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Abstract: Currently, soil salinization is a serious problem affecting agricultural production and
human settlements. Remote sensing techniques have the advantages of a large monitoring range,
rapid acquisition of information, implementation of dynamic monitoring, and low impact on the
ground surface. Over the past two decades, many semi-empirical bidirectional polarized distribution
function (BPDF) models have been proposed to accurately calculate the polarized reflectance (Rp) on
the soil surface. Although there have been some studies on the BPDF model based on traditional
machine learning methods, there is a lack of research on the BPDF model based on deep learning,
especially using laboratory measurement spectrum data as the processing object, with limited
research results. In this paper, we collected saline-alkaline soil in the field as the observation object
and measured the Rp at multiple angles in the laboratory environment. We used semi-empirical
models (the Nadal–Bréon model, Litvinov model, and Xie–Cheng model) and machine learning
methods (support vector regression, random forest, and deep neural networks regression) to simulate
and predict the surface Rp of saline-alkaline soils and compare them with experimental results.
The measured values of the laboratory are compared and fitted, and the root mean squared error,
R-squared, and correlation coefficient are calculated to express the prediction effect. The results show
that the predictions of the BPDF model based on machine learning methods are generally better
than those of the semi-empirical BPDF model, which is improved by 3.06% at 670 nm and 19.75% at
865 nm. The results of this study also provide new ideas and methods based on deep learning for the
prediction of Rp on the surface of saline-alkaline soils.

Keywords: bidirectional polarization distribution function; deep learning; machine learning;
saline-alkaline soil

1. Introduction

Saline-alkaline soil is one of the main land degradation threats that affect soil fertility,
stability, and biodiversity [1]. The accumulation of high levels of sodium salts relative to
other exchangeable cations is the main attribute of sodic soils [2]. Most saline-alkaline soils
are distributed in arid and semi-arid climatic regions. Evaporation and deposition increase
the salt concentration in the roots of vegetation [2], leading to changes in the chemical and
biological functions of the soil [3,4]. On the one hand, the excessive alkalinity of the soil will
have an adverse effect on the infiltration capacity of the soil [5], increase the susceptibility
to water and wind erosion [6], and decompose more soil organic matter [7]. On the
other hand, excessively high soil salinity can disrupt soil respiration, the nitrogen cycle,
and the decomposition function of soil microorganisms [7,8]. In addition, salinity stress
directly affects vegetation growth by reducing plant water uptake (osmotic stress) and/or
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by deteriorating the transpiring leaves (specific ion effects) [9], which reduces organic
input to the soil and can ultimately lead to desertification [10]. Extreme environmental
conditions, the dispersion of saline dust [11,12], poverty, migration, and the high costs of
soil reclamation are some of the long-term socioeconomic consequences of soil salinization.

The radiation on the surface of the earth is partially polarized [13,14]. The properties
of light include intensity and polarization. Polarized reflectance (Rp) refers to the polarized
part of the reflected light [15]. Polarized light can usually be obtained through a polar-
izer. Rp can reflect a large amount of surface information and characterizes the optical
properties of the earth’s surface [16,17]. However, it can also be used to obtain the optical
performance of aerosol boundary conditions [18–20]. According to previous reports, Rp
follows an anisotropic distribution pattern [21–23]. The angular distribution of Rp can
be characterized by a bidirectional polarized distribution function (BPDF). Therefore, the
BPDF model is very important for the estimation of Rp. Thus far, a significant amount
of research has been carried out on BPDF [17,22,24,25]. These studies pertained to vege-
tation [13,17,26–30], soil [31,32], ice and snow [16,23], urban surface [33], and other basic
elements such as smoke and dust [16,34] and man-made targets [14]. Over the past three
decades, several BPDF models have been proposed, based on various measurements and
results [35]. The BPDF models can be broadly categorized as (a) physical models based on
simplified radiative transfer equations [27,31,36] and Monte Carlo simulation [27], and (b)
semi-empirical models based on the combination of physical models and free parameters
that are empirically parameterized [19,22,33,37]. Six semi-empirical BPDF models were
developed to parameterize the polarized reflectance of land surfaces. Using the space-borne
polarization and directionality of Earth’s reflectances (POLDER) measurements, three semi-
empirical BPDF models, i.e., the Nadal and Bréon model [21], the Maignan model [22], and
the Xie–Cheng model [33] were proposed for 11 surface types, 14 international geosphere
biosphere program (IGBP) classes, and urban areas, respectively. At the airborne level,
Waquet et al. proposed a scaled Fresnel model by accounting for the mutual shadowing
of facets using MICROPOL measurements over forests, cropped surfaces, and urban ar-
eas [38]. Litvinov et al. explored a three-parameter BPDF model using research scanning
polarimeter (RSP) measurements over vegetation and soil surfaces [39]. For ground-level
measurements, Diner et al. developed a semi-empirical BPDF model for grass surfaces
using a ground-based multi-angle spectropolarimetric imager (Ground-MSPI) [37].

With the development of machine learning and deep learning methods, many algo-
rithms have been proposed, such as the generalized regression neural network (GRNN) [40],
K–nearest neighbor (KNN) algorithm [41], support vector regression (SVR) [42], random
forest (RF) [43], and deep neural networks (DNN). These methods have been widely used in
other fields of remote sensing, such as for classification and change detection [44,45], and in
the investigation of the biophysical and biochemical characteristics of vegetation [43,46,47].
Therefore, it is possible to develop BPDF models based on machine learning using these
popular algorithms. Such work, though relatively rare, is very important for improving
the accuracy of inversion and enhancing the study of the polarized light characteristics of
saline-alkaline soil using deep learning.

There are two main purposes of this research. The first is based on the principle of
deep learning and a new method, suitable for estimating the polarization reflectivity of
the saline-alkaline soil surface, is proposed. The second is to compare this new method
with the existing semi-empirical BPDF model and machine learning methods, trying to
establish which method is most suitable for the prediction of the polarized reflectance of a
saline-alkaline soil surface. The hypothesis of this study is that the polarized reflectance of
saline-alkaline soil and an ordinary soil surface is similar in some ways. The principle of
deep learning can be applied for finding the solution to this problem. The method used in
this research is to measure the polarized reflectance of saline-alkaline soil under laboratory
conditions. After sorting the data, deep learning methods are used for processing, and
the most suitable deep learning model for this research is explored by changing the corre-
sponding parameters. In addition, using the laboratory data, the results of several existing
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semi-empirical BPDF models and machine learning methods are compared to achieve the
purpose of this research.

2. Introduction to Models and Algorithms

Two types of models and methods for predicting the surface Rp of saline-alkaline
soils were investigated in this study. One is the semi-empirical BPDF model, which mainly
includes the Nadal–Bréon, Litvinov, and Xie–Cheng models. The other is a BPDF model
based on machine learning, which mainly includes three methods: SVR, RF regression, and
DNN. This section introduces the principles of these methods.

2.1. Semi-empirical BPDF Model

The semi-empirical BPDF model has been widely used to estimate surface Rp [48,49].
These models were originally proposed for different land cover types and were constructed
based on the measurement results of different instruments [9–11,21,23,27,28,50]. Usually,
the model data are based on POLDER measurements, and the commonly used power
for surface measurement is 670 nm, 865 nm, and 1020 nm. By introducing empirically
unconstrained parameters into the modeling process, it has been proven that the semi-
empirical BPDF models can produce a relatively efficient calculation in the three semi-
empirical models. One example is considered in this study, and the pairs generated in the
three models are listed in Table 1. The three models are briefly introduced below.

Table 1. Key parameter values of several semi-empirical BPDF models and BPDF models based on
machine learning.

Semi-empirical BPDF Models

Nadal–Bréon
model

ρ 0.025
β 51.784

Litvinov model
α 3.366
σ2 0.274
kr 0.652

Xie–Cheng model A 0.866
kr 0.501

Machine Learning-based BPDF Model

SVR
γ 12.13
C 2.58

RF ntree 200

DNN

number of layers 3
learning rate (670) 0.5
learning rate (865) 0.4
number of nodes 5,5,1

activations tanh
optimizer SGD

2.1.1. Nadal–Bréon Model

The Nadal–Bréon BPDF model is used for various natural surfaces (forests, bushes,
low vegetation, and deserts). The specific models are as follows:

Rp = ρ

[
1− exp

(
−β

Fp(γ, N)

µs + µv

)]
(1)

Fp(γ, N) =
1
2

[(
Nµt − µi
Nµt + µi

)2
−
(

Nµi − µt
Nµi + µt

)2
]

(2)

µi = cos θi, µt = cos θt (3)

sin θi = Nsinθt, θi = (π− γ)/2 (4)

cosγ = − cos θs cos θv − sin θs sin θv cosϕ (5)
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Here, ρ and β are the two free parameters of the model; Fp(γ, N) indicate the Fresnel
model; N is the refractive index; θi and θt are the angles of specular reflection and refraction;
γ represents scattering, which is defined as the direction of the incident sun and the angle
between the incident light; µs and µv represent the cosine of the solar zenith angle θs and
the apparent zenith angle θv, respectively; ϕ is the relative azimuth angle between the sun
and the viewing direction. It is necessary to note that the commonly accepted value of the
reflective index for land surfaces is 1.5 [36].

2.1.2. Litvinov Model

The Litvinov model is a model developed by Litvinov et al., for vegetation and soil
surfaces. The suppression value reflects polarized light in the forward reflection direction
and introduces the shadow function with the maximum value in the backward scattering
direction [32]. The specific models are as follows:

Rp =
απFp(γ, N)

4 cos ϑ(µs + µv)
f(σ, ϑ)fsh(γ, kr) (6)

f(σ, ϑ) =
1

π cos3ϑ2σ2 exp
(
− tan2 ϑ

2σ2

)
(7)

fsh(γ, kr) =

(
1 + cos kr(π− γ)

2

)3
(8)

cos ϑ =
µs + µv

2µi
(9)

Among these, α, σ, and kr are the three free parameters of the model. The function
f(σ, ϑ) describes the Gaussian distribution of the small plane in the volume, and fsh(γ, kr)
is the shadow function with the free parameter kr, which controls the shadow and the
width of the area (0 < kr < 1).

2.1.3. Xie–Cheng Model

The Xie–Cheng model is proposed for urban areas, and this model can be written as:

Rp = A·fsh(γ, kr)·Fp(γ, N)· exp(−ω, NDVI) (10)

NDVI =
NIR− R
NIR + R

(11)

Here, A and kr are the two free parameters of the model. ω is an experimental
parameter that compensates for the influence of NDVI on polarized reflectance. and it is
recommended to be equal to 0.7 [33]. NDVI means the normalized difference vegetation
index. This is one of the most important parameters reflecting crop growth and nutritional
information. NIR is the reflection value of the near-infrared band, and R is the reflection
value of the red-light band [51].

The prediction process for Rp on the surface of a saline-alkaline soil using the semi-
empirical BPDF model is as follows:

• Step 1: input the azimuth, detection angle, and model parameters from the experiment
to the semi-empirical BPDF model and calculate the predicted Rp.

• Step 2: compare and fit the measured Rp in the laboratory with the predicted Rp and
use the root mean squared error (RMSE), correlation coefficient (Cor) and R-squared
(R2) to evaluate the results.

The specific process is shown in Figure 1.
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2.2. BPDF Model Based on Machine Learning

Three machine learning regression algorithms, SVR, RF, and DNN, were used in
this study to establish a machine learning-based BPDF model. All four algorithms were
implemented using Python. The schematic diagram of the DNN model is shown in
Figure 2. A brief flow of the three machine learning algorithms is shown in Figure 3, and
the parameters involved are listed in Table 1.
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2.2.1. Support Vector Regression (SVR)

SVR is a regression implementation of a support vector machine (SVM). Based on
the SVR algorithm among various types, this study uses the classical and widely used
ε-SVR [40–42]. ε-SVR uses a kernel function to convert the input data into a high-dimensional
feature space, and then uses a support vector whose training error lies beyond the ε edge to
establish the super parameters of the regression function. A nonlinear Gaussian RBF was
used in this study, and the parameter γwas adjusted as the kernel function. γ controls the
basic radius of the RBF, which reflects the size of each support vector of the sensitive area.
A larger γ indicates that the sensitive area of the RBF is narrower, i.e., the model is more
likely to be overfitted. In the loss function, the regularization constant C is used to control
the trade-offs on the support vector, while the observations in the ε tube are not penalized.
A larger C will also lead to a greater possibility of overfitting. In this study, εwas set to 0.01,
and the appropriate settings of γ and C were critical to the performance of the model.

The optimization ranges of the γ and C parameters are 10−5 to 102 and 10−2 to 102,
respectively, which is similar to the configuration used in [48,49]. Furthermore, through
the minimized-merit function:

RMSECV(γk, Ck) =
∑m

i=1 RMSEith(γk, Ck)

m
(12)
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RMSECV(γk, Ck) is the combination of the RMSE γ and C of the k-th cross-validation
used, m is the multiple of the cross-validation, RMSEith is the model in the i-th iteration of
the root-mean-square cross-validation estimated error.

2.2.2. Random Forest Regression

RF regression is a type of non-parameter ensemble learning algorithm [32]. RF re-
gression grows many simultaneous decision trees and performs estimations based on the
results of all trees; hence, it usually provides an effective and accurate performance [50]. In
the training procedure, RF regression uses a bootstrapping approach to randomly select
approximately two-thirds of the samples from the training dataset, while the remaining
one-third is used to calculate the out-of-bag (OOB) error to represent the performance of
the built model. To grow each tree independently, RF randomly selects one-third of the
samples (two variables of the total four in this study) each time to grow each individual tree.
Using the standard classification and regression tree (CART), the best splitting variable
and the best splitting value are determined by minimizing the weighted impurity, G, from
the left and right nodes after splitting:

G
(
xi, vij

)
=

nl
Nt

H(Xl) +
nr

Nt
H(Xr) (13)

where vij, the splitting point, is the j-th value of the splitting variable xi; nl and nr are the
number of training samples of the left and right nodes after splitting, respectively; Nt is
the number of training samples of the node to be split; and H(Xl) or H(Xr) is the impurity
function of the left or right node. For the regression problem, the mean squared error
(MSE) serves as the H(X). MSE is defined as the mean square of the deviation between the
training targets and their average within a node after splitting. In the prediction procedure,
the average of the predictions of all trees is taken as the estimated output value for each
query input observation.

The two key parameters of RF regression, the number of trees (ntree) and the smallest
terminal node leaf (node size), have a significant impact on model performance. The smaller
the ntree node, the larger the size, the denser the forest, and the deeper the trees. In this
study, the node size was set to 5, to balance the training accuracy and generalization ability
of the model [43]. The ntree was set at 200 for a better outcome, as it has been established
that a value greater than 100 ntree can ensure the stability of the RF model [48,49]. The RF
regression was implemented using the Sklearn package in Python.

2.2.3. Deep Neural Network Regression

After years of development, deep learning has derived a variety of different struc-
tures to solve various problems [52] and has gradually achieved better results in various
application scenarios. A neural network is the basic unit of all deep learning models and
is usually used to estimate complex functional relationships that are difficult to express
directly. A neural network consists of an input layer, zero or more hidden layers, and an
output layer. Figure 2 shows a neural network with two hidden layers. The process of
transferring data from the input layer to the output layer is called forward propagation.
The data transmission between two adjacent layers can be expressed as:

ai = f(Wiai−1 + bi) (14)

where ai−1 and ai represent the output of the (i-1)-th layer and the i-th layer, respectively;
Wi and bi represent the weight matrix parameter and offset vector parameter, respectively;
and f represents the activation function. The connection between adjacent neurons in
Figure 2 represents a certain parameter in the weight matrix, except that each neuron in
the input layer has an offset parameter. The activation function causes the neuron to have
a nonlinear output. Commonly used activation functions include sigmoid, tanh, and Relu.
A schematic of the DNN is shown in Figure 2.
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Normally, the number of neurons in the input and output layers is relatively easy
to determine, according to the problem. The key is to select the appropriate number of
hidden layers and the number of neurons in each hidden layer. The more parameters of
the neural network, the stronger its performance; however, it is then prone to overfitting.
In addition, the loss function used to measure the difference between the output of the
neural network and the target value needs to be selected according to the scene. The MSE
and cross-entropy loss are frequently used as loss functions. The purpose of the training
was to minimize the loss function. First, the backpropagation algorithm is used to find the
derivative of the loss function for each parameter, and then methods such as stochastic
gradient descent are used to update the parameters.

The deep learning method used in this research is CNN (deep convolutional neural
networks). This is a commonly used deep learning algorithm that has a wide range of
applications in image recognition, image segmentation, speech recognition, and other fields.
It has achieved better results in the above areas [53]. In addition, CNN can also be used for
regression prediction and other aspects. This study tried to use this method to deal with
the problem of the polarization reflectivity of saline-alkaline soil. The BPDF model, based
on machine learning, was used to predict the surface Rp of saline-alkaline soil, as detailed
below. A schematic of the process is shown in Figure 3.

• Step 1: input the azimuth angle, detection angle, and solar zenith angle from the
experiment into the formula to calculate the scattering angle, as one of the input
variables. The Rp of the saline-alkaline soil surface measured in the laboratory was
used as another input variable.

• Step 2: take 70% of the laboratory data as the experimental group to train the
neural network.

• Step 3: use the remaining 30% of the laboratory data as the test group, to verify the
effect of the network trained by deep learning.

The specific parameters and methods of several machine learning methods used in this
research are listed in Table 1. A detailed explanation of tuning the learning rate parameter
is included in Section 5.2.

2.3. Definition of the Evaluation Index

This study uses various indicators to judge the performance of the model. The
corresponding definition is given below.

2.3.1. Root Mean Square Error (RMSE)

The RMSE is the deviation between the measured value and the true value. It is often
used as a standard for measuring the prediction results of machine learning models [54].

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)
2 (15)

where yi refers to the true value of the sample, and ŷi refers to the predicted value. The m
symbol refers to the number of samples. RMSE is an index greater than zero, and the closer
its value is to 0, the better the model effect.

2.3.2. R-Squared (R2)

R2 is an important statistic reflecting the goodness of the model fit. It uses the mean
model as the baseline model, to facilitate the comparison of the models corresponding to
different dimension data sets [55]:

R2 = 1− ∑m
i=1(ŷi − yi)

2

∑m
i=1(y− yi)

2 (16)



Remote Sens. 2022, 14, 226 9 of 23

where yi refers to the true value of the sample, and ŷi refers to the predicted value. The
symbol y refers to the mean of the sample. The m symbol refers to the number of samples.
The value of R2 is between 0 and 1. The closer its value is to 1, the better the model effect.

2.3.3. Correlation Coefficient (Cor)

The correlation coefficient is used to measure the correlation between two variables [56]:

Cor(X, Y) =
Cor(X, Y)√

Var(X)Var(Y)
(17)

where Cov (X, Y) is the covariance of X and Y, Var(X) is the variance of X, and Var(Y) is the
variance of Y. The value of Cor is between −1 and 1. The closer its value is to 1 or −1, the
stronger the relationship between X and Y.

2.3.4. F-Statistic

An F-statistic is a value you get when you run an ANOVA test or a regression analysis
to find out if the means between two populations are significantly different. It is similar to
a T statistic from a t-Test; a t-test will tell you if a single variable is statistically significant,
and an F-test will tell you if a group of variables is jointly significant:

F =
S2

x

S2
y

(18)

where S2
x and S2

y are variance of X and Y. The F value in regression is the result of a test
where the null hypothesis is that all the regression coefficients are equal to zero. In other
words, the model has no predictive capability. Basically, the F-test compares your model
with zero predictor variables (the intercept-only model) and decides whether your added
coefficients improved the model. If you get a significant result, then whatever coefficients
you included in your model improved the model’s fit. In other words, the larger the value
of the F-statistic, the better the significance. The smaller the value, the significance is worse.

Before comparing F-values, you need to pay attention to Prob (F-statistic). If the Prob
(F-statistic) is small (for example, less than 0.01, depending on your alpha level), you can
reject the null hypothesis. Only then should you consider the F-value. If you do not reject
the null hypothesis, ignore the f-value [57].

2.3.5. Coefficient of Variation (cv)

The coefficient of variation is also known as the coefficient of dispersion. It is a
non-dimensional statistic that measures the degree of data dispersion [58]:

CV =
σ

µ
(19)

where σ is a standard deviation of the data and µ is the mean of the data. Compared with
the standard deviation, the coefficient variation can better compare the degree of dispersion
of several sets of data with different dimensions and different scales.

3. Data Description
3.1. Study Area

The soil samples used in this experiment were obtained from Zhenlai County, Baicheng
City, Jilin Province, China, at 122◦47′ E–124◦04′ E, 45◦28′ N–46◦18′ N). The area be-
longs to the western Songnen Plain, which is in the northeast of China and northwest
of Heilongjiang Province. The relative positional relationships are shown in Figure 4.
The climate has a typical semi-arid monsoon climate. Precipitation decreases from the
east (420–460 mm) to the west (350–420 mm), and evaporation increases from the east
(1200–1600 mm) to the west (1500–1900 mm) [59,60]. Due to the high groundwater level,
high salinity, high evaporation rate, and insufficient drainage, soil salinization in the Song-
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nen Plain is a very serious problem. The Songnen Plain is one of the main saline-alkaline
soil areas in China, and it is one of the three major accumulation areas of soda saline soil
worldwide [61]. The main components of soda saline soil are Na2CO3, NaHCO3, and NaCl
in the Songnen Plain [62]. These types of soda saline soil are very stable in the top 20-cm of
the soil layer and, to a large extent, prevent the salt from moving downward due to poor
permeability [63]. In addition, since the Songnen plain is one of the main food production
centers, the most serious cause of secondary salinity is frequently human activities [64].
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3.2. Soil Sample Processing

Using the following method, 50 topsoil samples (depth < 10 cm) were collected for
stratified sampling in October 2020, and their GPS locations were recorded. The collected
soil samples were moved to the laboratory, and the soil collected from the field was first
dried, then ground, and finally sieved through a 100-mesh sieve with a 0.15-mm aperture.
The grinding and screening process was repeated until the soil particles were sufficiently
small. Subsequently, NaHCO3 and NaCl were added to the sample to configure the saline-
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alkaline soil with different electrical conductivity (EC) and salinity levels. Several key
parameters of the soil used in this research experiment are listed in Table 2. The ratio of the
sample to the solution used for the measurement of the EC and pH values was 1:1.

Table 2. Key parameters of experimental soil.

Minimum Maximum

EC (ds/m) 0.930 5.510
pH 8.190 9.490

C (%) 1.210 2.130
N (%) 0.014 0.078

3.3. Spectral Measurement Process

This subsection describes the process of measuring surface polarization reflectivity.
The field of view was 8◦, the distance from the sensor to the sample was 0.2 m, and the
zenith angle of the sensor changed from 0◦ to 60◦. For the laboratory measurement, we
placed the samples on the stage such that they were close to the standardized measurement
plane, and the illuminated center line intersected the viewing direction. The polarization
angles of the polarization lens were 0◦, 45◦, 90◦, and 135◦, and the final polarization
reflectivity was the average of the four polarization angles. When measuring the sample, it
was placed on a black background with a reflectivity of 5%. The edge of the sample was
parallel to the main plane in the wavelength range of 400–1000 nm. During the experiment,
the zenith angle of illumination was maintained at 40◦. First, we fixed an azimuth angle
and changed to different zenith angles to observe the sample. The zenith angle started
at 10◦, and changes to 60◦at intervals of 10◦ (10◦, 20◦, 30◦, 40◦, 50◦, 60◦). After that, we
changed the azimuth at 20◦ intervals, fixed an azimuth, and repeated the previous steps
until it changed from 0◦ to 180◦. In addition, we replaced the values of the 0◦ azimuth and
40◦ detection angle with a 0◦ azimuth and 32◦ detection angle. All measurements were
based on the assumption that the reflectance was symmetrical, and the polarized sample
surface relative to the main plane source has been verified by Maignan et al. [22]. The
schematic diagram of the experimental process is shown in Figure 5.
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Figure 5. The schematic diagram of the experimental process. In it, the azimuth angle is the
circumferential direction. The zenith angle is the radial direction. The saline-alkaline soil sample is
placed in the center of the circle. The solar azimuth angle is 0◦, and the solar zenith angle is 40◦. The
position of the detector changes with the azimuth angle and the zenith angle.
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4. Results
4.1. Spectral Measurement Results

Figure 6 shows the variation of saline-alkaline soil Rp with its wavelength under
different azimuth angles and different detection angles. Different colors indicate different
detection angles and azimuths. Figure 6a shows the polarization reflectivity of different
detection angles varying with the wavelength when the azimuth angle is 0◦. Clearly,
at the wavelength range of 400–1000 nm, when the azimuth angle is 0◦, the polarization
reflectivity is the largest when the detection angle is 60◦ and the smallest when the detection
angle is 0◦. When the detection angle was increased from 0◦ to 60◦, Rp gradually increased.
As shown in Figure 6b, when the observation angle was 20◦, the polarization reflectivity
at different azimuth angles varied with the wavelength. Furthermore, at the wavelength
range of 400–1000 nm and detection angle of 20◦, the polarization reflectivity was the
largest when the azimuth angle was 0◦, and the polarization reflectivity was the smallest
when the azimuth angle was 180◦. In addition, when the detection angle was increased
from 0◦ to 180◦, Rp decreased sequentially.
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Four absorption features were used for judgment, near 1000 nm, 1400 nm, 1900 nm,
and 2200 nm. This feature is obvious, whether it is at a fixed azimuth angle or detection
angle. At the same time, some other slight absorption features were observed near 1100,
1800, and 2400 nm. As discussed in the literature, crystal lattices of hydrated minerals
formed of internal hydroxide ions and water were observed at 1000 nm, 1100 nm, and
1800 nm [65,66]. The deeper absorption near 1400 nm and 1900 nm may be the result
of O–H stretching and H–O–H bending, and the basic sand overtone [67]. Anhydrous
evaporating minerals containing CO2−

3 and HCO−3 , due to the vibration of the carbonate
group (for example, the wavelengths near 1800 nm, 1900 nm, 2200 nm, and 2300 nm),
exceed 1600 nm, and there are many spectral features at the wavelength [65,67].

Owing to the measurement principle of the ground object spectrometer (Analytical
Spectral Devices FieldSpec3 spectrometer (ASD FS3, Boulder, CO, USA)), there was splicing
of the spectrum at 1000 nm and 1800 nm which led to the oscillation of the spectral line
after 1000 nm, as seen in Figure 6a. However, the measurement results in the range of
400–1000 nm were good, the polarization reflectance line graph did not appear to cross,
and the result was obvious. As mentioned in the previous document [35], the data used in
the semi-empirical BPDF model are POLDER measurement data. As this study focuses on
the measurement of surface reflectance, the two bands of 670 nm and 865 nm are used for
follow-up work.

4.2. Semi-Empirical BPDF Model Results

Figure 7 shows the fit of the saline-alkaline soil surface Rp, as predicted by the semi-
empirical BPDF model and the actual measured Rp. For each scatter plot, the corresponding
RMSE, Cor, and R2 were calculated to characterize the effects of the fitting and facilitate
subsequent comparisons. The results are as follows: (a) 670 nm Nadal–Bréon model,
(b) 865 nm Nadal–Bréon model, (c) 670 nm Litvinov model, (d) 865 nm Litvinov model,
(e) 670 nm Xie–Cheng model, and (f) 865 nm Xie–Cheng model.
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4.3. Machine Learning Methods Prediction Results

Figure 8 shows a scatter plot, based on the machine learning BPDF model, to predict
the surface Rp of the saline-alkaline soil and the actual measured value. For each scatter
plot, the corresponding RMSE, Cor, and R2 were calculated to facilitate future comparisons.
The results are as follows: (a) 670 nm SVR, (b) 865 nm SVR, (c) 670 nm RF, (d) 865 nm RF,
(e) 670 nm DNN, and (f) 865 nm DNN.
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4.4. Comparison and Analysis of Semi-Empirical BPDF and BPDF Models Based on
Machine Learning

Table 3 compares the fitting effects of the semi-empirical BPDF model and BPDF
model, based on machine learning. First, we compared the RMSE of the fitting results. In
the 670 nm band, the minimum value of the semi-empirical BPDF model was achieved
by the Litvinov model, and the minimum value in the processing results of the machine
learning method was obtained using the DNN method. In comparison, the RMSE predicted
by the DNN method was 3.06% lower than that of the Litvinov model. In the case of the
865 nm band, the minimum value of the semi-empirical BPDF model was achieved by the
Xie–Cheng model, and the minimum value of the processing results of the BPDF model
method, based on machine learning, was obtained by the DNN method. In comparison,
the RMSE of the predicted result of the DNN method was 19.75% lower than that of the
Xie–Cheng model. In addition to DNN, the other two methods, SVR and RF, have different
degrees of improvement compared to the results of the semi-empirical BPDF model in
most cases. Therefore, the RMSE value of the fitting result of the BPDF model based on
machine learning was smaller, and the fitting result was more concentrated.

Table 3. Fitting results of three semi-empirical BPDF models and three BPDF models, based on
machine learning, using RMSE and Cor parameters to show the fitting effect.

Band Index
Semi-empirical BPDF Models Machine Learning

Nadal–Bréon Litvinov Model Xie–Cheng Model SVR RF DNN

670 nm
RMSE 0.0372 0.0359 0.0361 0.0425 0.0384 0.0348

Cor 0.8935 0.8884 0.8625 0.9275 0.8785 0.9316
R2 0.6572 0.6700 0.6452 0.4651 0.6994 0.7521

865 nm
RMSE 0.0613 0.0579 0.0562 0.0492 0.0476 0.0451

Cor 0.9335 0.9336 0.9055 0.8791 0.8973 0.8917
R2 0.4376 0.4995 0.5127 0.6059 0.7426 0.7692

Next, we compared the Cor of different bands. Clearly, fitting correlation coefficients
between the prediction results of the semi-empirical BPDF model or the machine learning
method and the laboratory measurement results were all greater than 0.8, indicating that
the fitting effects of several methods were relatively good. In addition, the Cor value of
the processing result of the machine learning in the 670 nm band was greater than that of
the semi-empirical BPDF model, except for the RF method. Among them, the maximum
value of the semi-empirical BPDF model was achieved by the Nadal–Bréon model, and the
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maximum value in the processing results of the machine learning method was obtained
using the DNN method. In comparison, the Cor predicted by the DNN method was 4.26%
higher than that predicted by the Nadal–Bréon model. In the case of the 865 nm band, the
maximum value of the semi-empirical BPDF model was achieved by the Litvinov model,
and the maximum value in the processing results of the machine learning method was
obtained by the RF method. Although the Cor value of the machine learning method fitting
results was less than that obtained by the BPDF model fitting, the difference between the
two was small, and the Cor value was very close to 0.9. Clearly, the fitting results of the
machine learning method were also relatively good. This situation occurred in the 865 nm
band because the machine learning method divides the dataset into two parts: the training
group and the control group. However, different grouping ratios also affect the final fitting
results, which will be discussed later. The influence of the grouping ratio on the fitting
results was discussed in detail.

In addition, we compared the R2 of different bands. Regardless of whether it is 670 nm
or 865 nm, the R2 value predicted by the machine learning method is higher than the R2

value predicted by the semi-empirical model. Among them, in the semi-empirical model,
the best results in the 670 nm band were obtained from the Litvinov model. In the 865 nm
band, the best results are obtained with the Xie–Cheng model. The best results in the
670 nm band and the 865 nm band in the machine learning method were obtained by the
DNN method. The result of RF was also better, which is closer to the DNN method.

Lastly, we also introduced relevant indicators to evaluate the variability and statistical
significance of the results. In Table 4, F-statistic and Prob (F-statistic) are used to characterize
the significance of the results. The cv is used to characterize the variability of the results. The
Prob (F-statistic) of all models are less than 0.01, and the F-statistic value is relatively large,
so there is a greater probability of rejecting the null hypothesis, that is, the significance of
the semi-empirical BPDF model and the regression results of the machine learning method
is relatively good. In addition, the significance of semi-empirical BPDF models is better
than machine learning methods. The best semi-empirical BPDF model is the Litvinov
model, and the best machine learning method is the DNN method. The cv of all model
results are relatively similar, around 0.5, except for the SVR results.
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Table 4. The variability and statistical significance of the semi-empirical BPDF models and machine learning methods. Here, F-statistic and Prob (F-statistic) are used
to characterize the significance of the results. The cv are used to characterize the variability of the results.

Index

Semi-Empirical BPDF Models Machine Learning

Nadal–Bréon Litvinov Model Xie–Cheng Model SVR RF DNN

670 nm 865 nm 670 nm 865 nm 670 nm 865 nm 670 nm 865 nm 670 nm 865 nm 670 nm 865 nm

F-statistic 1518 1934 1500 2052 1253 1560 175.7 185.5 272.3 296.5 612.9 353.4
Prob

(F-statistic) 4.61 × 10−51 3.04 × 10−46 3.84 × 10−53 2.42 × 10−50 4.88 × 10−51 3.91 × 10−48 5.74 × 10−12 1.41 × 10−11 1.80 × 10−16 1.84 × 10−13 1.48 × 10−17 3.51 × 10−14

cv 0.5333 0.5171 0.5505 0.5301 0.5361 0.5216 0.1518 0.2616 0.5281 0.4784 0.5184 0.5246
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5. Discussion

The discussion is divided into three parts. The first and second parts discuss the
parameters of the machine learning methods and try to find the best method. Compared
with the BPDF model based on machine learning, the semi-empirical BPDF model is more
advanced, owing to years of research. However, there are few results regarding the BPDF
model based on machine learning. In addition, according to the principles of machine
learning, many factors affect the final results of machine learning, for example, data quality,
the ratio of the training set and test set, learning rate, etc. These factors largely depend on
past experience. The DNN-BPDF model has limited reference research available, so this
section will further discuss the training set size and learning rate.

5.1. Influence of the Training Ratio on the Fitting Effect

According to the principles of machine learning, the original dataset needs to be
divided into two parts: a training set and a test set. The training set is used to train the
model so that the model fits the problem to be studied. The test set is used to evaluate
the fitness of the model [52]. The training set has an impact on the training results. If
extremely little data is used for training, then the model is not fully trained, and it is
difficult to achieve the desired effect; if an excessive amount of data is used for training,
the test set will be too small. The fitting situation will also affect the final result in an
unsatisfactory manner. In addition, the choice of training ratio will vary depending on the
research problem, and the method of choosing the best training ratio is based on experience.
Therefore, it is necessary for us to discuss the training ratios.

To illustrate the impact of the training and test data ratio on the final result, we selected
the training data ratios as 10%, 20%, 30%, 40%, 50%, 60%, 70%, and 80% at 670 nm. The
RMSE, Cor, and R2 values, based on the degree of fit of the machine learning BPDF model
in several cases, are calculated at the two bands of 865 nm. The results are shown in
Tables 5 and 6. However, when the proportion of the training set is particularly small, the
training results may be unsatisfactory, due to the small number of samples. This study uses
oversampling to alleviate the problem of insufficient samples [68]. The results shown in
Tables 5 and 6 are the results of this method.

Table 5. Fitting results of different training ratios in the 670 nm band. The best results of each index are
expressed in bold font.

670 nm
Machine Learning

SVR RF DNN

Training Ratio (%) RMSE Cor R2 RMSE Cor R2 RMSE Cor R2

10 0.0713 0.4357 0.0542 0.0552 0.6421 0.2043 0.0628 0.5123 0.045
20 0.0751 0.3653 0.1436 0.0622 0.5395 0.1008 0.0828 0.0103 0.086
30 0.0674 0.2965 0.2013 0.0445 0.7632 0.4834 0.0418 0.8231 0.6084
40 0.0703 0.4376 0.1963 0.0553 0.7038 0.3547 0.0456 0.8421 0.5455
50 0.0683 0.8632 0.2675 0.0506 0.7558 0.4896 0.0436 0.8319 0.6201
60 0.0534 0.8953 0.2141 0.0451 0.7691 0.5621 0.0339 0.8911 0.7471
70 0.0425 0.9275 0.4651 0.0384 0.8785 0.6994 0.0348 0.9316 0.7521
80 0.0458 0.9348 0.4765 0.0437 0.8566 0.6101 0.0379 0.9339 0.7068

The above two tables show the influence of different grouping ratios on the fitting
effect. The numbers in bold type indicate the best effect among the statistics. It is clear that
the optimal results in the 670 nm band are concentrated in the 60–80% proportion of the
training set, and the optimal results in the 865 nm band are concentrated in the 50–80%
proportion of the training set. Therefore, the grouping ratio adopted in this experiment,
that is, the 70% training set and 30% test set, has a relatively good fitting effect. This ratio
does not necessarily present the optimal RMSE, Cor, and R2, as it may be possible to obtain
better RMSE, Cor and R2 simultaneously. In addition, as mentioned in the previous section,
the Cor value of the fit result of the machine learning method in the 865 nm band is smaller
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than that of the semi-empirical model. After changing the training set ratio, the machine
learning method can obtain a higher Cor value. The Cor value of SVR at 80% training set
ratio is 0.9087, that of RF at 60% training set ratio is 0.9085, and that of DNN at 80% training
set ratio is 0.9276. The Cor values of several machine learning methods are higher than
those of 70% of the training set, and the values were all above 90%.

Table 6. Fitting results of different training ratios in the 865 nm band. The best results of each index are
expressed in bold font.

865 nm
Machine Learning

SVR RF DNN

Training Ratio (%) RMSE Cor R2 RMSE Cor R2 RMSE Cor R2

10 0.0717 0.8892 0.2015 0.0586 0.7255 0.4662 0.0762 0.8026 0.1001
20 0.0745 0.8951 0.2011 0.0454 0.8495 0.7034 0.0438 0.8621 0.7232
30 0.0743 0.8901 0.1963 0.0396 0.8831 0.7717 0.0368 0.9002 0.7981
40 0.0515 0.8743 0.6028 0.0393 0.8701 0.7757 0.0352 0.9077 0.8193
50 0.0517 0.8924 0.6197 0.0471 0.8684 0.6841 0.0383 0.9038 0.7913
60 0.0551 0.8871 0.6119 0.0443 0.9085 0.7489 0.0412 0.9011 0.7833
70 0.0492 0.8791 0.6059 0.0476 0.8973 0.7426 0.0451 0.8917 0.7692
80 0.0572 0.9087 0.6211 0.0612 0.8761 0.5667 0.0541 0.9276 0.6618

5.2. Optimal Learning Rate of BPDF Model Based on DNN Method

In the deep learning method, the learning rate is a very important parameter. It guides
the use of the gradient of the loss function to adjust the hyperparameters of the network
weight. This directly affects the quality of the deep learning results. However, the selection
of the learning rate value is highly subjective. Depending on the characteristics of the built
model, different incoming data, and different research contents, the optimal learning rate
of the neural network is also different.

An extremely small or large learning rate may have an unsatisfactory effect. If the
learning rate is too low, the final fitting or classification process will be slow. On the other
hand, if the learning rate is too high, it may produce loss oscillations or even fail to converge.
Therefore, it was particularly important to find a suitable learning rate for the DNN used
in this study. However, this experiment lacked the reference of the previous experience;
hence, the enumeration method was adopted, that is, the listing of many learning rates and
calculating the loss, in order to find the best learning rate.

Figure 9a shows the loss results for different learning rates in the 670 nm band, while
Figure 9b shows the loss results of different learning rates in the 865 nm band [69]. In
Figure 9a, in the 670 nm band, the loss of the learning rate decreases significantly in the
range of 0.2 to 0.5, and then, as the learning rate increases, the loss also rises and oscillates
significantly, such that the best learning rate is approximately 0.5. In the 865 nm band, the
learning rate decreases in the range of 0.2 to 0.4, and the loss increases and oscillates in the
subsequent learning rate range, such that the optimal learning rate is approximately 0.4.
These two values are relatively close; hence, the learning rate of the deep learning BPDF
model in this experiment could be selected as a value between 0.4 and 0.5.
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6. Conclusions

This study explored the application of a semi-empirical BPDF model and machine
learning-based BPDF model in saline-alkaline soil in the laboratory. The results showed
that the six models used in this study, whether the semi-empirical BPDF model or the
machine learning-based BPDF model, had relatively good results. However, the machine
learning-based BPDF model generally presented better results than the semi-empirical
BPDF model. Among these, the deep learning method had the best effect. Therefore, the
machine learning method was further discussed, and the influence of different training
data ratios and different learning rates on the learning effect under the application of the
polarized reflectance of the saline-alkaline soil surface was discussed; the best training
ratio and learning rate were determined. The results indicate that the difference in the
proportion of training data and the difference in the learning rate has a greater impact on
the fitting results. A training data proportion that is too low or too high will reduce the
fitting effect. The best training ratio was between 60% and 70%. With a 40% to 30% test set,
the best learning rate of the DNN-BPDF model was between 0.4 and 0.5.

In summary, this study explored different types of models for the polarization re-
flectance of saline-alkaline soils, which is helpful and significant for both the remote sensing
investigations of saline-alkaline soils and the study of BPDF models.
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