(2) A hybrid attention module (HAM) that emphasizes the edge distributions and
position-wise dependencies is devised. Thereby, more complementary edge and
contextual information are collected and injected. This module supports independent
and flexible embedding by a parallel architecture.

(3) A conceptually end-to-end neural network, named edge distribution-enhanced se-
mantic segmentation neural network (EDENet), is proposed. EDENet hierarchically
integrates HAM to generate representative and discriminative encoded features, pro-
viding available and reasonable cues for dense prediction.

(4) Extensive experiments are conducted on three datasets, ISPRS Vaihingen [43] and
Potsdam [44] and DeepGlobe [45] benchmarks. In addition, the results indicate that
EDENet is superior to other state-of-the-art methods. In addition, the ablation study
further tests the efficacy of EDA.

The remainders of this paper are organized as follows: Section 2 introduces the related
works, including attention mechanism, 2DPCA and non-local block. Section 3 concretely
presents the devised framework and pipeline of sub-modules. Section 4 quantitatively and
qualitatively evaluates the proposed method on both aerial and satellite images. Finally,
the conclusions are drawn in Section 5.

2. Preliminaries
2.1. Attention Mechanism

Attention mechanism (AM) derives from human cognition process, selectively focus-
ing on two main targets: (1) deciding whether the interdependence between the input
elements should be considered; (2) quantifying how much attention/weight should be
put to these elements. Since being successfully applyied to natural language processing
(NLP) [46], sundry visual tasks have reaped many benefits, such as image classification,
object detection, scene parsing and semantic segmentation. [47–50]. The foremost advan-
tage is that AM can be adaptively generalized to all visual tasks by easily embedding to
backbones.

Correspondingly, two tactics are adopted to build the attention modules in vision tasks:
(1) devising an independent branch in a neural network to highlight the strong-correlated
local regions or specific channels’ feature maps, filtering the irrelevant information, such
as [51,52]; (2) completely modeling the dependencies both in spatial and channel domains,
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in which the attention matrix that explicitly quantifies the correlations is formed to reinforce
the semantic knowledge, such as [31,32,53].

In addition, Yang et al. [54] presented a significant analysis and discussion on the
one-step attention modules. They revealed that the suboptimal performance is obtained
accompanying by incorporated noise in the irrelevant regions or pixels. In an attempt to
eliminate the interferences, CCNet [53] repeatedly used attention modules that designed
by Yang et al. to promote the feature maps.

Instead of stacking or listing attention modules, the correlation-based self-attention
mechanism was proposed, which expresses the powerful capability to capture spatial and
channel-wise dependencies simultaneously [31]. In addition, a medical image semantic
segmentation network was deeply inspired by this idea [49]. Similarly, non-local neural
networks [32], ACFNet [33] and OCRNet [34] were devised with desired improvements on
many datasets. For capturing hierarchical features, Li et al. [55] proposed a pyramid atten-
tion network (PAN), combining attention module and spatial pyramid to extract precisely
dense features. Meanwhile, Zhu et al. [56] have proved that the attention mechanism has
great potential in promoting boundary awareness.

To determine the effects of edge information in a learnable style, self-attention heaves
into sight. Provided that the feature maps’ edge distributions are substantially available
and undistorted, we can use covariance matrix analysis to quantify the prior edges in
feature maps followed by learning attentive correlations, generating edge distribution
attentive maps.

2.2. Revisiting 2DPCA

To unravel and learn the edge distribution, it is essential to explain how to represent
the edge information in the learnt feature maps. As discussed above, our idea of building
edge distribution attention module is inspired by the 2DPCA [42], which provides a simple
yet efficient way to describe the prior distributions by covariance matrix analysis [57].
This part is presented to revisit the principal theory of 2DPCA for understanding how
covariance matrix analysis regulates the images.

An arbitrary image can be characterized as a high-dimensional matrix, such as a
natural RGB image is numerically a three-dimensional matrix. Practically, for the sake
of understanding, the explanation starts with a single channel image. Let A denote an
input image with single dimension and X ∈ Rm×n, where m and n represent row and
column respectively. Initially, the vector Vp is designed to project X following the linear
transformation,

Y = XVp, (1)

where Vp is an n-dimensional unitary column vector, Y is projected vector with m dimen-
sions. As can be seen, Y is defined as the projected feature vector of image X. Then, to
measure the discriminatory power of Vp, the total scatter of projected samples are used
and characterized by the trace of covariance matrix. Therefore,

J(Vp) = tr(Mcov), (2)

where Mcov represents the covariance matrix of projected feature vectors, tr(·) is a function
to calculate the trace of matrix and J(·) denotes the total scatter. Regarding the physical
significance, the purpose is to project all the samples by a particular projection direction.
If all the pixels are projected, the total scatter goes maximized. Furthermore, tr(Mcov) is
ascertained as follows,

tr(Mcov) = (Vp)T
[

E(X− EX)T(X− EX)
]
(Vp), (3)
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where E denotes the unitary matrix and (Vp)T means the transpose of Vp. Consequently,
the image covariance matrix is formed as

Mcov
I = E

[
(X− EX)T(X− EX)

]
, (4)

where Mcov
I ∈ Rn×n represents the image covariance matrix and is unequivocally nonnega-

tive definite matrix. When extending to more images with the same spatial size, the average
of all the training samples can be obtained. Here, the Mcov

I is re-inferred as

Mcov
I =

1
N

N

∑
i=1

(
Xi − X

)T(Xi − X
)
, (5)

where X is the average of all the training samples and N is the number of samples. Alterna-
tively, Equation (2) is transformed to

J(Vp) = (Vp)T Mcov
I (Vp), (6)

where Vp is an n-dimensional unitary column vector. The optimal Vp leads to maximized
J(Vp). In other words, the eigenvector of Mcov

I conforms to the largest eigenvalue [53]. A
single optimal projection axis is impossible. So, a set of

{(
Mcov

I
)

1,
(

Mcov
I
)

2, . . . ,
(

Mcov
I
)

d

}
that subject to the orthonormal constraints and maximizing the criterion is presented:{ {(

Mcov
I
)

1,
(

Mcov
I
)

2, . . . ,
(

Mcov
I
)

d

}
= argmaxJ(Vp)(

Mcov
I
)T

i

(
Mcov

I
)

j = 0, i 6= j, i, j = 1, 2, . . . , d
. (7)

After finding the optimal projection vectors, these vectors are then delivered to extract
the features. Given the image sample X,

Yk = XVp
k , k = 1, 2, . . . , d, (8)

Thus, the feature matrix is produced with Y = [Y1, Y2, . . . , Yd], where [Y1, Y2, . . . , Yd]
denotes the principal component vectors.

In general, 2DPCA creates a projection process to extract the feature matrix in virtue
of covariance matrix analysis. This finding makes all the samples enlarged along with the
principal directions and shrank along with the non-principal ones.

2.3. Non-Local Block

As a typical self-attention block, non-local block (NLB) captures position-wise correla-
tions with comparative lower time and space occupation. Originally, non-local—a classical
filtering algorithm—computes a weighted mean of all pixels, allowing distant pixels to
contribute to the specific pixel along with patch appearance similarity. Following the idea
of non-local means, the non-local block in neural networks is invented.

As detailed in Figure 1, the pipeline of the non-local block is presented. In the be-
ginning, three convolutions are implemented to produce three multifarious feature maps.
Then, they are reshaped to the given dimensionality. Next, the flattened features of the first
and second branches are used to calculate similarity, generating positional self-attentive
maps via matrix multiplication. At last, one more matrix multiplication is applied to the
flattened features of the third branch and the self-attentive map to inject the position-wise
dependencies to the raw features. Towards the end, a reshape operation followed by
1 × 1 convolutions is experienced to recover the learnt representations. Therefore, the out
sophisticated features retain the same dimensionality as the input.
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Formally, the NLB is described as

Fp = Conv1×1
(

Ap·F3
)
, (9)

where Fp ∈ RH×W×C denotes the position-wise attention enhanced feature maps and
Ap ∈ RN×N is the attention maps that built upon the first two branches’ feature maps.

Intuitively, the flow path of NLB is clear and concise. On the one hand, the position-
wise dependencies are modeled and injected by matrix multiplications. On the other hand,
the pipeline shows that NLB is flexible. Because NLB only relies on the input feature maps.
As a result, NLB presents its significance in embedding to various networks for different
visual tasks. In the rest of this paper, NLB is termed as SAM in the proposed framework.

3. The Proposed Method
3.1. Overview

In contrast to ResUNet-a [58], SCAttNet [38] is inexpensive in time and space costs.
Nonetheless, the results raise slightly. The finding indicates that the attention-based
models are available for improving learnt representations of RSI. We conclude that these
two studies ignore the prior distribution information of edge/contour, delineating object
entities with blurs.

This part below illustrates and explains the overall framework of EDENet. Essentially,
as presented in Figure 2, its shape looks like a variant of U-Net, based on encoder-decoder
architecture. As for the encoder stage, in this study, many standard backbones are allow-
able, such as ResNet, MobileNet and DenseNet. In addition, the implementation details
will be further discussed in the next section. Correspondingly, the decoder symmetrically
recovers the feature maps for dense prediction. Instead of using unitary feature maps that
output from the encoder, feature maps with multi-spatial size are concatenated for pro-
viding important contextual cues, including semantic, spatial and edge clues. To alleviate
the structural loss, the HAMs are hierarchically embedded to boost the relevant feature
maps. Noticeably, HAM hybridizes SAM and EDA parallelly, enriching the contextual
dependencies and edge information simultaneously. The following is a brief description of
HAM and EDA, including topological architecture and formalization.
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3.2. Edge Distribution Attention Module

As previously stated, edges are of great importance for segmentation. Suppose that
the more accurate boundary is delineated. Naturally, the localization of segments/objects
is given. Existing networks, such as SegNet, U-Net and DeepLab V3+, have pointed out
that both the accuracy of localization and recognition are equally helpful to the perfor-
mance. However, these approaches rest on the convolutions’ self-regulating ability, which
is uncontrollable and variable. Especially for RSI, understanding and modeling the edge
distributions impacts more on segmentation. As we all know, the objects of RSI are various,
diverse and complex. The pixels lie in the central parts of objects always correctly labeled,
while the pixels around edges are easily misclassified. The inconsistent, mixing and het-
erogeneous edge regions cause this, presenting massive error-prone pixels. Although the
recently proposed ResUNet-a and SCAttNet are implemented to produce more consis-
tent and smooth boundaries from enlarging the receptive field and paying attention to
dependencies, the prior edge distributions have not been closely examined and leveraged.

The objective of designing EDA is to determine structural information in a self-
attentive way, offering more comprehensive edge contexture. Visually, learning edges
enable the objects with responsibly locating positions. Implicitly, the salient edges proffer
discriminative contextual information, especially the object-background heterogeneity.
This attribute helps the network conquer the visual ambiguities to the uttermost. With
maximizing the certainty of classifying edge-around pixels, the learnt representations of
objects get discriminative. Hereafter, the principles and technological flow are introduced.

3.2.1. Re-Defining Covariance Matrix for Feature Matrix

Before explaining the pipeline of EDA, it is necessary to re-define the covariance matrix
(CM) for the feature matrix. As opposite to densely distributed central parts of entities,
edges/contours reveal sparse characteristic. Originally, PCA takes advantages of CM to
de-correlate the data to search an optimal basis, accounting for compactly representing the
data. This process is also defined as Eigen value decomposition. Associated with PCA, the
global data distribution can be modeled completely. However, feature maps always have
hundreds of dimensions, causing high memory and time costs when extracting principal
components. Surprisingly, Zhang et al. [55] raised a two-directional 2DPCA and reported
that calculating the row and column-directional principal representations is sufficient. To
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sum up, CM here is re-defined as a projection matrix to regularize the feature matrix that
contains the global distribution information. Formally,

F′ = MCF, (10)

where F ∈ RH×W×n denotes the original feature maps, MC ∈ Ra×a is the covariance
matrix and F′ ∈ RH×W×n is the projection results by covariance matrix. Commonly, a
single channel feature map with size of H ×W can be flattened to a vector with length
a = H ×W. Accordingly, CM is nonnegative definite. Then, the Eigen Decomposition for
CM is formulated as

MC = PβP−1, (11)

where β denotes the defined diagonal matrix of Eigen values, P consists of the orthogonal
Eigen vectors. Hence,

F′ = PβP−1F. (12)

Essentially the same analysis to 2DPCA, an alternative explanation of this projection
process is observed. The selected samples or anchors will be enlarged along with the
principal directions and shrank along with the others.

Moreover, the CM can model the data dependencies across different components within
the flattened vectors, in which the different physical meanings and units are acceptable.

In conclusion, of the two properties discussed above, we introduce the EDA on this
basis of covariance matrix analysis. In EDA, a hand-engineered feature that describes
edge distribution, also known as the Canny operation, is combined in a self-attentive way,
highlighting and re-weighting edge information in learnt feature maps.

3.2.2. Edge Distribution Attention Module

Apart from the non-local block, the hand-engineered features with expertise and prior
knowledge, such as boundary, shape and texture, are also of great significance. As we
all know, the distinguishable edge information can provide a more refined localization of
objects or regions. Previous studies, such as FCN-based networks, fail to preserve the edge
information. Furthermore, the deeper network makes the edge smoothed out. Therefore,
injecting the edge features to primarily learnt representations lends strong support to infer
the pixel-wise labels.

In general, the EDA continues to use the parallel structure inspired by the non-local
block. As presented in Figure 3, initially, the input feature maps F ∈ RH×W×C are convolved
to three diverse representations. Filtered by Canny operator, which is explicitly applied as
depth-wise convolution on each channel, three bran-new high-dimensional features are
obtained. They are written as Fc ∈ RH×W×C′ , Fr ∈ RH×W×C′ and Fn ∈ RH×W×C. The top
branch aims to extract column-wise dependencies of edge, while the bottom one for rows.

For row-wise, the input feature map Fr ∈ RH×W×C′ is split in channel dimension as
Fr =

{
F1

r , F2
r , . . . FC′

r

}
. As discussed in Sections 2.2 and 3.2.1, we define and formulate edge

covariance matrix as follows:

Cove
r =

1
C′

C′

∑
i=1

(
Fi

r − Fr

)T(
Fi

r − Fr

)
, (13)

where Fr =
1
C′∑

C′
i Fi

r is an average matrix and Fi
r ∈ RW×H . The Cove

r is re-defined row-wise
edge covariance matrix. The subscript r denotes the row and superscript e means edge
respectively. In addition, superscript T is the transpose of matrix. Therefore, the row-wise
edge attention map is generated followed by a Softmax layer,

Ae
r(i, j) =

exp(Cove
r(i, j))

∑H
j=1 exp(Cove

r(i, j))
, (14)
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where (i, j) represents position in Cove
r. Intuitively, the Ae

r(i, j) quantifies the correlations
between ith row and jth row and Ae

r ∈ RH×H . Afterward, the depth-wise right matrix
multiplication is applied to augment the feature map as (Fn)j·Ae

r, where (Fn)j represents

the feature map of jth channel.
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As to column-wise edge attention pipeline, the similar calculations are implemented.
First of all, the Fc ∈ RH×W×C′ is split in channel dimension. In addition, the following
matrix is defined,

Cove
c =

1
C′

C′

∑
i=1

(
Fi

c − Fc

)T(
Fi

c − Fc

)
, (15)

where Fi
c ∈ RW×H means the ith channel in Fc ∈ RH×W×C′ and Fc = 1

C′∑
C′
i Fi

c also repre-
sents the average values. Then, the column-wise correlations can be produced,

Ae
c(i, j) =

exp(Cove
c(i, j))

∑W
j=1 exp(Cove

c(i, j))
, (16)

where (i, j) represents position in Cove
c. Intuitively, the Ae

c(i, j) quantifies the correlations
between ith column and jth column and Ae

c ∈ RW×W . Subsequently, a depthwise left matrix
multiplication is realized. Finally, an EDA refines the input feature maps to

(Fe)j = Ae
c·(Fn)j·A

e
r, (17)

where subscript j denotes the jth channels’ feature matrix and Fe denotes the edge distribu-
tion enhanced feature maps.

3.3. Hybrid Attention Module

In Sections 2.3 and 3.2.2, the pipeline of SAM and EDA were explained. The chapter
that follows moves on to deliberate the fusion of these two modules.

Resort to the comprehensive analysis of residual connection; it is an efficient way
to highlight the edge information in learnt representations. In this way, the pixels in the
boundary areas have an auxiliary representation-tensor, making the error-prone pixels
easily classified with high certainty and correctness. And the details are illustrated in
Figure 4.
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Formally, let the input feature maps be F ∈ RH×W×C, where H is the height, W is
the width and C is the number of channel. Feeding the original feature map to HAM,
two parallel branches form two refined feature maps, they are Fe and Fp respectively. In
addition, both the two refined feature maps have same dimensions with H ×W × C. Thus,
HAM generates the output feature maps,

Fh = µFe + λFp, (18)

where Fh ∈ RH×W×C is the output refined feature maps by HAM, µ and λ are the learnable
coefficients of weights.

Generally speaking, with the design of HAM, the edge-enhanced features are injected
into position-attentive components. To further verify the importance of two kinds of fea-
tures, the learnable coefficients are devised and they can be optimized along with training.
Using HAM to model the dependencies of global edge distribution and position-wise
dependencies over local and global areas, the learnt features can provide more reasonable
and consistent semantic cues.

4. Experiments and Results
4.1. Experimental Settings
4.1.1. Datasets

Turning now to the experiments, the datasets and their properties are introduced
firstly. Then, as listed in Table 1, three representative benchmarks are used to evaluate the
performance. ISPRS Vaihingen and Potsdam datasets are acquired by airborne sensors with
very high spatial resolution, while the DeepGlobe dataset contains satellite images from
the DigitalGlobe platform. The rest of this section presents the data description in detail.

Table 1. Datasets and properties.

Datasets Vaihingen Potsdam DeepGlobe

Bands used NIR, R, G NIR, R, G R, G, B
GSD 9 cm 5 cm 0.5 m

Number of available images 16 24 803
Spatial size 2500 × 2500 6000 × 6000 2448 × 2448

Imaging sensors Airborne Airborne Satellite

1. ISPRS Vaihingen dataset

The Vaihingen dataset [43] is acquired by airborne sensors that cover the Vaihingen
region in Germany. Semantic labeling of the urban objects at the pixel level is challenging
due to the high intra-class variance while the inter-class is low. Therefore, the semantic
segmentation of very high-resolution aerial images drives extensive scholars to design
advanced processing techniques. In the associated label images, six categories are annotated.
They are impervious surfaces, building, low vegetation, tree, car and clutter/background.

As shown in Figure 5c,d, the raw image consists of three spectral bands: Red (R),
Green (G) and Near Infrared (NIR). According to the public data, there are 16 images with
a spatial size of around 2500 × 2500 available. The ground sample distance (GSD) is 9 cm.
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2. ISPRS Potsdam dataset

Another available semantic labeling benchmark of ISPRS is the Potsdam dataset [44],
imaging on an airborne platform. The illustration of a random sample is presented in
Figure 5a,b. The spatial size is 6000× 6000 pixels with a 5 cm of GSD. The same annotations
are labeled as the Vaihingen dataset. This dataset releases 24 images for academic objectives.

3. DeepGlobe dataset

DeepGlobe land cover classification dataset [45] contains high-resolution satellite
images courtesy of DigitalGlobe. The available data consists of 803 images with the spatial
size of 2448 × 2448. Correspondingly, the well-annotated ground truth images label seven
categories. They are urban land, agriculture land, rangeland, forest land, water, barren
land and unknown area. Figure 6a,c are two samples and Figure 6b,d are the associated
label image.

Generally speaking, to extensively evaluate the performance, both aerial and satellite
images are necessary to be tested. Considering the heterogeneous intra-class variants and
inter-class similarities, the network is expected to learn the key information, unraveling the
inherent correlations. So, ISPRS benchmarks and the DeepGlobe dataset are tested.
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4.1.2. Hyper-Parameters and Implementation Details

Prior to the experiments, the hyper-parameter settings should be clearly defined and
identified. As listed in Table 2, the hyper-parameters and implementation details are
presented. Initially, the raw images and annotated ground truth are split to sub-patches
with a spatial size of 256 × 256. Then, uniformly, the data partitioning subjects to a ratio
of 8:1:1. In addition, the three parts of data is non-overlapping. The validation and test
datasets are un-trained. In addition, the same data augmentations are applied.

Table 2. Hyper-parameters and implementation details.

Datasets Vaihingen Potsdam DeepGlobe

Backbone ResNet 101 ResNet 101 ResNet 101
Batch size 16 16 16

Learning strategy Poly decay Poly decay Poly decay
Initial learning rate 0.002 0.002 0.002

Loss Function Cross-entropy Cross-entropy Cross-entropy
Optimizer Adam Adam Adam
Max epoch 500 500 200

Sub-patch size 256 × 256 256 × 256 256 × 256
Total number of sub-patches 1520 8576 65043

Training set (number of sub-patches) 1216 6860 52035
Validation set (number of sub-patches) 152 858 6504

Test set (number of sub-patches) 152 858 6504

Data augmentation Rotate 90, 180 and 270 degrees, horizontally and
vertically flip

Moreover, the backbone, ResNet 101, is commonly used due to the less transformation
loss and feature distortions by residual connections. In our network, ResNet 101 corre-
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sponds to the standard encoder in Figure 2 and the decoder is symmetric. In addition, the
layers and structures are referred to [59].

As listed in Table 3, several mainstream methods, including classical segmentation
networks, attention-based methods and RSI-specific networks, are compared to evaluate
performance comprehensively. Some of them are initially designed for natural images, yet
we re-implement these methods on three RSI datasets successfully and yield a not bad
result. In contrast, no previous study has investigated the statistical edge and incorporated
it in an end-to-end learnable style, causing performance bottlenecks.

Table 3. Comparative methods.

Methods Categories References

SegNet
Classical networks

A deep convolutional encoder-decoder
architecture for image segmentation [19]

U-Net Convolutional networks for biomedical
image segmentation [20]

DeepLab V3+
Encoder-decoder with atrous separable

convolution for semantic image
segmentation [24]

CBAM
Attention-based

networks

Convolutional block attention module [30]

DANet Dual attention network for scene
segmentation [31]

NLNet Non-local neural networks [32]

OCRNet Object-contextual representations for
Semantic Segmentation [34]

ResUNet-a RSI-specific networks
A deep learning framework for semantic

segmentation of remotely sensed data [58]

SCAttNet
Semantic segmentation network with spatial

and channel attention mechanism for
high-resolution remote sensing images [38]

EDENet Ours /

4.1.3. Numerical Metrics

In experiments, two widely used numerical metrics, OA (Overall Accuracy) and mIoU
(mean intersection over union) are calculated to quantify the performance.

OA =
TP + TN

TP + FP + FN + TN
, (19)

mIoU =
TP

TP + FP + FN
, (20)

where TP denotes the number of true positives, FP denotes the number of false positives,
FN denotes the number of false negatives and TN denotes the number of true negatives.

4.2. Comparison with State-of-the-Art

We reasoned that the extraction and injection of edge distributions attentively performs
important effects on boosting the segmentation accuracy. In our work, we sought to
establish a methodology for leveraging prior edge information of learnt features. Inspired
by two directional covariance matrix analysis, EDA is devised and incorporated into
EDENet. To evaluate the performance, the experiments are carried on three different
benchmarks. The rest of this section will further compare and discuss the collected results.

4.2.1. Results on Vaihingen Dataset

Table 4 reports results on the Vaihingen test set and highlights the best performance
in bold. Apart from overall accuracy and mIoU, the class-wise accuracy and IoU are also
collected in OA/IoU form for individual categories. Generally speaking, it is apparent that
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the highest OA and mIoU values are obtained by EDENet, demonstrating exceptionally
good performance in accuracy.

Table 4. Results on Vaihingen dataset. Accuracy of each category is presented in the OA/IoU form.

Methods Impervious
Surfaces Building Low

Vegetation Tree Car Clutter OA mIoU

SegNet [19] 92.26/78.77 90.85/75.62 80.51/62.04 77.13/57.91 60.54/51.05 73.30/54.73 79.10 63.35
U-Net [20] 92.60/78.63 90.73/76.52 79.85/62.17 77.58/58.26 69.79/55.20 74.32/59.41 80.81 65.03

DeepLab V3+ [24] 93.44/80.41 89.85/77.43 81.05/66.53 78.02/62.94 70.41/58.76 77.43/70.19 81.70 69.38
CBAM [30] 93.34/82.98 89.92/78.41 82.18/65.70 77.89/62.25 71.04/66.74 75.51/63.49 81.65 69.93
DANet [31] 93.52/83.76 90.04/78.15 83.22/69.21 78.46/63.21 70.87/65.35 76.54/61.59 82.11 70.21
NLNet [32] 93.21/84.00 91.12/79.21 84.40/68.33 79.53/63.14 72.17/67.97 79.45/65.66 83.31 71.38

OCRNet [34] 96.13/86.12 91.62/80.38 89.11/70.87 83.88/65.19 72.08/67.52 78.65/65.67 85.25 72.62
ResUNet-a [54] 93.50/87.17 97.12/81.29 85.21/70.68 85.83/66.55 79.92/71.17 81.91/75.74 87.25 75.43
SCAttNet [37] 89.13/84.50 92.58/80.59 86.97/70.29 85.31/63.56 75.50/68.45 82.83/69.21 85.39 72.77

EDENet 96.69/88.06 97.15/82.22 89.44/71.15 90.52/70.48 84.84/73.70 84.17/75.84 90.47 76.91

The baseline models, such as SegNet, U-Net and DeepLab V3+, are susceptible to
the interference of ubiquitously subsistent intra-class variants and inter-class similarities.
Among them, SegNet has an OA of 79.10%, dramatically lower than EDENet with more
than ten percentages. DeepLab V3+ enlarges the receptive field to capture more local-
contextual information, boosting the segmentation results by increasing about 2.5% in OA
and 6% in mIoU than SegNet. However, the results are imprecise enough.

Resorting to the powerful capability in learning long-range dependencies of attention
mechanisms CBAM, DANet, NLNet and OCRNet eventually corroborate the impacts of
these dependencies. By the similarity analysis, also known as the generation of attention
map, position-wise representations are refined with more contextual information that
amplifies the margin distance of categorical representations. As a result, the geo-details
are enhanced, reducing the uncertainty in identification. Compared to classical models,
attention-based methods have experienced a remarkable overall improvement. The early
proposed CBAM and DANet employ channel-wise attention and spatial-wise attention
parallelly to enrich the contextual information, arising OA and mIoU at about 1% than
DeepLab V3+. It is worth noting that CBAM and DANet have fewer parameters and time
costs than DeepLab V3+. Moreover, NLNet proposed a positional self-attention mechanism,
capturing channel and spatial correlations simultaneously. Therefore, the OA and mIoU
further increase to more than 83% and 71%. Specifically, OCRNet even reaches more than
72% in mIoU and 85% in OA by quantifying and injecting pixel-object correlations in
addition to pixel-pixel correlations.

Initially, these natural image-targeted networks are not inadequate for RSI. It is sug-
gested that two critical properties of RSI lead to insufficient applications. One is that RSI
is always acquired from a high-altitude angle. The other is the wide observation range
and the covered complex and diverse visual objects by imaging sensors. For example, the
visual illustration of cars is with different colors, shapes, textures, even sheltered by trees,
buildings, or shadows. Striven to alleviate the interference, it is necessary to enhance the
distinguishability of learnt representations. Conventionally, ResUNet-a integrates various
strategies to promote the probability of correct classification, including multi-task infer-
ence, multi-residual connections, atrous convolutions, pyramid scene parsing pooling and
optimized Dice loss function. Even though the accuracy, which achieves 87.25% in OA and
75.43% in mIoU, is acceptable, the size of the trained model parameter is large and the time
and memory occupation are criticized. In contrast, SCAttNet is a lightweight model that
uses a dual attention mechanism to optimize the learnt feature maps.

Thus far, the previous works have argued that the attention mechanism is also appli-
cable in RSI semantic segmentation. Nevertheless, they equally handle the pixels, whether
they are edge-pixel or not. As discussed in Section 1, the edge pixels are error-prone,
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conjointly impact the around pixels’ classification to an extent. Starting from the image
covariance matrix analysis, we find that edge distributions can be learned and utilized.
Then, the column-wise and row-wise edge attention maps are generated and injected into
learnt representations to highlight the edge pixels. Consequently, the OA and mIoU are
strikingly boosted. Compared to ResUNet-a, which has the best performance on RSI yet,
EDENet increases OA and mIoU more than 2% and 1% by a few matrix manipulations.
More concretely, EDENet surprisingly enhances the segmentation performance on all cat-
egories, especially in distinguishing objects with confusing features. As for cars, which
are sensitive to the boundary when recognizing, the growth of accuracy is excellent, with
almost 5% to ResUNet-a. Unquestionably, the exact contour enables the easily-confused
pixels in short-distance and long-distance to be correctly classified with high definiteness.

The visual inspection is presented in Figure 7. We randomly select two samples and
predict the pixel-wise label. Intuitively, deep neural networks are capable of applying to
RSI semantic segmentation tasks. Thus, the objects are labeled corresponding to ground
truth. Nonetheless, the blurry boundaries are ubiquitous by existing methods, leading to
unsatisfactory results. As for easily-confused low vegetation and trees, the delineation of
boundaries plays a pivotal role in locating the position of objects. With an accurate location,
the segments tend to be more complete and consistent.
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To sum up, attributing to the distinct boundaries by injecting edge distributions
attentively, overall accuracy and visualizations are significantly improved compared to
other SOTA methods on the ISPRS Vaihingen benchmark.

4.2.2. Results on Potsdam Dataset

Different from the Vaihingen dataset, Potsdam has more data for training and valida-
tion. Meanwhile, the ground objects exhibit entirely heterogeneous visual characteristics,
as previously illustrated in Table 5.

Table 5. Results on Potsdam dataset. Accuracy of each category is presented in the OA/IoU form.

Methods Impervious
Surfaces Building Low

Vegetation Tree Car Clutter OA mIoU

SegNet [19] 92.12/78.66 90.72/75.51 80.40/61.94 77.01/57.83 60.45/50.97 73.19/54.65 78.98 63.26
U-Net [20] 92.46/78.51 90.60/76.41 79.74/62.08 77.46/58.17 69.68/55.12 74.21/59.32 80.69 64.94

DeepLab V3+ [24] 93.30/80.30 89.72/77.31 80.93/66.43 77.90/62.85 70.30/58.67 77.31/70.08 81.58 69.28
CBAM [30] 93.21/82.86 89.78/78.30 82.06/65.60 77.77/62.16 70.93/66.64 75.40/63.40 81.53 69.83
DANet [31] 93.39/83.63 89.90/78.04 83.10/69.11 78.34/63.12 70.76/65.25 76.43/61.50 81.99 70.11
NLNet [32] 93.08/83.87 90.99/79.10 84.28/68.23 79.41/63.05 72.07/67.87 79.33/65.56 83.19 71.28

OCRNet [34] 96.15/86.12 91.63/80.38 89.12/70.87 83.90/65.19 72.09/67.52 78.66/65.67 85.27 72.62
ResUNet-a [54] 93.51/87.19 97.14/81.30 85.22/70.70 85.84/66.56 79.93/71.18 81.92/75.75 87.28 75.45
SCAttNet [37] 89.14/84.51 92.59/80.60 86.98/70.30 85.32/63.57 75.51/68.46 82.84/69.22 85.41 72.78

EDENet 96.70/88.07 97.17/82.23 89.46/71.16 90.53/70.49 84.85/73.71 84.18/75.85 90.50 76.92

Coincidentally, the overall accuracy performs similar trends to Vaihingen. In addition,
the OA and mIoU are relatively higher than Vaihingen by EDENet. Furthermore, all the
category-wise accuracy of EDENet is also the highest to other models. This fact suggests
that EDENet manifests decent generalizability. Moreover, owing to the abundant well-
annotated data for training, the robustness of the network is enhanced.

In general, attention-based methods are feasible for capturing various contextual
information, facilitating the learning ability of geo-objects. Therefore, the accuracy of
attention-based methods is holistically superior to the classical ones. Above all, OCRNet
takes advantage of pixel-object contextual relationships besides pixel-wise relationships,
revealing the significance of geo-objects’ representations. In this way, OCRNet reaches
more than 85% of overall accuracy and 72% of mIoU, dramatically improving. Similarly,
SCAttNet designed dual attention modules to answer the complex of RSI objects, resulting
in almost the same level of performance to OCRNet. By combining multiple tricks, ResUNet-
a boosts the overall accuracy of 2% than OCRNet.

However, the existing methods are still far from EDENet, which produces a very com-
petitive result. Specifically, the impervious surfaces and buildings are barely misclassified.
Moreover, the easy-confused low vegetation and trees are also duly partitioned by the
prior knowledge of edge. In addition, the classification of cars depends on locating the
position, which is closely related to the edge information. Eventually, cars have the most
considerable growth.

For qualitative evaluation, two samples of the Potsdam test set are predicted and
illustrated in Figure 8. Sharpen edges make the interior pixels of an object more accessible to
be classified correctly. For instance, the low vegetation and trees always appear concurrence
a neighboring. However, from the visual perspective in RSI, they are easily-confused by
the high inter-class consistency. Once the boundaries are misregistered, a deluge of pixels
is forced to be wrongly predicted. Although attention-based and RSI-specific approaches
have leveraged contextual information to enhance the distinguishability between different
categories’ pixels, the blurry edges still trouble the semantic segmentation performance. As
we can see, cars, marked as yellow, are challenging to outline under deficient boundaries
wholly. Figure 8l shows the results produced by EDENet, by which the edges are retained
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to the uttermost refers to ground truth. In fact, EDENet segments RSI with high-fidelity
and high consistency.

Remote Sens. 2022, 13, x FOR PEER REVIEW 19 of 27 
 

 

 

Figure 8. Visual inspections of random samples from Potsdam test set. (a) raw image, (b) ground 

truth, (c) SegNet, (d) U-Net, (e) DeepLab V3+, (f) CBAM, (g) DANet, (h) NLNet, (i) OCRNet, (j) 

ResUNet-a, (k) SCAttNet, (l) EDENet. 

Comparing classical and attention-based ones has convinced the achievability and 

availability of attention mechanisms in RSI feature optimization. CBAM, DANet and 

NLNet extract global context by attention modules to enrich the inference cues and a fair 

increase of more than 1% than DeepLab V3+ is produced. With more complementary con-

textual information, OCRNet further boosts OA by about 1%. Likewise, SCAttNet sequen-

tially embeds channel and spatial attention modules to refine the learnt features adap-

tively. As a result, this lightweight network achieves similar performance to OCRNet. Em-

pirically, ResUNet-a analyzes the essence of RSI when distinct confusable pixels and em-

ploys multiple manipulations. Therefore, the OA and mIoU are over 80% and 58% by 

ResUNet-a, which is the first place ever before. Unfortunately, these models ignore the 

impacts of localization by edge delineation, triggering rough boundaries. EDENet learns 

the edge distributions and injects them into feature optimization, provoking a significant 

improvement of accuracy. 

In the visual inspections from Figure 9, the top sample covers five classes of ground. 

Inherently, the water areas surrounding rangeland and agricultural land are not visually 

recognizable. In addition, the classical networks work poorly on distinct these objects. In 

this context, consistent boundaries are critical in actuating the network to separate the 

different pixels assuredly. EDENet keeps the highest consistency with ground truth by 

highlighting the edges in learnt representations compared to the SOTA methods. Similar 

to the bottom sample, only a tiny part of the edges is out of position, leading to some 

Figure 8. Visual inspections of random samples from Potsdam test set. (a) raw image, (b) ground
truth, (c) SegNet, (d) U-Net, (e) DeepLab V3+, (f) CBAM, (g) DANet, (h) NLNet, (i) OCRNet,
(j) ResUNet-a, (k) SCAttNet, (l) EDENet.

Overall, EDENet expresses strong power in applying to RSI with different spatial
resolution and various ground features according to the quantitative and qualitative eval-
uations. The exceptionally preferable results are obtained by learning and injecting edge
distributions of feature maps, which indirectly help the network adjust error-prone pixels.

4.2.3. Results on DeepGlobe Dataset

As discussed above, the DeepGlobe dataset collects high-resolution sub-meter satellite
imagery. Due to the variety of land cover types and the density of annotations, this dataset
is more challenging than existing counterparts like ISPRS benchmarks. In this regard, the
grade of difficulty in semantic segmentation is leveled up majorly.

As reported in Table 6, the quantitative results are collected, where the bold number
indicates the best. Typically, the OA and mIoU have appreciably decrease compared
to ISPRS benchmarks, ascribing to the indistinguishable spatial and spectral features by
satellite sensors. Still and all, EDENet realizes the accurate classification of each category
without exception, contributing to the highest OA and mIoU of more than 83% and 60%,
respectively. To our knowledge, the differential accuracy across all categories is accounted
for the imbalanced distribution, among which the agricultural land has the most pixels.
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Table 6. Results on DeepGlobe dataset. Accuracy of each category is presented in the OA/IoU form.

Methods Urban
Land

Agriculture
Land Rangeland Forest Land Water Barren

Land Unknown OA mIoU

SegNet 70.25/50.95 81.17/58.87 69.09/50.11 67.78/49.16 83.52/60.57 61.13/44.34 58.06/42.11 70.14 50.87
U-Net 76.54/55.51 85.66/62.13 75.28/54.59 73.86/53.57 85.15/61.76 59.22/42.95 58.07/42.12 73.40 53.23

DeepLab V3+ 77.23/56.01 86.18/62.50 77.62/56.29 74.48/54.02 87.14/63.20 65.29/47.35 61.11/44.32 75.58 54.81
CBAM 79.51/57.67 87.75/63.64 79.19/57.43 75.56/54.80 87.58/63.52 67.14/48.69 62.02/44.98 76.96 55.82
DANet 79.48/57.64 86.98/63.08 79.02/57.31 75.79/54.97 88.13/63.92 67.01/48.60 63.17/45.81 77.08 55.91
NLNet 79.92/57.96 87.52/63.48 79.97/58.00 76.61/55.56 88.06/63.87 66.95/48.56 63.59/46.12 77.52 56.22

OCRNet 80.73/58.55 88.35/64.08 81.10/58.82 77.91/56.51 89.33/64.79 68.08/49.38 65.57/47.56 78.72 57.10
ResUNet-a 79.03/57.32 90.13/65.37 79.67/57.78 79.92/57.96 88.21/63.98 77.02/55.86 70.88/51.41 80.69 58.52
SCAttNet 76.55/55.52 87.30/63.31 77.16/55.96 80.44/58.34 91.23/66.17 70.29/50.98 68.53/49.70 78.79 57.14
EDENet 81.59/59.17 93.05/67.49 82.25/59.65 82.51/59.84 91.27/66.19 79.52/57.67 73.18/53.07 83.34 60.44

Comparing classical and attention-based ones has convinced the achievability and
availability of attention mechanisms in RSI feature optimization. CBAM, DANet and
NLNet extract global context by attention modules to enrich the inference cues and a fair
increase of more than 1% than DeepLab V3+ is produced. With more complementary
contextual information, OCRNet further boosts OA by about 1%. Likewise, SCAttNet
sequentially embeds channel and spatial attention modules to refine the learnt features
adaptively. As a result, this lightweight network achieves similar performance to OCRNet.
Empirically, ResUNet-a analyzes the essence of RSI when distinct confusable pixels and
employs multiple manipulations. Therefore, the OA and mIoU are over 80% and 58% by
ResUNet-a, which is the first place ever before. Unfortunately, these models ignore the
impacts of localization by edge delineation, triggering rough boundaries. EDENet learns
the edge distributions and injects them into feature optimization, provoking a significant
improvement of accuracy.

In the visual inspections from Figure 9, the top sample covers five classes of ground.
Inherently, the water areas surrounding rangeland and agricultural land are not visually
recognizable. In addition, the classical networks work poorly on distinct these objects. In
this context, consistent boundaries are critical in actuating the network to separate the
different pixels assuredly. EDENet keeps the highest consistency with ground truth by
highlighting the edges in learnt representations compared to the SOTA methods. Similar
to the bottom sample, only a tiny part of the edges is out of position, leading to some
blurry boundary and misclassification bias. However, the global accuracy and consistency
are retained.

To sum up, EDENet can adaptively learn and highlights the edges without depend-
ing on the spatial resolution or the visual separability. Although the overall accuracy is
decreased, EDENet outperforms SOTA methods remarkably. In addition, the achievements
further demonstrate the strong generalizability of EDENet on multi-sensors imagery.
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Figure 9. Visual inspections of random samples from DeepGlobe test set. (a) raw image, (b) ground
truth, (c) SegNet, (d) U-Net, (e) DeepLab V3+, (f) CBAM, (g) DANet, (h) NLNet, (i) OCRNet,
(j) ResUNet-a, (k) SCAttNet, (l) EDENet.

4.3. Ablation Study of EDA

The previous studies using CNNs indicate that learning distinguishable representa-
tions is essential to enhance segmentation performance. Furthermore, attention mecha-
nisms are employed as an efficient way to refine representations. Nevertheless, they did
not learn the edge information, which is pivotal to localize the objects and calibrate the
pixels around the edge. The devised EDA bridges this gap by attentively learning prior
edge distribution in feature maps at arbitrary scales. In addition, we heliacally embed this
module to standard encoder-decoder architecture, generating excellent results.

To comprehensively evaluate EDA, the ablation study is implemented under the
same hyper-parameters and runtime environment. Practically, a version that removes the
EDA from HAM in Figure 4 is constructed and named as non-EDA. Now, as presented
in Table 7, the OA and mIoU are collected to analyze the effects. Generally, EDA elicits
about a 5% increase on Vaihingen and Potsdam datasets in OA and 4% on DeepGlobe. As
for mIoU, the relative improvements are deserved. The effects of EDA are dramatically
illustrated. Moreover, we monitor the loss and mIoU during the training process to support
the evaluation, which can be seen in appendices.

Overall, EDA essentially guarantees unbiased edges, resulting in visually well-segmented
objects and obtaining desirable quantitative accuracy.
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Table 7. Ablation study’s results. The accuracy is presented in the OA/mIoU form.

Models Vaihingen Potsdam DeepGlobe

non-EDA version 85.60/73.34 85.48/73.24 79.65/57.77
EDENet 90.47/76.91 90.50/76.92 83.34/60.44

5. Discussions

Prior studies have noted the importance of contextual information in enhancing the
distinguishability of learnt representations. Attention mechanisms paved an effective way
for capturing the context by several matrix manipulations. Thus, the accuracy has been
boosted. However, the edges should be emphasized due to their essential locations. Once
the edges are failed to be delineated, the blurs will lead to misconceived and omissive
pixels. Therefore, our study seeks to produce a new attention module, which can be flexibly
embedded into the end-to-end segmentation network and a learnable way to extract and
inject edge distributions of learnt feature maps.

Inspired by the attention mechanism and covariance matrix analysis in 2DPCA, we pro-
pose EDENet, which hierarchically embeds hybrid attention modules that learns convolved
features and highlights edge distributions simultaneously. As a result, the experiments
on aerial and satellite images have illustrated the excellence of EDENet. Both numerical
evaluations and visual inspections have supported this finding. Moreover, unlike SOTA
RSI-specific methods, the OA and mIoU are improved significantly without the complex
design of network architecture.

6. Conclusions

The semantic segmentation of RSI plays a pivotal role for various downstream ap-
plications. In addition, boosting the accuracy of segmentation has been a hot topic in the
field. The existing approaches have produced competitive results by attention-based deep
convolutional neural networks. However, the deficiency of edge information leads to blurry
boundaries, even raising high uncertainties of long-distant pixels during recognition.

In this study, we have investigated an end-to-end trainable semantic segmentation
neural network of RSI. Essentially, we first formulate and model the edge distributions of
encoded feature maps inspired by covariance matrix analysis. Then, the designed EDA
learns the column-wise and row-wise edge attention maps in a self-attentive fashion. As a
result, the edge knowledge is successfully modeled and injected into learnt representations,
facilitating representativeness and distinguishability. In addition to leverage edge distribu-
tions, HAM employs non-local block as another parallel branch to capture the position-wise
dependencies. As a result, the complementary contextual and edge information are learned
to enhance the discriminative capability of the network. In experiments, three diverse
datasets from multiple sensors and different imaging platforms are examined. The results
indicate the efficacy and superiority of the proposed model. With the ablation study, we
further demonstrate the effects of EDA.

Nevertheless, there are still several challenging issues to be addressed. First of all, the
multi-modal data are necessarily fused to improve the semantic segmentation performance,
such as DSM information and SAR data. Moreover, the transferable models are of great
concern to adaptively cope with the increasingly diverse imaging sensors. Furthermore,
the basic convolution units also have the potential to be optimized in convergence rate
while producing a global-optimal solution, as the previous work has validated [60]. In
addition, the semantic segmentation tasks, image fusion [61], image denoising [62] and
image restoration [63] of remote sensing images also rely on the feature extraction; the
extension of the proposed module should be promising and challenging.
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Appendix A. Ablation Study on the Vaihingen Dataset

As outlined in the previous discussions, the test aims to evaluate the efficacy and
superiority of EDA. Under the constant environment and hyper-parameter settings, we
implement the no-EDA version on the Vaihingen dataset and record the loss and mIoU
during the training process.

As illustrated in Figure A1, the training loss is drawn. Embedding EDA makes the
network convergence with a lower training loss (cross-entropy loss). Furthermore, EDENet
drops the loss from 0.1850 to 0.0409 compared to no-EDA version. Correspondingly, the
mIoU given in Figure A2 reveals the tremendous changes. EDENet reaches up to 95.51%
on mIoU, while no-EDA version merely has 84.03%.

On the whole, we found evidence to suggest that edges may be closely related to
contribute to calibrate the error-prone pixels around boundaries. From this perspective,
injecting and underlining the edge distributions of leant representations plays a crucial role
in sharpening the segments.
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Appendix B. Ablation Study on the Potsdam Dataset

For the Potsdam dataset, the loss and mIoU during the training process are also
compared. As shown in Figures A3 and A4, the curves are presented. The variation of
spatial resolution and objects’ visual sensitivity is incapable of degrading the performance
of EDENet. EDA decreases a great deal of training loss. Numerically, the loss is dropped
from 0.2199 to 0.0503 over 77%. Turn to mIoU, EDA boosts the result from 82.89% to 94.81%.

In general, the recorded results on the Potsdam dataset follow similar patterns to the
Vaihingen dataset.
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Appendix C. Ablation Study on the DeepGlobe Dataset

DeepGlobe dataset consists of a deluge of satellite images showing diverse and com-
plex land cover types. Figures A5 and A6 plot the training loss and mIoU changing status.
There is a lower loss along with the training phase of EDENet. It eventually drops the loss
from 0.2625 to 0.1461 at the 200 epoch. Accordingly, the mIoU experiences a considerable
improvement of about 12%.

Another observation lies in the variation tendency, which still retains a declining
status of EDENet at the 200 epoch, while no-EDA version is almost going to converge. This
phenomenon substantially gives rise to the potentials of EDENet. Therefore, with more
epochs of training, we are convinced of achieving great promotion
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