Deep Learning-Based Thermal Image Analysis for Pavement Defect Detection and Classification Considering Complex Pavement Conditions
Abstract
:1. Introduction
2. Methodology and Materials
2.1. Overall Procedure
2.2. Experimental Setup and Data Collection
2.3. Data Augumentation
2.4. Multi-Band Dynamic Imaging (MSX) and Its Adjustment
2.5. Framework for Detection Network Based on EfficientNet
3. Difference between Infrared Thermal Imaging and Optical Image Imaging in Complex Pavement Conditions
4. Results
4.1. Evaluation Metrics
4.2. Evaluation of Proposed RGB-Thermal Fusion-Based Image Detection Model
4.3. Comparison of Different EfficientNet Versions in Pavement Crack Detection
5. Discussion
Comparison of Thermal RGB Fusion with Other Pavement Crack Detection Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elkashef, M.; Williams, R.C.; Cochran, E. Investigation of fatigue and thermal cracking behavior of rejuvenated reclaimed asphalt pavement binders and mixtures. Int. J. Fatigue 2018, 108, 90–95. [Google Scholar] [CrossRef]
- Teltayev, B.; Radovskiy, B. Predicting thermal cracking of asphalt pavements from bitumen and mix properties. Road Mater. Pavement Des. 2018, 19, 1832–1847. [Google Scholar] [CrossRef]
- Golestani, B.; Nam, B.H.; Noori, M.; An, J.; Tatari, O. An Optimum Selection Strategy of Reflective Cracking Mitigation Methods for an Asphalt Concrete Overlay over Flexible Pavements. Int. J. Pavement Eng. Tatari 2018, 19, 48–61. [Google Scholar] [CrossRef]
- Dan, A.G. State of the Art Report on Ageing Test Methods for Bituminous Pavement Materials. Int. J. Pavement Eng. Tatari 2003, 4, 165–176. [Google Scholar]
- Zhang, C.; Nateghinia, E.; Miranda-Moreno, L.F.; Sun, L. Pavement distress detection using convolutional neural network (CNN): A case study in Montreal, Canada. Int. J. Transp. Sci. Technol. 2021; in press. [Google Scholar] [CrossRef]
- Chen, C.; Seo, H.; Zhao, Y. A novel pavement transverse cracks detection model using WT-CNN and STFT-CNN for smartphone data analysis. Int. J. Pavement Eng. 2021. [Google Scholar] [CrossRef]
- Han, D.; Zhao, Y.; Pan, Y.; Liu, G.; Yang, T. Heating process monitoring and evaluation of hot in-place recycling of asphalt pavement using infrared thermal imaging. Autom. Constr. 2020, 111, 103055. [Google Scholar] [CrossRef]
- Guan, J.; Yang, X.; Ding, L.; Cheng, X.; Lee, V.C.; Jin, C. Automated pixel-level pavement distress detection based on stereo vision and deep learning. Autom. Constr. 2021, 129, 103788. [Google Scholar] [CrossRef]
- Zhong, M.; Sui, L.; Wang, Z.; Hu, D. Pavement Crack Detection from Mobile Laser Scanning Point Clouds Using a Time Grid. Sensors 2020, 20, 4198. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Seo, H.; Zhao, Y. Pavement crack detection and classification based on fusion feature of LBP and PCA with SVM. Int. J. Pavement Eng. 2021, 1–10. [Google Scholar] [CrossRef]
- Liu, J.; Yang, X.; Lau, S.; Wang, X.; Luo, S.; Lee, V.C.; Ding, L. Automated pavement crack detection and segmentation based on two-step convolutional neural network. Comput. Civ. Infrastruct. Eng. 2020, 35, 1291–1305. [Google Scholar] [CrossRef]
- Zou, Q.; Cao, Y.; Li, Q.; Mao, Q.; Wang, S. CrackTree: Automatic crack detection from pavement images. Pattern Recognit. Lett. 2012, 33, 227–238. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, C.-X.; Wang, H.-N. Automatic Pavement Crack Detection Using Texture and Shape Descriptors. IETE Tech. Rev. 2010, 27, 398. [Google Scholar] [CrossRef]
- Peng, C.; Yang, M.; Zheng, Q.; Zhang, J.; Wang, D.; Yan, R.; Wang, J.; Li, B. A triple-thresholds pavement crack detection method leveraging random structured forest. Constr. Build. Mater. 2020, 263, 120080. [Google Scholar] [CrossRef]
- Seungbo, S.; Kim, J.; Lee, S.-W.; Cho, G.-C. Road Surface Damage Detection Based on Hierarchical Architecture Using Lightweight Auto-Encoder Network. Autom. Constr. 2021, 130, 103833. [Google Scholar]
- Dongho, K.; Benipal, S.S.; Gopal, D.L.; Cha, Y.-J. Hybrid Pixel-Level Concrete Crack Segmentation and Quantification across Complex Backgrounds Using Deep Learning. Autom. Constr. 2020, 118, 103291. [Google Scholar]
- Gopalakrishnan, K.; Khaitan, S.K.; Choudhary, A.; Agrawal, A. Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 2017, 157, 322–330. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput. Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. Comput. Civ. Infrastruct. Eng. 2017, 33, 731–747. [Google Scholar] [CrossRef]
- Kaige, Z.; Cheng, H.D.; Zhang, B. Unified Approach to Pavement Crack and Sealed Crack Detection Using Preclassification Based on Transfer Learning. J. Comput. Civ. Eng. 2018, 32, 04018001. [Google Scholar]
- Majidifard, H.; Adu-Gyamfi, Y.; Buttlar, W.G. Deep machine learning approach to develop a new asphalt pavement condition index. Constr. Build. Mater. 2020, 247, 118513. [Google Scholar] [CrossRef]
- Zhou, S.; Song, W. Deep learning-based roadway crack classification using laser-scanned range images: A comparative study on hyperparameter selection. Autom. Constr. 2020, 114, 103171. [Google Scholar] [CrossRef]
- Golrokh, A.J.; Gu, X.; Lu, Y. Real-Time Thermal Imaging-Based System for Asphalt Pavement Surface Distress Inspection and 3D Crack Profiling. J. Perform. Constr. Facil. 2021, 35, 04020143. [Google Scholar] [CrossRef]
- Seo, H.; Choi, H.; Park, J.; Lee, I.-M. Crack Detection in Pillars Using Infrared Thermographic Imaging. Geotech. Test. J. 2017, 40, 371–380. [Google Scholar] [CrossRef]
- Seo, H. Infrared thermography for detecting cracks in pillar models with different reinforcing systems. Tunn. Undergr. Space Technol. 2021, 116, 104118. [Google Scholar] [CrossRef]
- Yung-An, H.; Yichang, J.T. Machine Learning for Crack Detection: Review and Model Performance Comparison. J. Comput. Civ. Eng. 2020, 34, 04020038. [Google Scholar]
- Islam, M.M.; Kim, J.-M. Vision-Based Autonomous Crack Detection of Concrete Structures Using a Fully Convolutional Encoder–Decoder Network. Sensors 2019, 19, 4251. [Google Scholar] [CrossRef] [Green Version]
- Rezaie, A.; Achanta, R.; Godio, M.; Beyer, K. Comparison of crack segmentation using digital image correlation measurements and deep learning. Constr. Build. Mater. 2020, 261, 120474. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, Z.; Li, Q.; Qi, X.; Wang, Q.; Wang, S. Deepcrack: Learning Hierarchical Convolutional Features for Crack Detection. IEEE Trans. Image Process. 2018, 28, 1498–1512. [Google Scholar]
- Chun, P.-J.; Izumi, S.; Yamane, T. Automatic detection method of cracks from concrete surface imagery using two-step light gradient boosting machine. Comput.-Aided Civ. Infrastruct. Eng. 2020, 36, 61–72. [Google Scholar] [CrossRef]
- Raza, A.; Chuah, J.H.; Talip, M.S.A.; Mokhtar, N.; Shoaib, M.A. Automatic Pixel-Level Crack Segmentation in Images Using Fully Convolutional Neural Network Based on Residual Blocks and Pixel Local Weights. Eng. Appl. Artif. Intell. 2021, 104, 104391. [Google Scholar]
- Fan, Z.; Li, C.; Chen, Y.; Wei, J.; Loprencipe, G.; Chen, X.; Di Mascio, P. Automatic Crack Detection on Road Pavements Using Encoder-Decoder Architecture. Materials 2020, 13, 2960. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Su, C. Semi-supervised semantic segmentation network for surface crack detection. Autom. Constr. 2021, 128, 103786. [Google Scholar] [CrossRef]
- Tang, W.; Huang, S.; Zhao, Q.; Li, R.; Huangfu, L. An Iteratively Optimized Patch Label Inference Network for Automatic Pavement Distress Detection. IEEE Trans. Intell. Transp. Syst. 2021. [Google Scholar] [CrossRef]
- Fu, G.; Sun, P.; Zhu, W.; Yang, J.; Cao, Y.; Yang, M.Y.; Cao, Y. A deep-learning-based approach for fast and robust steel surface defects classification. Opt. Lasers Eng. 2019, 121, 397–405. [Google Scholar] [CrossRef]
- Andy, T. Thermal Analysis with Matlab and Flir Cameras. Available online: https://www.mathworks.com/matlabcentral/fileexchange/49747-thermal-analysis-with-matlab-and-flir-cameras-demo-files (accessed on 11 December 2020).
- Huang, Y.; Li, Y.; Zhang, Y. A Retinex Image Enhancement Based on L Channel Illumination Estimation and Gamma Function. Tech. Autom. Appl. 2018, 37, 56–60. [Google Scholar] [CrossRef] [Green Version]
- Kechen, S.; Yan, Y. A Noise Robust Method Based on Completed Local Binary Patterns for Hot-Rolled Steel Strip Surface Defects. Appl. Surf. Sci. 2013, 285, 858–864. [Google Scholar]
- Petrie, P.R.; Wang, Y.; Liu, S.; Lam, S.; Whitty, M.A.; Skewes, M. The accuracy and utility of a low cost thermal camera and smartphone-based system to assess grapevine water status. Biosyst. Eng. 2019, 179, 126–139. [Google Scholar] [CrossRef]
- Marques, G.; Agarwal, D.; Díez, I.D.L.T. Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network. Appl. Soft Comput. 2020, 96, 106691. [Google Scholar] [CrossRef]
- Murat, C. C+Effxnet: A Novel Hybrid Approach for Covid-19 Diagnosis on Ct Images Based on Cbam and Efficientnet. Chaos Solitons Fractals 2021, 151, 111310. [Google Scholar]
- Pan, Z.; Yang, L.; Li, D. Efficientnet-B4-Ranger: A Novel Method for Greenhouse Cucumber Disease Recognition under Natural Complex Environment. Comput. Electron. Agric. 2020, 176, 105652. [Google Scholar]
- Tan, M.; Le, Q. Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks. Pap. Presented Int. Conf. Mach. Learn. 2019, 97, 6105–6114. [Google Scholar]
- Ümit, A.; Uçar, M.; Akyol, K.; Uçar, E. Plant Leaf Disease Classification Using Efficientnet Deep Learning Model. Ecol. Inform. 2021, 61, 101182. [Google Scholar]
- Du, Z.; Yuan, J.; Xiao, F.; Hettiarachchi, C. Application of image technology on pavement distress detection: A review. Measurement 2021, 184, 109900. [Google Scholar] [CrossRef]
- Dhakal, N.; Elseifi, M.A. Use of Infrared Thermography to Detect Thermal Segregation in Asphalt Overlay and Reflective Cracking Potential. J. Mater. Civ. Eng. 2016, 28, 04015118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, C.; Wu, Q.; Lu, Q.; Zhang, S.; Zhang, G.; Yang, Y. A Kinect-Based Approach for 3D Pavement Surface Reconstruction and Cracking Recognition. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3935–3946. [Google Scholar] [CrossRef]
Data Set | Total | Train (60%) | Validation (20%) | Test (20%) |
---|---|---|---|---|
Original dataset | 13,500 | 8100 | 2700 | 2700 |
Augmented dataset | 18,945 | 11,367 | 3789 | 3789 |
Model | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
EffecientNet B0 | 95.36% | 95.97% | 95.24% | 95.60% |
EffecientNet B1 | 96.55% | 97.11% | 95.62% | 96.36% |
EffecientNet B2 | 95.69% | 96.04% | 96.38% | 96.21% |
EffecientNet B3 | 97.31% | 96.91% | 95.89% | 96.40% |
EffecientNet B4 | 98.65% | 98.34% | 97.14% | 97.74% |
EffecientNet B5 | 98.92% | 98.22% | 98.56% | 98.39% |
EffecientNet B6 | 97.92% | 97.94% | 97.84% | 97.89% |
EffecientNet B7 | 98.15% | 97.22% | 98.32% | 97.77% |
Model | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
EffecientNet B0 | 96.21% | 95.68% | 95.77% | 95.72% |
EffecientNet B1 | 96.57% | 96.59% | 96.57% | 96.58% |
EffecientNet B2 | 96.57% | 96.59% | 96.57% | 96.58% |
EffecientNet B3 | 97.23% | 97.12% | 97.14% | 97.13% |
EffecientNet B4 | 98.34% | 98.35% | 98.34% | 98.34% |
EffecientNet B5 | 98.33% | 98.23% | 98.12% | 98.17% |
EffecientNet B6 | 98.11% | 98.01% | 98.11% | 98.16% |
EffecientNet B7 | 98.02% | 97.21% | 97.77% | 97.49% |
Image Type | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
RGB | 96.57% | 96.59% | 96.57% | 96.57% |
IR | 93.83% | 93.95% | 93.83% | 93.84% |
MSX | 96.83% | 96.92% | 96.83% | 96.83% |
Fused image | 98.34% | 98.35% | 98.34% | 98.34% |
RGB | IR | MSX | FUSION | |
---|---|---|---|---|
Alligator crack | 96.83% | 95.24% | 96.83% | 98.34% |
Joint | 93.65% | 90.48% | 90.48% | 98.81% |
Longitudinal | 93.65% | 92.06% | 87.30% | 96.91% |
Oil Marking | 98.41% | 90.48% | 98.41% | 98.34% |
Pothole | 95.24% | 87.30% | 95.24% | 97.62% |
Road Marking | 100% | 96.83% | 100% | 99.52% |
Shadow | 100% | 98.41% | 98.41% | 99.29% |
Transverse | 90.48% | 95.24% | 96.93% | 97.86% |
Manholes | 100% | 98.41% | 93.65% | 98.34% |
Average | 96.47% | 93.83% | 95.24% | 98.34% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Chandra, S.; Han, Y.; Seo, H. Deep Learning-Based Thermal Image Analysis for Pavement Defect Detection and Classification Considering Complex Pavement Conditions. Remote Sens. 2022, 14, 106. https://doi.org/10.3390/rs14010106
Chen C, Chandra S, Han Y, Seo H. Deep Learning-Based Thermal Image Analysis for Pavement Defect Detection and Classification Considering Complex Pavement Conditions. Remote Sensing. 2022; 14(1):106. https://doi.org/10.3390/rs14010106
Chicago/Turabian StyleChen, Cheng, Sindhu Chandra, Yufan Han, and Hyungjoon Seo. 2022. "Deep Learning-Based Thermal Image Analysis for Pavement Defect Detection and Classification Considering Complex Pavement Conditions" Remote Sensing 14, no. 1: 106. https://doi.org/10.3390/rs14010106
APA StyleChen, C., Chandra, S., Han, Y., & Seo, H. (2022). Deep Learning-Based Thermal Image Analysis for Pavement Defect Detection and Classification Considering Complex Pavement Conditions. Remote Sensing, 14(1), 106. https://doi.org/10.3390/rs14010106