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Abstract: Frequent waterlogging disasters can have serious effects on regional ecology, food safety,
and socioeconomic sustainable development. Early monitoring of waterlogging stress levels is vital
for accurate production input management and reduction of crop production-related risks. In this
study, a pot experiment on winter wheat was designed using three varieties and seven gradients
of waterlogging stress. Hyperspectral imagery of the winter wheat canopy in the jointing stage,
heading stage, flowering stage, filling stage, and maturation stage were measured and then classified.
Wavebands of imaging data were screened. Waterlogging stress level was assessed by a combined
harmonic analysis method, and application of this method at field scale was discussed preliminarily.
Results show that compared to the k-nearest neighbor and support vector machine algorithms, the
random forest algorithm is the best batch classification method for hyperspectral imagery of potted
winter wheat. It can recognize waterlogging stress well in the wavebands of red absorption valley
(RW: 640–680 nm), red-edge (RE: 670–737 nm), and near-infrared (NIR: 700–900 nm). In the RW
region, amplitudes of the first three harmonic sub-signals (c1, c2, and c3) can be used as indexes
to recognize the waterlogging stress level that each winter wheat variety undertakes. The third
harmonic sub-signal amplitude c3 of the RE region is also suitable for judging stress levels of JM31
(one of the three varieties which is highly sensitive to water content). This study has important
theoretical significance and practical application values related to the accurate control of waterlogging
stress, and functions as a new method to monitor other types of environmental stress levels such as
drought stress, freezing stress, and high-temperature stress levels.

Keywords: waterlogging stress level; hyperspectral imagery; harmonic analysis; winter wheat

1. Introduction

Agricultural production is strongly dependent on climate conditions. As one of the
major abiotic stresses, waterlogging disasters are becoming a dominant constraint on crop
growth. There are reports of waterlogging disasters around the world, such as in Egypt and
Saudi Arabia [1], Ethiopia [2], Bihar [3] and the Gangetic Plains [4], India, the Yangtze River
Delta, and across China [5] (including Jiangsu Province, Zhejiang Province, Anhui Province,
and Shanghai City). A rice–wheat rotation system is the dominant cultivation mode in the
agricultural district of the Yangtze River Delta, in which it accounts for 20% of total wheat
sown area and 22% of total wheat grain yield in China [6]. Waterlogging disasters can affect
stomatal conductance, hydraulic conductivity, transpiration, respiration, photosynthesis
rates, yield, and metabolism rates of overground parts of crops [7–9]. Frequent occurrences
of waterlogging disasters can significantly influence regional ecology, food safety, and
socioeconomic sustainable development. The early monitoring of waterlogging stress
levels is vital to accurate production input management (e.g., of water, fertilizer, and
pesticide) and reduction of crop production-related risks. Providing information about crop
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status as early as possible is of important significance to formulating policies concerning
price, circulation, and storage of foods [10]. Traditional monitoring methods are lacking in
several ways, including that they are time-consuming, and that macroscopic monitoring is
not possible. Hyperspectral remote sensing is information-rich and nondestructive and can
realize the monitoring of waterlogging stress in real time. The real-time monitoring of crops’
waterlogging stress levels based on hyperspectral remote sensing information is significant
to the timely implementation of antidisaster and production resumption technologies.

At present, studies on monitoring the environmental stress levels of crops based on
hyperspectral remote sensing have mainly focused on disease stress levels and the presence
of heavy metals. To detect the heavy metal stress level of vegetation, Hede et al. [11] built
a new vegetation index considering greenness and shortwave infrared (VIGS) and found
that VIGS was superior to normalized difference vegetation index (NDVI) in detecting
vegetation stress level. Liu et al. [12] built a characteristic space for heavy metal stress
monitoring based on the phenological index and dry weight of roots (WRT) by using the
time-series image set of NDVI and WOFOST models. This space could recognize the heavy
metal stress level of rice effectively with an accuracy of greater than 95%. Zhang et al. [13]
found that the average value (AVG) and standard deviation (SD) of canopy–air temperature
difference (Tc–Ta) were relatively good indexes to determine the heavy metal stress level
of rice. Li et al. [14] combined hyperspectral and radar remote sensing to monitor rice
and found that NVI (R598, R508) of the canopy chlorophyll index and SVI (HV, VH, HH,
and VV) of the microwave index were sensitive to changes of chlorophyll content and
biomass under heavy metal stresses and constructed a two-dimensional feature space
model of heavy metal stress. Based on the guided regularized random forest (GRRF),
Dhau et al. [15] screened the best wavebands to recognize different levels of maize streak,
which were 552 nm, 603 nm, 683 nm, 881 nm, and 2338 nm, respectively. Qiao et al. [16] built
a take-all disease-grade prediction model of wheat based on the support vector machine
(SVM) and found that the best training effect was achieved when choosing the 700–900 nm
waveband. Jin et al. [17] found that the recognition model of the verticillium wilt severity
in cotton based on the combination of wavelet transform and SVM algorithm was the
best. Huang et al. [18] proposed the wheat scab index (WSI) by choosing the sensitive
wavebands 450–488 nm and 500–540 nm, based on which a reversion model of wheat scab
severity was built up. Some studies have focused on monitoring freezing and dust stress
levels. Zhang et al. [19] discussed the possibility of maize seed classification under different
freezing stress levels by combining hyperspectral images and deep convolutional neural
networks (DCNN), finding that the model performed positively. Liang et al. [20] applied
the random forest (RF) algorithm to establish a hyperspectral diagnosis model based on
dust stress level by using the dust stress normalized index (DSNI) as the input parameter,
which achieved a prediction accuracy of 87.5%.

Existing studies concerning the monitoring of waterlogging stress based on hyper-
spectral remote sensing have focused primarily on monitoring a single occurrence of
waterlogging stress and distinguishing between two environmental stresses. Regarding the
former, Yang et al. [21] established a rapid determination model of leaf water content for
monitoring waterlogging in winter wheat, combined with methods such as vegetation in-
dex construction and BP neural network based on hyperspectral parameters. Zhao et al. [22]
detected waterlogging stress of cotton based on hyperspectral images and convolutional
neural network. Xiong et al. [23] were able to reflect waterlogging stress in wheat by the
mean difference of spectra in the 670–2400 nm waveband. Regarding the latter, Jiang
et al. [24] discovered that AREAred/AREAgreen and AREAred*AREAgreen can effectively
distinguish vegetation under CO2 leakage and waterlogging stress. Emengini et al. [25]
proved that vegetation under petroleum pollution, waterlogging, and oil stressors might be
distinguished by hyperspectral and thermal infrared remote sensing. There are currently
some studies on assessing waterlogging stress levels of vegetation. Xia et al. [26] detected
waterlogging stress levels combined with classification algorithms based on hyperspectral
images of oilseed rape leaves. Yang et al. [27] evaluated waterlogging stress levels of
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winter wheat combined with spectral difference entropy based on the leaf and canopy
hyperspectral data. However, the research is still insufficient, and the main reasons include,
firstly, that different levels of waterlogging stress are difficult to control due to the influ-
ences of farmland evapotranspiration, precipitation, and runoffs, while pot experiments
are implemented under controllable environmental conditions and are repeatable and
reproducible [28,29]. Secondly, different levels of waterlogging stress have little differ-
ence in the effect of vegetation spectrum. Harmonic analysis is often applied to signal
processing of electrical systems [30]. In the field of remote sensing, harmonic analysis
has achieved good results in land cover classification [31], time series analysis [32], etc.
Harmonic analysis has a strong ability to analyze signals. Harmonic decomposition of
the spectrum can decompose weak spectral distortion containing environmental stress in
the vegetation spectrum into low-order harmonics and decompose high-frequency noise
into high-order harmonics. This is more beneficial for analyzing useful information in the
spectral signals [33]. Spectral signals of vegetation can be viewed as superposition of a
series of sub-signals with different frequencies, phases, and amplitudes after harmonic
decomposition. Under waterlogging stress, the reflection spectra of vegetation might
change in the spectral space and the corresponding sub-signals will also change. The weak
spectral distortion of vegetation, which is caused by different levels of waterlogging stress,
might be easier to detect in the harmonic characteristic space, and analysis methods in the
frequency domain may be easier for realizing the feature extraction of weak information on
vegetation under environment stress.

In this study, we assessed the waterlogging stress levels of winter wheat from the
hyperspectral imagery by a combined harmonic analysis method through pot and field
experiments (the experiments were set up in Yangzhou City, Jiangsu Province, China,
which was prone to waterlogging disasters). The specific objectives of this study were
(1) to compare the batch classification accuracy of RF, SVM, and k-nearest neighbor (KNN)
algorithms for potted hyperspectral images, to extract the spectral data of winter wheat
after classification more accurately; (2) to introduce a spectral distance (di) to quantitatively
evaluate the capacities of different spectra to recognize winter wheat under waterlogging
stress in order to select the wavebands with strong recognition ability; (3) to develop a
harmonic analysis method to assess the waterlogging stress levels in a frequency domain
different from common spectral dimensions. This study has representativeness and lays
the foundations for large-scale monitoring of crops after waterlogging disasters.

2. Materials and Methods
2.1. Experimental Design

The experiments were carried out in Yangzhou City (119◦25′N, 32◦23′E), Jiangsu
Province, China between 2018 and 2019 (Figure 1). Yangzhou City is in the center of Jiangsu
Province and is a transitional region between subtropical monsoon and temperate monsoon
climates. There are four distinct seasons, sufficient sunshine, and adequate precipitation.
Most precipitation falls from March to May, which is the growth season of wheat. Moreover,
there are flat terrains, rich water systems, and viscous soils, which are easily affected by
waterlogging disasters.

Pot experiment: The pot experiment was carried out in the awning of the potting
experiment field in Yangzhou University, Yangzhou City. Seeds of winter wheat were sown
on 10 November 2018 at a density of 2 seeds per hole, 8 holes per pot. In three leaves and
one half-leaf period, seedlings were singled to 8 per pot. Wheat was harvested on 28 May
2019. The inner diameter at the bottom of the pot, inner diameter at the mouth, height,
and net pot weight were 20 cm, 28 cm, 29 cm, and 0.54 kg, respectively. Each pot was
filled with 10 kg light dried soils and 5.28 g compound fertilizer which was made up of
N–P–K at a ratio of 15–15–15%. Another 1 kg of soil was used for cover after sowing and
3.52 g compound fertilizer was applied in the jointing stage. Water control was conducted
by weight and began when the winter wheat reached jointing stage (15 March 2019) to
implement the gradient tests of waterlogging stress. All waterlogging stresses were ended
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on 30 March 2019. Subsequently, equal volumes of water were provided for all pots until
maturation and harvest. Three test factors were set: waterlogging stress levels (control CK,
mild waterlogging ML, and severe waterlogging SL) in the jointing stage, stress duration
(5 d, 10 d, and 15 d), and wheat varieties (YF4, JM31 and JM38). Specifically, the relative soil
water contents of CK and ML were controlled at 70–80% and 85–90%, while the SL retained
about 1.5 cm of water on the surface of the soil. Among them, YF4 was the normal variety,
while JM31 was extremely sensitive to water, and JM38 was extremely insensitive to water.
A total of 21 treatment groups were set, and each treatment had 9 repetitions, with a total
of 189 pots. Eight wheat samples were provided per pot, and 1512 wheat samples were
provided for the test (Figure 2).
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experiment site.

Field experiment: The field experiment was carried out in Yizheng modern agricultural
demonstration base, Yangzhou City. Seeds were sown on 4 November 2018, and wheat was
harvested on 5 June 2019. Cultivation measures are the same as those of local high-yield
fields. Two treatments (Figure 3; blue box—control, red box—waterlogging stress) were set
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for 30 varieties of winter wheat. The waterlogging stress treatment began when the winter
wheat reached the jointing stage (12 March 2019), maintaining the water layer about 1.5 cm
for 10 days. Subsequently, all plots were planted normally until maturation and harvest.
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2.2. Canopy Hyperspectral Imagery Acquisition

Proximally-sensed hyperspectral imagery: The proximally-sensed hyperspectral im-
agery of the potted winter wheat was measured using the Gaiasky-mini2 imaging spec-
trometer (Sichuan Shuanglihepu Technology Co., Ltd., Chengdu, China; spectral region:
400–1000 nm; sampling interval: 3.5 nm ± 0.5 nm). The Gaiasky-mini2 imaging spec-
trometer has the functions of automatic exposure and automatic scanning speed matching.
Before each acquisition, the focus was adjusted in advance. The method was roughly to
place the target 1 m away from the lens to adjust the imagery to clarity, and a standard
white plate was used for calibration before measurements. The data was collected under
illumination conditions from 10:00 to 14:00 on sunny days. Observations were made on
five pots per group. Measurements were taken every 7 d since the day of waterlogging in
the jointing stage until commencement of the maturation stage, excluding cloudy and rainy
days. When collecting data, the Gaiasky-mini2 imaging spectrometer was supported by a
tripod with its lens downward. It was situated 1 m away from the wheat canopy to take
pictures (Figure 4a).
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UAV hyperspectral imagery: The UAV hyperspectral imagery of the field winter
wheat was captured by the DJI M600 UAV (SZ DJI Technology Co., Ltd., Shenzhen, China)
equipped with the Gaiasky-mini2 imaging spectrometer. The focus was adjusted in advance
to make the imagery clear when the distance to the target is infinite, and a standard white
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plate was used for calibration before measurements. The data was collected from 10:00 to
14:00 on a sunny day in the heading stage of winter wheat. Automatic shooting occurred
on the planned route, the flight altitude was set to 50 m, the speed was 3 m/s, and the
fore-and-aft overlap and side overlap were 60% and 50%, respectively (Figure 4b).

2.3. Data Processing
2.3.1. Preprocessing

Preprocessing of the hyperspectral imagery includes lens correction, reflectance correc-
tion, atmospheric correction, geometric calibration, and image stitching. The lens correction
can eliminate the distortion and brightness unevenness in the data acquisition process. The
imaging of the lens edge and the lens center can be kept consistent after lens correction.
The reflectance correction in SpecView includes radiometric calibration and reflectance
value output. It can establish the quantitative relations between digital number (DN),
which is the output of each probe’s elements in the imaging spectrometer, and the output
radiance and reflectance value in the corresponding field of view. Atmospheric correction
can eliminate the influences of atmosphere, illumination, and other environmental factors
on the electromagnetic radiation level of surface features, ensuring that measurements
correspond with the real reflectivity of surface features. Geometric calibration can elimi-
nate geometric distortion on images and transform it onto the reference image coordinate
system. SpecView can be used for lens correction, reflectance correction, and atmospheric
correction, and HiSpectralStitcher can be used for geometric calibration and image stitching
(Sichuan Shuanglihepu Technology Co., Ltd., Chengdu, China).

The proximally-sensed hyperspectral imagery acquisition is hardly affected by the at-
mospheric and geometric distortion, so these data only need lens correction and reflectance
correction. The preprocessing of UAV hyperspectral imagery includes all the above steps.

2.3.2. Image Classification

• Classification algorithm

RF [34] is an integrated classifier model which is composed of many decision tree
classification models. It receives several training subsets from the original training set
through bootstrap sampling, and then implements the node splitting decision-making
tree modeling to each subset by using an algorithm. Several decision trees are combined
into a random forest, and results are determined through prediction votes from every
tree. SVM [35,36] is a supervised parameter-free statistical learning method based on
VC-dimensional theory and minimum structural risks. It seeks the optimal values between
model complexity and learning capacity under the limited sample information. KNN [37]
believes that testing sample points belong to the nearest point set. It firstly calculates
the distance or similarity between the testing samples and training samples of known
categories, then identifies the K neighbors which are nearest to the classification sample
data in distance or similarity. Secondly, sample data are classified according to the classes
of these neighbors.

• Accuracy evaluation

Classification accuracy was evaluated by visual interpretation and classification accu-
racy based on the confusion matrix. The former method of evaluation is not introduced
in the present study. Confusion matrices, also known as error matrices, are mainly used
to analyze differences between classification results and true values. They can display
classification results in one matrix, thus allowing for the assessment of various accura-
cies, including overall accuracy (OCA), user accuracy (UA), producer accuracy (PA), and
Kappa coefficient.

2.3.3. Waveband Selection

During waveband selection, wavebands which have greater interclass dispersion and
less intraclass dispersion are expected to be chosen. According to the Fisher criterion, the
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relative distance among different classes can be used as measurement of class separability.
Moreover, the separability is larger when the relative distance is longer [38]. For quantitative
assessment of the capacity of spectra in different wavebands to recognize waterlogging
stress in winter wheat, a spectral distance (di) was introduced, representing the relative
spectral distance on the ith waveband between stressed and control winter wheat. Next,
the mean of spectral distance (Dµ), maximum (Dmax), minimum (Dmin), and coefficient of
variation (Dcv) [39] were used to judge capacity for recognition of a spectral range. These
parameters are defined as follows:

di =|Xi −Yi| (1)

Dµ =
1
n

n

∑
i=1

di (2)

Dcv = Dσ/Dµ (3)

Dmax = max(d1, d2, . . . , di, . . . , dn) (4)

Dmin = min(d1, d2, . . . , di, . . . , dn) (5)

where Xi and Yi are spectral values of stressed and control winter wheat on the ith wave-
band, respectively; n is the number of wavebands in a spectral range; Dσ and Dµ are the
mean and standard deviation of spectral distance in this spectral range, respectively.

2.3.4. Harmonic Analysis

Harmonic analysis is a basic method of signal processing. The method of expressing
time series by the sine (cosine) harmonic superposition is called harmonic analysis (HA). It
transforms the time series from the time domain to the frequency domain and finds the
transformation parameters. In the frequency domain, the time domain component is repre-
sented by the superposition of multiple sine (co)sine curves with different frequencies [40].
In this study, the original spectral signal can be decomposed into a series of combined sine
and cosine waves with different amplitudes and phases. Features of different components
of the original spectral signal can be analyzed in the frequency domain. The formulas are
as follows [41]:

V(x) =
A0

2
+

∞

∑
h=1

[Ah cos(2hπx/N) + Bh sin(2hπx/N)] (6)

=
A0

2
+

∞

∑
h=1

[Ch sin(2hπx/N + ϕh)] (7)

where:
A0

2
=

1
N

N

∑
k=1

vk (8)

Ah =
2
N
(v1 cos

2πh
N

+ v2 cos
4πh
N

+ . . . + vN cos 2πh) (9)

Bh =
2
N
(v1 sin

2πh
N

+ v2 sin
4πh
N

+ . . . + vN sin 2πh) (10)

Ch =
√

A2
h + B2

h (11)

ϕh = arctan(Ah/Bh) (12)

where V(x) is the signal being analyzed; N is the total number of wavebands; A0
2 is the

harmonic remainder; Ah, Bh, and Ch are cosine amplitude, sine amplitude, and harmonic
component amplitude at the hth harmonic decomposition, respectively; ϕh is the initial
phase of the hth harmonic decomposition; and vk is the reflectivity of the kth waveband in
the reflection spectra.
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In this study, preprocessing was performed based on SpecView and HiSpectralStitcher.
Image classification, waveband selection and harmonic analysis were performed based on
ENVI5.3, MATLAB R2017a, and Origin 2017.

3. Results
3.1. Image Classification

The batch classification results of RF, SVM, and KNN were compared. Accuracy
was evaluated by visual interpretation and confusion matrix. The classification algorithm
with the highest accuracy was chosen for batch classification of 504 hyperspectral images.
The number of decision trees (ntree) of RF was set to 10. As there are many images for
classification, one representative image (Figure 5) was chosen for better comparison of the
three algorithms. According to visual analysis, many winter wheat images were missed
in SVM and KNN, showing evidence of the “spiced salt phenomenon”. RF is the best
algorithm, and it hardly misses images during classification. The classification results of RF
conform to practical situations.
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Confusion matrices were calculated for the classification results of RF, SVM, and KNN.
The performance of these three algorithms was evaluated based on their OCA, PA, UA,
and Kappa coefficients. Results are shown in Table 1. The RF algorithm showed the highest
OCA, which was 3.39% and 7.61% higher than that of the SVM and KNN algorithms,
respectively. Moreover, the RF algorithm also presented the highest classification accuracy
for different classes. For winter wheat, the PA of the RF algorithm was 1.17% and 1.01%
higher than that of the SVM and KNN algorithms, and its UA was 1.76% and 3.53% higher
than that of the SVM and KNN algorithms, respectively. With respect to land cover types,
the classification accuracy of grass (Aegilops tauschii Coss., Alopecurus aequalis Sobol., etc.)
was increased the most. The PA of the RF algorithm was 6.41% and 8.22% higher, and
UA was 8.55% and 25.78% higher compared to that of the SVM and KNN algorithms,
respectively. Overall, RF clearly showed the best classification results. Therefore, the RF
algorithm was chosen to classify 504 hyperspectral images of potted winter wheat.



Remote Sens. 2022, 14, 122 9 of 17

Table 1. Comparison of classification accuracies of RF, SVM, and KNN algorithms.

Land Cover Type
RF SVM KNN

PA/% 1 UA/% 1 PA/% UA/% PA/% UA/%

Winter wheat 94.89 95.89 93.72 94.13 93.88 92.36
Pot 94.62 95.84 94.31 94.31 90.98 93.65
Soil 95.21 94.45 94.59 93.28 80.29 91.23

Grass 2 93.31 93.72 86.90 85.17 85.09 67.94

OCA/% 1 95.86 92.47 88.25
Kappa coefficient 0.9438 0.9022 0.8376

1 OCA—overall accuracy; PA—producer’s accuracy; UA—user’s accuracy. 2 Grass (Aegilops tauschii Coss.,
Alopecurus aequalis Sobol., etc.).

3.2. Waveband Selection

Spectral data of winter wheat after classification was extracted. According to previous
studies [42,43], the following waveband ranges were selected for analysis: blue edge
(BE, 490–530 nm), green region (GR, 510–560 nm), yellow edge (YE, 550–582 nm), red
absorption valley (RW, 640–680 nm), red edge (RE, 670–737 nm), and near-infrared region
(NIR, 700–900 nm). For quantitative assessment of the capacities of different spectra to
recognize winter wheat under waterlogging stress, a spectral distance (di) was introduced.
Later, the mean of spectral distance (Dµ), coefficient of variation (Dcv), maximum (Dmax),
and minimum (Dmin) were used to judge recognition capacity of a spectral range. Results
are shown in Table 2.

Table 2. Evaluation parameters for waveband selection.

Evaluation Index BE GR YE RW RE NIR

Dµ 0.018 0.021 0.025 0.033 0.050 0.085
Dcv 0.111 0.106 0.034 0.010 0.294 0.156

Dmax 0.021 0.024 0.027 0.033 0.077 0.098
Dmin 0.015 0.017 0.024 0.032 0.032 0.045

When the spectra change due to stress, the information size of the corresponding wave-
band might also change, accompanied by changes in spectral distance between stressed
and control winter wheat. As the mean of spectral distance in one waveband range, Dµ is
the most direct index to measure recognition ability. A higher value of Dµ indicates a longer
spectral distance between the stressed and control winter wheat in this waveband range. As
a result, the recognition capacity is higher. Dcv was used to measure intraclass dispersion
in different waveband ranges and is the ratio between standard deviation and mean of
spectral distance in this waveband range. A smaller value of Dcv indicates less intraclass
variation [39]. As demonstrated in Table 2, Dµ reached a maximum in the waveband ranges
of NIR, RE, and RW, with values of 0.085, 0.050, and 0.033, respectively. Dcv reached a
minimum in the RW, YE, and GR regions, with values of 0.010, 0.034, and 0.010, respectively.
In the RW region, Dµ was relatively high and Dcv was relatively low, indicating this range’s
strong capacity to recognize stressed winter wheat. The Dµ of the RE and NIR regions
was relatively large, and although Dcv was large as well, the Dmin of these regions were
higher than the Dmax of BE, GR, and YE. This reflects the fact that the ability of different
wavebands to recognize stressed winter wheat varies greatly. The RW (640–680 nm), RE
(670–737 nm), and NIR (700–900 nm) regions have strong recognition ability, and thus were
chosen for harmonic analysis.

3.3. Harmonic Analysis

Canopy spectra of winter wheat can be viewed as the superposition of sub-signals
with different amplitudes, frequencies, and phases. Different levels of waterlogging stress
show different frequencies, phases, and amplitudes in the frequency domain. In this study,



Remote Sens. 2022, 14, 122 10 of 17

three harmonic decompositions of canopy spectral data were performed to collect the
harmonic remainder, amplitude, and phase of sub-frequency signals in the RW, RE, and
NIR regions. It was found that in the RW region, the amplitude of the first harmonic sub-
signals presented obvious variation laws in the heading stage, filling stage, and flowering
stage, but showed no laws in the jointing stage and maturation stage. In this section,
the YF4 variety of winter wheat was taken as the example, as the variation trends of
the three varieties were similar. The amplitudes of harmonic sub-signals under different
waterlogging stress levels in the heading stage, flowering stage, and filling stage within
the RW, RE, and NIR regions are shown in Figure 6. The harmonic sub-signals of the RW
region are also shown in Figure 7 for further analysis.
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Generally speaking, when the relative soil water contents are the same, the waterlog-
ging stress level increases with the increase of the stress duration; when the stress duration
is the same, the stress level increases with the increase of the relative soil water content.
That is, the stress level: ML5d < ML10d < ML15d, SL5d < SL10d < SL15d; ML5d < SL5d,
ML10d < SL10d, ML15d < SL15d. Combined with Figures 6 and 7, it was found that after
harmonic decomposition in the RW region in the heading, flowering, and filling stages, the
amplitudes of sub-signals (c1, c2, and c3) increased with an increase in stress levels. In the
RE region, the amplitudes of the first two harmonic decompositions in the heading stage
were positively correlated to stress levels but presented no evident laws in the follow-up
stages. In the NIR region, the amplitude of sub-signals had no evident laws. Therefore,
sub-signals c1, c2, and c3 in the RW region in the heading, flowering, and filling stages can
be used to assess waterlogging stress levels. The numerical values of c1, c2, and c3 were
positively correlated with waterlogging stress levels. However, c1, c2, and c3 in the RE and
NIR regions could not be used to recognize stress. The amplitude of harmonic sub-signals
was negatively related to the number of harmonic decompositions (≤3), indicating that the
low-order harmonic amplitudes contain more energy information than high-order ones.

Variation laws of JM31, the variety of winter wheat sensitive to water content, were
different from those of YF4 and JM38 in the RE region. Specifically, only harmonic ampli-
tudes of JM31 show evident laws in the RE region. As a result, the harmonic amplitudes of
JM31 in RE are listed in Table 3.

It can be seen in Table 3 that in the heading stage, c1, c2, and c3 were positively related
to stress levels. In the flowering stage, the values of c1, c2, and c3 tended to increase with
an increase in stress level, except for c1 and c2 at ML10d and ML15d. In the filling stage,
the values of c1, c2, and c3 tended to increase with increased stress, except for c1 and c2 at
ML5d and ML10d. Therefore, only c3 was appropriate to assess waterlogging stress levels
for JM31 in the RE region. Harmonic sub-signals of JM31 in the RE region are shown in
Figure 8.
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Table 3. Harmonic amplitudes in RE region—JM31.

Growing Stage Amplitude CK ML5d ML10d ML15d SL5d SL10d SL15d

Heading stage
c1 1.5068 1.5530 1.5921 1.6173 1.6832 1.8298 1.9396
c2 0.6916 0.7095 0.7252 0.7368 0.7716 0.8160 0.8719
c3 0.4426 0.4476 0.4555 0.4558 0.4855 0.5122 0.5547

Flowering stage
c1 1.2615 1.2802 1.3234 1.2868 1.3238 1.3844 1.4141
c2 0.5659 0.5723 0.5979 0.5845 0.6037 0.6256 0.6310
c3 0.3582 0.3623 0.3713 0.3734 0.3872 0.3994 0.3996

Filling stage
c1 0.8124 0.9268 0.8735 0.8885 1.0403 1.2329 1.7480
c2 0.3956 0.4290 0.4174 0.4213 0.4978 0.5747 0.7937
c3 0.2431 0.2690 0.2756 0.2806 0.3301 0.3509 0.5014Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 18 
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Based on the above analysis:
(1) c1, c2, and c3 in the RW region can be used to recognize waterlogging stress levels

in winter wheat, as their numerical values are positively related to stress levels. In the
RE region, c3 can be used to recognize waterlogging stress levels in winter wheat that is
sensitive to water. In the NIR region, the waterlogging stress levels of winter wheat cannot
be recognized based on harmonic analysis. In short, c1, c2, and c3 in the RW region and c3
in the RE region can be used to assess waterlogging stress levels in winter wheat.

(2) c1, c2, and c3 in the RW region and c3 in the RE region show the following laws:
CK < ML5d < ML10d < ML15d < SL5d < SL10d < SL15d or CK < ML5d < ML10d < SL5d
< ML15d < SL10d <SL15d. This reflects the fact that short-term and middle-term mild
waterlogging stress have less impact than severe waterlogging stress. The impact of long-
term, mild waterlogging stress is similar to that of short-term, severe waterlogging stress.

(3) Harmonic sub-signals can recognize waterlogging stress levels in the heading,
flowering, and filling stages of winter wheat, but cannot do so in the jointing and maturation
stages. This might be due to the fact that the influences of waterlogging stress on crops
are delayed in their presentation, and winter wheat is under stress at the jointing stage, so
it shows no symptoms. In the maturation stage, the leaves of winter wheat begin to age,
manifested by wilting and yellowing. As such, there are various influencing factors.

(4) Harmonic amplitudes of canopy spectra in the first three orders attenuate with the in-
crease of decomposition times. In other words, low-order harmonic amplitudes contain more
energy information than high-order harmonic amplitudes after harmonic decomposition.

4. Discussion

In this study, three varieties of winter wheat (YF4, JM31, and JM38) were chosen as the
research subject. Gradient tests of waterlogging stress (CK, ML5d, ML10d, ML15d, SL5d,
SL10d, and SL15d) were carried out in the jointing stage. Canopy hyperspectral imagery
of winter wheat was collected in the jointing, heading, flowering, filling, and maturation
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stages, followed by classification and waveband screening. Evidence of waterlogging stress
on winter wheat was assessed and examined based on harmonic analysis.

4.1. Image Classification and Waveband Selection

The RF algorithm demonstrated the best batch classification accuracy of hyperspectral
imagery of potted winter wheat. This might be because hyperspectral data has high
dimensions [44], and the RF algorithm can process high-dimensional data better than other
classification algorithms without feature selection. Changes of leaf spectra are caused
by changes in pigment, internal structure, and dry mass content [45]. It was concluded
that the RW (640–680 nm), RE (670–737 nm), and NIR (750–900 nm) regions had the
greatest capacity to recognize waterlogging stress (Table 2), which was consistent with the
findings of previous studies [46]. In the RW region, spectral response features are mainly
influenced by pigment content [20]. The RE region is sensitive to pigment and nutrients
(mainly chlorophyll and nitrogen), and the influences of atmosphere and background can
be decreased to a maximal extent [47,48]. Chlorophyll content has previously been used as
an indicator of stress and growth conditions in vegetation. Stavros et al. [49] demonstrated
that the RE region plays a key role in chlorophyll testing: CHLa is sensitive to 701 nm and
CHLb is sensitive to 707 nm. The NIR region is sensitive to internal leaf structure and dry
mass content, including proteins, lignin, and cellulose [50].

4.2. Harmonic Analysis
4.2.1. Pot Experiment

Different levels of waterlogging stress influence the spectra of crops. Strong reflections
of fresh leaf surfaces, cuticles of leaves, lamellar hair, and internal structures can also
influence the spectra. It is difficult to monitor waterlogging stress level comprehensively
and accurately from the spectral dimension alone. Harmonic analysis has a strong ability
to analyze signals. Harmonic decomposition of spectra can decompose weak spectra
distortion of waterlogging stress in the canopy spectra of winter wheat into low-order
harmonics and decompose high-frequency noise into high-order harmonics. This is more
beneficial for analyzing useful information in the spectral signals [33]. Changes or weak
distortions in the canopy spectra of winter wheat reflect changes in the electromagnetic
wave energies of the canopy spectra under different waterlogging stress levels. In this study,
it was found that c1, c2, and c3 in the RW region can monitor the waterlogging stress levels
of three varieties of winter wheat. In the RE region, c3 can be used to assess stress levels
in the JM31 variety. This verifies that characteristic parameters of harmonic amplitudes
can identify and distinguish weak spectral distortion in the RW and RE regions, especially
in the RW region. After winter wheat suffers from waterlogging stress in the jointing
stage, the heading stage, flowering stage, and filling stage are the best growth stages to
assess stress levels based on harmonic analysis. No symptoms of waterlogging stress in
the jointing stage may be caused by the hysteresis of influences. In the maturation stage,
the leaves of winter wheat begin to age, manifested by wilting and yellowing. Moreover,
there are many other influencing factors. Short-term and middle-term mild waterlogging
stress has less impact than severe waterlogging stress. The impact of long-term, mild
waterlogging stress is similar to that of short-term, severe waterlogging stress. This might
be because under severe waterlogging stress, there exists oversaturated soil water and the
slow diffusion of gases. Compared with mild waterlogging stress, O2 content decreases
more quickly, thus resulting in a greater impact on plant growth. Long-term waterlogging
stress causes oxygen toxicity in the root region of crops, thus resulting in energy shortage
and toxin accumulation [51]. In addition, harmonic amplitudes of canopy spectra in the
first three orders attenuate with the increase of decomposition times. In other words, the
low-order harmonic amplitude contains more energy information than the high-order
harmonic amplitude after harmonic decomposition.
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4.2.2. Field Preliminary Verification

Based on hyperspectral imagery of a pot experiment, this study monitored waterlog-
ging stress levels in a frequency domain different from common spectral dimensions by
using harmonic analysis. This provides an important method for the large-scale identifica-
tion of environmental stress levels. To further deepen studies, applications of field-scale
harmonic sub-signals can be discussed. Due to the scale problems of remote sensing, it
is difficult to control and measure field waterlogging stress levels, and this was not the
research focus of this study. The capacity of harmonic sub-signals in the RW region to
assess waterlogging stress was discussed preliminarily based on UAV hyperspectral im-
agery. Hyperspectral imagery of winter wheat in the RW region was extracted, and each
pixel point in the images was processed by three harmonic decompositions, resulting in the
harmonic amplitudes c1, c2, and c3. These amplitudes were drawn in a diagram (Figure 9;
blue box—control, red box—waterlogging stress). It demonstrates that there are obvious
differences between control and stressed fields in term of harmonic amplitudes. Specifically,
c1 from the control field was about 0.9 × 10−3–1.5 × 10−3 and 1.6 × 10−3–3 × 10−3 in
the stressed field. c2 was about 0.4 × 10−3–0.63 × 10−3 in the control field compared to
0.7 × 10−3–1.2 × 10−3 in the stressed field. Finally, c3 was about 0.3 × 10−3–0.5 × 10−3 in
the control field and 0.6 × 10−3–0.9 × 10−3 in the stressed field. Generally, field harmonic
amplitudes were smaller compared to the potting harmonic amplitudes. However, c1, c2,
and c3 from the stressed field were generally higher than those from the control field and
attenuated with the increase of harmonic decomposition times (≤3). This matches the con-
clusions gained from the canopy hyperspectral data of potted winter wheat. According to
preliminary judgments, c1, c2, and c3 in the RW region can be used to assess waterlogging
stress levels in fields of winter wheat. The results can preliminarily verify the effectiveness
of the proposed method based on the pot experiment, and it can lay the foundations for
large-scale monitoring. In the future, field experiments with multiple waterlogging stress
gradients can be set up to deepen the research, with a view to perfecting the method and
applying it to the actual monitoring of waterlogging stress levels.
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5. Conclusions

In this study, a combined harmonic analysis method was proposed and preliminarily
verified by using the hyperspectral imagery obtained through pot and field experiments
in Yangzhou City, Jiangsu Province, China. This method could assess the waterlogging
stress levels of winter wheat in the frequency domain different from the spectral dimension.
Through the comparison of the batch classification accuracy of RF, SVM, and KNN, it was
found that RF is the best batch classification method for hyperspectral imagery of potted
winter wheat. Subsequently, the spectral data of winter wheat after classification was ex-
tracted, and a spectral distance (di) was introduced for selecting the wavebands with strong
recognition ability. It concluded that the RW (640–680 nm), RE (670–737 nm), and NIR
(750–900 nm) regions could identify waterlogging stress levels well. Then, harmonic analy-
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sis was applied to assess the waterlogging stress levels of winter wheat in the frequency
domain. This demonstrated that c1, c2, and c3 in the RW region were the best indexes to
use in the identification of waterlogging stress levels in winter wheat. Moreover, c3 in the
RE region was appropriate for evaluating stress levels in the JM31 variety of wheat. After
winter wheat suffered from waterlogging stress during jointing, the heading, flowering,
and filling stages were the best growth intervals during which to assess stress levels based
on harmonic analysis. Moreover, a preliminary field experiment on the ability of harmonic
amplitude in the RW region to assess waterlogging stress was carried out. Preliminarily,
it was determined that c1, c2, and c3 in the RW region can assess waterlogging stress in
fields of winter wheat. This study provides a new method for assessing waterlogging stress
levels. It has important theoretical significance and practical application values for the
accurate control of waterlogging stress. It can be further verified and applied to studies
on other types of environmental stress levels such as drought stress, freezing stress, and
high-temperature stress levels.
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