Regional Seafloor Topography by Extended Kalman Filtering of Marine Gravity Data without Ship-Track Information
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.1.1. Forward Problem Using Radial Integrals
2.1.2. Extended Kalman Filter for Recovery Seafloor Topography
- Innovation (or equivalently update or correction):
2.2. Region of Study: Great Meteor Guyot
2.3. Data
2.3.1. Geoid Height and Free-Air Anomaly Measurements
2.3.2. Bathymetric Grids and Ocean Depth Surveys
3. Results
3.1. Application to Simulated Data and Recovery Test
3.1.1. Forward Problem: Validation of Non-Linear Operators
3.1.2. Inverse Problem Analysis by EKF. Simulated Case
3.2. Inversion of a Real Case
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Smith, W.H.F.; Marks, M.; Schmitt, T. Airline flight paths over the unmapped ocean. EOS 2017, 98. [Google Scholar] [CrossRef]
- Mayer, L.A. Frontiers in Seafloor Mapping and Visualization. Mar. Geophys. Res. 2006, 27, 7–17. [Google Scholar] [CrossRef]
- Glenn, M.F. Introducing an Operational Multi-Beam Array Sonar. Int. Hydrogr. Rev. 1970, 47, 35–39. [Google Scholar]
- Weatherall, P.; Marks, K.M.; Jakobsson, M.; Schmitt, T.; Tani, S.; Arndt, J.E.; Rovere, M.; Chayes, D.; Ferrini, V.; Wigley, R. A new digital bathymetric model of the world’s oceans. Earth Space Sci. 2015, 2, 331–345. [Google Scholar] [CrossRef]
- Renard, V.; Allenou, J.-P. Sea Beam, Multi-Beam Echo-Sounding in “Jean Charcot”—Description, Evaluation and First Results. Int. Hydrogr. Rev. 1979, 56, 35–67. [Google Scholar]
- Cazenave, A.; Schaeffer, P.; Berge, M.; Brossier, C.; Dominh, K.; Gennero, M.C. High-resolution mean sea surface computed with altimeter data of Ers-1 (geodetic mission) and topex-poseidon. Geophys. J. Int. 1996, 125, 696–704. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.H.F.; Sandwell, D.T. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science 1997, 277, 1956. [Google Scholar] [CrossRef] [Green Version]
- Dixon, T.H.; Naraghi, M.; McNutt, M.K.; Smith, S.M. Bathymetric prediction from SEASAT altimeter data. J. Geophys. Res. Oceans 1983, 88, 1563–1571. [Google Scholar] [CrossRef]
- Smith, W.H.F.; Sandwell, D.T. Bathymetric Prediction from Dense Satellite Altimetry and Sparse Shipboard Bathymetry. J. Geophys. Res. Solid Earth 1994, 99, 21803–21824. [Google Scholar] [CrossRef]
- Cazenave, A.; Dominh, K. Geoid heights over the Louisville Ridge (South Pacific). J. Geophys. Res. Solid Earth 1984, 89, 11171–11179. [Google Scholar] [CrossRef]
- Freedman, A.P.; Parsons, B. Seasat-derived gravity over the Musicians Seamounts. J. Geophys. Res. Solid Earth 1986, 91, 8325–8340. [Google Scholar] [CrossRef]
- Lambeck, K.; Coleman, R. The Earth’s shape and gravity field: A report of progress from 1958 to 1982. Geophys. J. Int. 1983, 74, 25–54. [Google Scholar] [CrossRef] [Green Version]
- Lazarewicz, A.P.; Schwank, D.C. Detection of uncharted seamounts using satellite altimetry. Geophys. Res. Lett. 1982, 9, 385–388. [Google Scholar] [CrossRef]
- Brammer, R.F.; Sailor, R.V. Preliminary estimates of the resolution capability of the Seasat radar altimeter. Geophys. Res. Lett. 1980, 7, 193–196. [Google Scholar] [CrossRef]
- White, J.V.; Sailor, R.V.; Lazarewicz, A.R.; LeSchack, A.R. Detection of seamount signatures in SEASAT altimeter data using matched filters. J. Geophys. Res. Oceans 1983, 88, 1541–1551. [Google Scholar] [CrossRef]
- Dixon, T.H.; Parke, M.E. Bathymetry estimates in the southern oceans from Seasat altimetry. Nature 1983, 304, 406–411. [Google Scholar] [CrossRef]
- Sandwell, D.T. A detailed view of the South Pacific geoid from satellite altimetry. J. Geophys. Res. Solid Earth 1984, 89, 1089–1104. [Google Scholar] [CrossRef]
- Goodwillie, A.M.; Watts, A.B. An altimetric and bathymetric study of elastic thickness in the central Pacific Ocean. Earth Planet. Sci. Lett. 1993, 118, 311–326. [Google Scholar] [CrossRef]
- Jung, W.-Y.; Vogt, P.R. Predicting bathymetry from Geosat-ERM and shipborne profiles in the South Atlantic ocean. Tectonophysics 1992, 210, 235–253. [Google Scholar] [CrossRef]
- Vogt, P.R.; Jung, W.-Y. Satellite radar altimetry aids seafloor mapping. Eos Trans. Am. Geophys. Union 1991, 72, 465–469. [Google Scholar] [CrossRef]
- Baudry, N. Géoïde Altimétrique et Lithosphère Océanique: Application à L’identification de Nouvelles Structures Intraplaques; The Université Paris 11: Orsay France, 1987; ISBN 2-7099-0916-2. [Google Scholar]
- Craig, C.H.; Sandwell, D.T. Global distribution of seamounts from Seasat profiles. J. Geophys. Res. Solid Earth 1988, 93, 10408–10420. [Google Scholar] [CrossRef]
- Baudry, N.; Calmant, S. 3-D modelling of seamount topography from satellite altimetry. Geophys. Res. Lett. 1991, 18, 1143–1146. [Google Scholar] [CrossRef]
- Calmant, S.; Berge-Nguyen, M.; Cazenave, A. Global seafloor topography from a least-squares inversion of altimetry-based high-resolution mean sea surface and shipboard soundings. Geophys. J. Int. 2002, 151, 795–808. [Google Scholar] [CrossRef] [Green Version]
- Ramillien, G.; Cazenave, A. Global bathymetry derived from altimeter data of the ERS-1 geodetic mission. J. Geodyn. 1997, 23, 129–149. [Google Scholar] [CrossRef]
- Ramillien, G.; Wright, I.C. Predicted seafloor topography of the New Zealand region: A nonlinear least squares inversion of satellite altimetry data. J. Geophys. Res. Solid Earth 2000, 105, 16577–16590. [Google Scholar] [CrossRef]
- Sichoix, L.; Bonneville, A. Prediction of bathymetry in French Polynesia constrained by shipboard data. Geophys. Res. Lett. 1996, 23, 2469–2472. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Smith, W.H.F. Chapter 12 Bathymetric Estimation. In International Geophysics; Fu, L.-L., Cazenave, A., Eds.; Academic Press: London, UK, 2001; Volume 69, pp. 441–457. [Google Scholar] [CrossRef]
- Parker, R.L. The Rapid Calculation of Potential Anomalies. Geophys. J. Int. 1973, 31, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Ribe, N.M. On the interpretation of frequency response functions for oceanic gravity and bathymetry. Geophys. J. Int. 1982, 70, 273–294. [Google Scholar] [CrossRef] [Green Version]
- Baudry, N.; Calmant, S. Seafloor mapping from high-density satellite altimetry. Mar. Geophys. Res. 1996, 18, 135–146. [Google Scholar] [CrossRef]
- Calmant, S. Seamount topography by least-squares inversion of altimetric geoid heights and shipborne profiles of bathymetry and/or gravity anomalies. Geophys. J. Int. 1994, 119, 428–452. [Google Scholar] [CrossRef] [Green Version]
- Ramillien, G. La Modelisation de la Topographie Sous-Marine a Partir des Missions Altimetriques ers-1 et Geosat. 1998. Available online: https://scanr.enseignementsup-recherche.gouv.fr/publication/these1998TOU30066 (accessed on 29 November 2021).
- Fan, D.; Li, S.; Li, X.; Yang, J.; Wan, X. Seafloor Topography Estimation from Gravity Anomaly and Vertical Gravity Gradient Using Nonlinear Iterative Least Square Method. Remote Sens. 2021, 13, 64. [Google Scholar] [CrossRef]
- Mohn, C. Great Meteor Seamount. Oceanography 2010, 23, 106–107. [Google Scholar] [CrossRef] [Green Version]
- Verhoef, J. A geophysical study of the Atlantis-Meteor seamount complex. In Geologica Ultraiectina; Utrecht University: Utrecht, The Netherlands, 1984; Volume 38, pp. 1–153. [Google Scholar]
- Watts, A.B. Isostasy and Flexure of the Lithosphere; Cambridge University Press: Cambridge, UK, 2001; ISBN 978-0-521-00600-2. [Google Scholar]
- Tisseau-Moignard, C. Modèles de Flexure de la Lithosphère sous L’effet D’une Charge Sédimentaire: Aplication au Bassin de Nouvelle-Caledonie (Sud-Ouest Pacifique); Centre d’Orsay: Orsay, France, 1979. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of mathematical functions with formulas, graphs, and mathematical table. In US Department of Commerce; National Bureau of Standards Applied Mathematics Series 55; US Government Printing Office: Washington, DC, USA, 1965. [Google Scholar]
- Hofmann-Wellenhof, B.; Moritz, H. Physical Geodesy; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 3-211-33545-5. [Google Scholar]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Kalman, R.E.; Bucy, R.S. New Results in Linear Filtering and Prediction Theory. J. Basic Eng. 1961, 83, 95–108. [Google Scholar] [CrossRef]
- Harris, F.J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 1978, 66, 51–83. [Google Scholar] [CrossRef]
- GEBCO. GEBCO Gazetteer—Latest Release Now Available. Available online: https://www.gebco.net/news_and_media/gebco_gazetteer_august_2011.html (accessed on 8 November 2021).
- ICGEM. International Center for Global Gravity Field Models. Available online: http://icgem.gfz-potsdam.de/calcgrid (accessed on 22 November 2021).
- Andersen, O.B.; Knudsen, P.; Kenyon, S.; Factor, J.K.; Holmes, S. Global gravity field from recent satellites (DTU15)—Arctic improvements. First Break 2017, 35, 37–40. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosystems 2019, 20, 5556–5564. [Google Scholar] [CrossRef] [Green Version]
- NOAA National Geophysical Data Center. 2009: ETOPO1 1 Arc-Minute Global Relief Model. NOAA National Centers for Environmental Information. Available online: https://www.ngdc.noaa.gov/mgg/global/ (accessed on 20 May 2021).
- Amante, C. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; U.S. Department of Commerce; National Oceanic and Atmospheric Administration; National Environmental Satellite, Data, and Information Service; National Geophysical Data Center; Marine Geology and Geophysics Division: Boulder, CO, USA, 2009.
- Mayer, L.; Jakobsson, M.; Allen, G.; Dorschel, B.; Falconer, R.; Ferrini, V.; Lamarche, G.; Snaith, H.; Weatherall, P. The Nippon Foundation—GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences 2018, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Marks, K.; International Hydrographic Organization; Intergovernmental Oceanographic Commission; GEBCO. The IHO-IOC GEBCO Cook Book; International Hydrographic Organization: Monaco City, Monaco; Intergovernmental Oceanographic Commission (IHO-IOC): Paris, France, 2019. [Google Scholar]
- US Department of Commerce, N.S. and I.S. NOAA National Centers for Environmental Information (NCEI). Available online: https://www.ngdc.noaa.gov/ (accessed on 22 November 2021).
- Luis, J.F.; Neves, M.C. The isostatic compensation of the Azores Plateau: A 3D admittance and coherence analysis. Volcan. Geol. Azores Isl. 2006, 156, 10–22. [Google Scholar] [CrossRef]
- Wild-Pfeiffer, F. A comparison of different mass elements for use in gravity gradiometry. J. Geod. 2008, 82, 637–653. [Google Scholar] [CrossRef]
- Uieda, L.; Barbosa, V.C.F.; Braitenberg, C. Tesseroids: Forward-modeling gravitational fields in spherical coordinates. Geophysics 2016, 81, F41–F48. [Google Scholar] [CrossRef]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, B04406. [Google Scholar] [CrossRef] [Green Version]
- Sandwell, D.; Garcia, E.; Soofi, K.; Wessel, P.; Chandler, M.; Smith, W.H. Toward 1-mGal accuracy in global marine gravity from CryoSat-2, Envisat, and Jason-1. Lead. Edge 2013, 32, 892–899. [Google Scholar] [CrossRef] [Green Version]
- Hirvonen, R.A. On the Statistical Analysis of Gravity Anomalies; Annales Academiae Scientiarum Fennicae; Ohio State University Research Foundation: Columbus, OH, USA, 1962. [Google Scholar]
- Hirvonen, R.A. Adjustment by Least Squares in Geodesy and Photogrammetry; Frederick Ungar Publishing Company: New York, NY, USA, 1971. [Google Scholar]
- Wang, T.; Lin, J.; Tucholke, B.; Chen, Y.J. Crustal thickness anomalies in the North Atlantic Ocean basin from gravity analysis. Geochem. Geophys. Geosystems 2011, 12, Q0AE02. [Google Scholar] [CrossRef]
- Watts, A.B.; Cochran, J.R.; Selzer, G. Gravity anomalies and flexure of the lithosphere: A three-dimensional study of the Great Meteor Seamount, northeast Atlantic. J. Geophys. Res. 1975, 80, 1391–1398. [Google Scholar] [CrossRef]
- Straume, E.O.; Gaina, C.; Medvedev, S.; Hochmuth, K.; Gohl, K.; Whittaker, J.M.; Abdul Fattah, R.; Doornenbal, J.C.; Hopper, J.R. GlobSed: Updated Total Sediment Thickness in the World’s Oceans. Geochem. Geophys. Geosystems 2019, 20, 1756–1772. [Google Scholar] [CrossRef]
- Nozaki, K. The generalized Bouguer anomaly. Earth Planets Space 2006, 58, 287–303. [Google Scholar] [CrossRef] [Green Version]
Model Type Used to Compute Diff. | MAX | MIN | MEAN | RMS | |
---|---|---|---|---|---|
Global grids | ETOPO1 | 4681.8 | −1858.6 | −12.5 | 364.5 |
GEBCO | 4634.1 | −1866.83 | 13.5 | 323.5 | |
EKF solution uncompensated case | GEOID | 4069.8 | −2328.8 | −295.2 | 540.3 |
FAA | 3974.7 | −2503.1 | −298.8 | 543.3 | |
COMB | 3809.4 | −2472.0 | −374.8 | 565.4 | |
EKF solution Compensated case | GEOID | 4649.9 | −2168.9 | 22.7 | 402.9 |
FAA | 4924.5 | −1892.5 | 200.9 | 445.8 | |
COMB | 4586.7 | −2137.2 | −28.4 | 401.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seoane, L.; Ramillien, G.; Beirens, B.; Darrozes, J.; Rouxel, D.; Schmitt, T.; Salaün, C.; Frappart, F. Regional Seafloor Topography by Extended Kalman Filtering of Marine Gravity Data without Ship-Track Information. Remote Sens. 2022, 14, 169. https://doi.org/10.3390/rs14010169
Seoane L, Ramillien G, Beirens B, Darrozes J, Rouxel D, Schmitt T, Salaün C, Frappart F. Regional Seafloor Topography by Extended Kalman Filtering of Marine Gravity Data without Ship-Track Information. Remote Sensing. 2022; 14(1):169. https://doi.org/10.3390/rs14010169
Chicago/Turabian StyleSeoane, Lucía, Guillaume Ramillien, Benjamin Beirens, José Darrozes, Didier Rouxel, Thierry Schmitt, Corinne Salaün, and Frédéric Frappart. 2022. "Regional Seafloor Topography by Extended Kalman Filtering of Marine Gravity Data without Ship-Track Information" Remote Sensing 14, no. 1: 169. https://doi.org/10.3390/rs14010169
APA StyleSeoane, L., Ramillien, G., Beirens, B., Darrozes, J., Rouxel, D., Schmitt, T., Salaün, C., & Frappart, F. (2022). Regional Seafloor Topography by Extended Kalman Filtering of Marine Gravity Data without Ship-Track Information. Remote Sensing, 14(1), 169. https://doi.org/10.3390/rs14010169