Deformation of the Crust and Upper Mantle beneath the North China Craton and Its Adjacent Areas Constrained by Rayleigh Wave Phase Velocity and Azimuthal Anisotropy
Abstract
:1. Introduction
2. Data and Analysis
2.1. Data Acquisition and Processing
2.2. Surface Wave Tomography Inversion
2.3. Robustness Analysis
3. Results
3.1. Rayleigh Wave Phase Velocity
3.2. Azimuthal Anisotropy
4. Discussion
4.1. Lithospheric Thinning and Volcanism of the NCC
4.2. Deformation Patterns of the Northeastern Margin of the Tibetan Plateau and the Western NCC
4.3. Rotation of the Ordos Block
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, D.Y.; Nutman, A.P.; Compston, W.; Wu, J.S.; Shen, Q.H. Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 1992, 20, 339–342. [Google Scholar] [CrossRef]
- Zhao, G.; Wilde, S.A.; Cawood, P.A.; Sun, M. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Res. 2001, 107, 45–73. [Google Scholar] [CrossRef]
- Xiao, W.; Windley, B.F.; Hao, J.; Zhai, M. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt. Tectonics 2003, 22, 1069. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Windley, B.F.; Yong, Y.; Yan, Z.; Yuan, C.; Liu, C.-Z.; Li, J. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. J. Asian Earth Sci. 2009, 35, 323–333. [Google Scholar] [CrossRef]
- Clark, M.; Royden, L. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology 2000, 28, 703–706. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, S.; Zhang, B.; Gurnis, M.; Ma, P. Reconstruction of the Cenozoic deformation of the Bohai Bay Basin, North China. Basin Res. 2020, 33, 364–381. [Google Scholar] [CrossRef]
- Liu, J.; Xie, F.; Lv, Y. Seismic hazard assessments for the Ordos Block and its periphery in China. Soil Dyn. Earthq. Eng. 2016, 84, 70–82. [Google Scholar] [CrossRef]
- Guo, X.; Jiang, C.; Wang, X.; Tian, X. Characteristics of small to moderate focal mechanism solutions stress field of the circum-Ordos block. J. Geod. Geodyn. 2017, 37, 675–685. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.-K. Present-Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications. J. Geophys. Res. Solid Earth 2020, 125. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Tamaki, K.; Li, S.; Junxia, Z. LateMesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics 2002, 344, 175–205. [Google Scholar] [CrossRef]
- Xu, Y.; Chung, S.; Ma, J.; Shi, L. Contrasting Cenozoic Lithospheric Evolution and Architecture in the Western and Eastern Sino-Korean Craton: Constraints from Geochemistry of Basalts and Mantle Xenoliths. J. Geol. 2004, 112, 593–605. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.X.; Xu, Y.G.; Zhu, G.; Zhang, H.F.; Xia, Q.K.; Zheng, T.Y. Destruction of the North China Craton. Sci. China Earth Sci. 2012, 55, 1565–1587. [Google Scholar] [CrossRef]
- Wu, F.; Xu, Y.; Zhu, R.; Zhang, G. Thinning and destruction of the cratonic lithosphere: A global perspective. Sci. China Earth Sci. 2014, 57, 2878–2890. [Google Scholar] [CrossRef]
- Zheng, Y.; Wu, F. Growth and reworking of cratonic lithosphere. Chin. Sci. Bull. 2009, 54, 3347–3353. [Google Scholar] [CrossRef] [Green Version]
- Chen, L. Concordant structural variations from the surface to the base of the upper mantle in the North China Craton and its tectonic implications. Lithos 2010, 120, 96–115. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, L.; Wang, K.; Yang, J. Indication from finite-frequency tomography beneath the North China Craton: The heterogeneity of craton destruction. Sci. China Earth Sci. 2018, 61, 1238–1260. [Google Scholar] [CrossRef]
- Molnar, P.; Tapponnier, P. Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science 1975, 189, 419–426. [Google Scholar] [CrossRef]
- Yin, A.; Harrison, T.M. Geologic evolution of the Himalayan–Tibetan orogeny. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Q.; Mercier, J.L.; Vergély, P. Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia. Tectonophysics 1998, 285, 41–75. [Google Scholar] [CrossRef]
- Yao, Z.; Eric, S.; Wang, C.; Ding, Z.; Chen, Y. Asthenospheric upwelling beneath northeastern margin of Ordos Block: Constraints from Rayleigh surface-wave tomography. Tectonophysics 2020, 790, 228548. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, J.; Rietbrock, A.; Wang, W.; Fang, L.; Yi, S.; Liu, J. S wave Velocity Structure of the Crust and Upper Mantle Beneath Shanxi Rift, Central North China Craton and its Tectonic Implications. Tectonics 2021, 40, e2020TC006239. [Google Scholar] [CrossRef]
- Xu, X.; Ding, Z.; Li, L.; Niu, F. Crustal Anisotropy Beneath the Trans-North China Orogen and its Adjacent Areas From Receiver Functions. Front. Earth Sci. 2021, 9, 753612. [Google Scholar] [CrossRef]
- Tao, K.; Grand, S.P.; Niu, F. Seismic Structure of the Upper Mantle Beneath Eastern Asia From Full Waveform Seismic Tomography. Geochem. Geophys. Geosystems 2018, 19, 2732–2763. [Google Scholar] [CrossRef]
- Chang, L.J.; Ding, Z.F.; Wang, C.Y. Upper mantle anisotropy and implications beneath the central and western North China and the NE margin of Tibetan Plateau. Chin. J. Geophys. 2021, 64, 114–130. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, L.; Ye, Q.; Wang, Q.; Yang, Y.; Zhang, P. Azimuthal anisotropy of the crust and uppermost mantle in northeast North China Craton from inversion of Rayleigh wave phase velocity. Geophys. J. Int. 2015, 202, 624–639. [Google Scholar] [CrossRef]
- Zheng, T.; Ding, Z.; Ning, J.; Liu, K.H.; Gao, S.S.; Chang, L.; Kong, F.; Fan, X. Crustal Azimuthal Anisotropy Beneath the Central North China Craton Revealed by Receiver Functions. Geochem. Geophys. Geosystems 2019, 20, 2235–2251. [Google Scholar] [CrossRef]
- Huang, X.; Ding, Z.; Ning, J.; Niu, F.; Li, G.; Wang, X.; Xu, X. Sedimentary and crustal velocity structure of Trans-North China Orogen from joint inversion of Rayleigh wave phase velocity and ellipticity and some implication for Syn-rift volcanism. Tectonophysics 2021, 819, 229104. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, J.; Fukao, Y.; Shi, Y.; Zhu, A. Shear wave splitting in the crust in North China: Stress, faults and tectonic implications. Geophys. J. Int. 2011, 187, 642–654. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Wang, C.-Y.; Ding, Z. Upper mantle anisotropy beneath North China from shear wave splitting measurements. Tectonophysics 2012, 522-523, 235–242. [Google Scholar] [CrossRef]
- Zheng, X.-F.; Yao, Z.-X.; Liang, J.-H.; Zheng, J. The Role Played and Opportunities Provided by IGP DMC of China National Seismic Network in Wenchuan Earthquake Disaster Relief and Researches. Bull. Seismol. Soc. Am. 2010, 100, 2866–2872. [Google Scholar] [CrossRef]
- Schimmel, M.; Stutzmann, E.; Gallart, J. Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale. Geophys. J. Int. 2010, 184, 494–506. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Niu, F.; Yang, Y.; Xie, J. An investigation of time–frequency domain phase-weighted stacking and its application to phase-velocity extraction from ambient noise’s empirical Green’s functions. Geophys. J. Int. 2017, 212, 1143–1156. [Google Scholar] [CrossRef]
- Levshin, A.L.; Ritzwoller, M.H. Automated Detection, Extraction, and Measurement of Regional Surface Waves. Pure Appl Geophys. 2001, 158, 1531–1545. [Google Scholar] [CrossRef]
- Barmin, M.P.; Ritzwoller, M.H.; Levshin, A.L. A Fast and Reliable Method for Surface Wave Tomography. Pure Appl. Geophys. 2001, 158, 1351–1375. [Google Scholar] [CrossRef]
- Smith, M.L.; Dahlen, F.A. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. J. Geophys. Res. 1973, 78, 3321–3333. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, Y.; Chen, J.; Zhou, S.; Ceylan, S.; Sandvol, E.; Tilmann, F.; Priestley, K.; Hearn, T.M.; Ni, J.F. Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography. Geochem. Geophys. Geosystems 2010, 11, Q08010. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Y.J.; Ning, J.; Yang, Y.; Afonso, J.C.; Tang, Y. Seismic evidence of on-going sublithosphere upper mantle convection for intra-plate volcanism in Northeast China. Earth Planet. Sci. Lett. 2016, 433, 31–43. [Google Scholar] [CrossRef]
- Zhu, T.; Ma, X. Uppermantle shear-wave splitting measurements in Mainland China: A review. Earth-Sci. Rev. 2020, 212, 103437. [Google Scholar] [CrossRef]
- Kreemer, C.; Blewitt, G.; Klein, E.C. A geodetic plate motion and Global Strain Rate Model. Geochem. Geophys. Geosystems 2014, 15, 3849–3889. [Google Scholar] [CrossRef]
- Xu, X.; Niu, F.; Ding, Z.; Chen, Q. Complicated crustal deformation beneath the NE margin of the Tibetan plateau and its adjacent areas revealed by multi-station receiver-function gathering. Earth Planet. Sci. Lett. 2018, 497, 204–216. [Google Scholar] [CrossRef]
- Crampin, S.; Peacock, S. A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation. Wave Motion 2008, 45, 675–722. [Google Scholar] [CrossRef]
- Silver, P.G. Seismic anisotropy beneath the continents: Probing the depth of geology. Annu. Rev. Earth Planet. Sci. 1996, 24, 385–432. [Google Scholar] [CrossRef]
- Crampin, S.; Lovell, J. A decade of shear-wave splitting in the Earth’s crust: What does it mean? What use can we make of it? and what should we do next? Geophys. J. Int. 1991, 107, 387–407. [Google Scholar] [CrossRef] [Green Version]
- Savage, M.K. Lower crustal anisotropy or dipping boundaries? Effects on receiver functions and a case study in New Zealand. J. Geophys. Res. 1998, 103, 15069–15087. [Google Scholar] [CrossRef]
- Ko, B.; Jung, H. Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nat. Commun. 2015, 6, 6586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, M.D.; Becker, T.W. Mantle dynamics and seismic anisotropy. Earth Planet. Sci. Lett. 2010, 297, 341–354. [Google Scholar] [CrossRef]
- Takeo, A.; Kawakatsu, H.; Isse, T.; Nishida, K.; Sugioka, H.; Ito, A.; Shiobara, H.; Suetsugu, D. Seismic azimuthal anisotropy in the oceanic lithosphere and asthenosphere from broadband surface wave analysis of OBS array records at 60 Ma seafloor. J. Geophys. Res. Solid Earth 2016, 121, 1927–1947. [Google Scholar] [CrossRef]
- Tang, Y.; Ying, J.; Zhao, Y.; Xu, X. Nature and secular evolution of the lithospheric mantle beneath the North China Craton. Sci. China Earth Sci. 2021, 64, 1492–1503. [Google Scholar] [CrossRef]
- Li, S.; Mooney, W.D.; Fan, J. Crustal structure of mainland China from deep seismic sounding data. Tectonophysics 2006, 420, 239–252. [Google Scholar] [CrossRef]
- Li, Y.; Gao, M.; Wu, Q. Crustal thickness map of the Chinese mainland from teleseismic receiver functions. Tectonophysics 2014, 611, 51–60. [Google Scholar] [CrossRef]
- Huang, Z.-X. Velocity Anisotropy in the Crust and Upper Mantle of North China. Chin. J. Geophys. 2011, 54, 681–691. [Google Scholar] [CrossRef]
- Hu, S.; He, L.; Wang, J. Heat flow in the continental area of China: A new data set. Earth Planet. Sci. Lett. 2000, 179, 407–419. [Google Scholar] [CrossRef]
- Qian, S.-P.; Ren, Z.-Y.; Richard, W.; Zhang, L.; Zhang, Y.-H.; Hong, L.-B.; Ding, X.-L.; Wu, Y.-D. Petrogenesis of Early Cretaceous basaltic lavas from the North China Craton: Implications for cratonic destruction. J. Geophys. Res. Solid Earth 2017, 122, 1900–1918. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, D.; Sun, R.; Teng, J. Seismic imaging of the crust and upper mantle beneath the North China Craton. Phys. Earth Planet. Inter. 2009, 172, 169–182. [Google Scholar] [CrossRef]
- Johnson, J.H.; Savage, M.K.; Townend, J. Distinguishing between stress-induced and structural anisotropy at Mount Ruapehu volcano, New Zealand. J. Geophys. Res. Earth Surf. 2011, 116, B12303. [Google Scholar] [CrossRef]
- Huang, J.; Zhao, D. Seismic imaging of the crust and upper mantle under Beijing and surrounding regions. Phys. Earth Planet. Inter. 2009, 173, 330–348. [Google Scholar] [CrossRef]
- Royden, L.H.; Burchfiel, B.C.; King, R.W.; Wang, E.; Chen, Z.; Shen, F.; Liu, Y. Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science 1997, 276, 788–790. [Google Scholar] [CrossRef]
- England, P.; Houseman, G. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone. J. Geophys. Res. Space Phys. 1986, 91, 3664–3676. [Google Scholar] [CrossRef]
- Dewey, J.F.; Shackleton, R.M.; Chengfa, C.; Yiyin, S. The tectonic evolution of the Tibetan Plateau. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1988, 327, 379–413. [Google Scholar] [CrossRef]
- Sun, A.; Zhao, D. Anisotropic Tomography Beneath Northeast Tibet: Evidence for Regional Crustal Flow. Tectonics 2020, 39, e2020TC006161. [Google Scholar] [CrossRef]
- Zhao, P.; Chen, J.; Li, Y.; Liu, Q.; Chen, Y.; Guo, B.; Yin, X. Growth of the Northeastern Tibetan Plateau Driven by Crustal Channel Flow: Evidence From High-Resolution Ambient Noise Imaging. Geophys. Res. Lett. 2021, 48, e2021GL093387. [Google Scholar] [CrossRef]
- Yang, Y.; Ritzwoller, M.H.; Zheng, Y.; Shen, W.; Levshin, A.L.; Xie, Z. A synoptic view of the distribution and connectivity of the mid-crustal low velocity zone beneath Tibet. J. Geophys. Res. Space Phys. 2012, 117, B04303. [Google Scholar] [CrossRef]
- Bao, X.; Sun, X.; Xu, M.; Eaton, D.W.; Song, X.; Wang, L.; Ding, Z.; Mi, N.; Li, H.; Yu, D. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth Planet. Sci. Lett. 2015, 415, 16–24. [Google Scholar] [CrossRef]
- Qiao, L.; Yao, H.; Lai, Y.-C.; Huang, B.-S.; Zhang, P. Crustal Structure of Southwest China and Northern Vietnam From Ambient Noise Tomography: Implication for the Large-Scale Material Transport Model in SE Tibet. Tectonics 2018, 37, 1492–1506. [Google Scholar] [CrossRef]
- Li, H.; Shen, Y.; Huang, Z.; Li, X.; Gong, M.; Shi, D.; Sandvol, E.; Li, A. The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography. J. Geophys. Res. Solid Earth 2014, 119, 1954–1970. [Google Scholar] [CrossRef]
- Zheng, D.; Li, H.; Shen, Y.; Tan, J.; Ouyang, L.; Li, X. Crustal and upper mantle structure beneath the northeastern Tibetan Plateau from joint analysis of receiver functions and Rayleigh wave dispersions. Geophys. J. Int. 2016, 204, 583–590. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Pan, J.; Wu, Q.; Ding, Z. Lithospheric structure beneath the northeastern Tibetan Plateau and the western Sino-Korea Craton revealed by Rayleigh wave tomography. Geophys. J. Int. 2017, 210, 570–584. [Google Scholar] [CrossRef]
- Qu, W.; Lu, Z.; Zhang, M.; Zhang, Q.; Wang, Q.; Zhu, W.; Qu, F. Crustal strain fields in the surrounding areas of the Ordos Block, central China, estimated by the least-squares collocation technique. J. Geodyn. 2017, 106, 1–11. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, C.; Wang, D.; Huang, Y.; Tan, K.; Du, R.; Liu, J. Contemporary kinematics of the Ordos block, North China and its adjacent rift systems constrained by dense GPS observations. J. Asian Earth Sci. 2017, 135, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.; Rao, G.; Yan, B. Flexural fold structures and active faults in the northern–western Weihe Graben, central China. J. Asian Earth Sci. 2015, 114, 226–241. [Google Scholar] [CrossRef] [Green Version]
- Rao, G.; Lin, A.; Yan, B.; Jia, D.; Wu, X. Tectonic activity and structural features of active intracontinental normal faults in the Weihe Graben, central China. Tectonophysics 2014, 636, 270–285. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhang, D.; Huang, X.; Cao, X. Deformation of the Crust and Upper Mantle beneath the North China Craton and Its Adjacent Areas Constrained by Rayleigh Wave Phase Velocity and Azimuthal Anisotropy. Remote Sens. 2022, 14, 110. https://doi.org/10.3390/rs14010110
Xu X, Zhang D, Huang X, Cao X. Deformation of the Crust and Upper Mantle beneath the North China Craton and Its Adjacent Areas Constrained by Rayleigh Wave Phase Velocity and Azimuthal Anisotropy. Remote Sensing. 2022; 14(1):110. https://doi.org/10.3390/rs14010110
Chicago/Turabian StyleXu, Xiaoming, Dazhou Zhang, Xiang Huang, and Xiaoman Cao. 2022. "Deformation of the Crust and Upper Mantle beneath the North China Craton and Its Adjacent Areas Constrained by Rayleigh Wave Phase Velocity and Azimuthal Anisotropy" Remote Sensing 14, no. 1: 110. https://doi.org/10.3390/rs14010110
APA StyleXu, X., Zhang, D., Huang, X., & Cao, X. (2022). Deformation of the Crust and Upper Mantle beneath the North China Craton and Its Adjacent Areas Constrained by Rayleigh Wave Phase Velocity and Azimuthal Anisotropy. Remote Sensing, 14(1), 110. https://doi.org/10.3390/rs14010110