Dependence of the Hydration of the Lunar Surface on the Concentrations of TiO2, Plagioclase, and Spinel
Abstract
:1. Introduction
2. Data Set and Methods
3. Results
3.1. Abundant Minerals
3.2. Spinel
3.2.1. Theophilus Crater
3.2.2. Mare Moscoviense
4. Discussion
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Pieters, C.M.; Boardman, J.; Buratti, B.; Chatterjee, A.; Clark, R.; Glavich, T.; Green, R.; Head, J.; Isaacson, P.; Malaret, E.; et al. The Moon Mineralogy Mapper (M3) on Chandrayaan-1. Curr. Sci. 2009, 96, 500–505. [Google Scholar]
- Clark, R.N.; Pieters, C.M.; Green, R.O.; Boardman, J.W.; Buratti, B.J.; Head, J.W.; Isaacson, P.; Livo, K.E.; McCord, T.B.; Mustard, J.F.; et al. Water, Hydroxyl, and the Search for Alteration and Oxidation on the Moon (Invited). In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 13–18 December 2009; p. P34A-03. [Google Scholar]
- Li, S.; Milliken, R.E. Water on the surface of the Moon as seen by the Moon Mineralogy Mapper: Distribution, abundance, and origins. Sci. Adv. 2017, 3, e1701471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandfield, J.L.; Poston, M.; Klima, R.L.; Christopher, E. Widespread distribution of OH/H2O on the lunar surface inferred from spectral data. Nat. Geosci. 2018, 11, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Wöhler, C.; Grumpe, A.; Berezhnoy, A.A.; Shevchenko, V.V. Time-of-day–dependent global distribution of lunar surficial water/hydroxyl. Sci. Adv. 2017, 3, e1701286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCord, T.; Taylor, L.; Combe, J.P.; Kramer, G.; Pieters, C.; Sunshine, J.; Clark, R. Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). J. Geophys. Res. Planets 2011, 116, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Grumpe, A.; Wöhler, C.; Berezhnoy, A.A.; Shevchenko, V.V. Time-of-day-dependent behavior of surficial lunar hydroxyl/water: Observations and modeling’. Icarus 2019, 321, 486–507. [Google Scholar] [CrossRef]
- Honniball, C.I.; Lucey, P.; Ferrari-Wong, C.M.; Flom, A.; Li, S.; Kaluna, H.M.; Takir, D. Telescopic Observations of Lunar Hydration: Variations and Abundance. J. Geophys. Res. Planets 2020, 125, e2020JE006484. [Google Scholar] [CrossRef]
- Honniball, C.; Lucey, P.; Li, S.; Shenoy, S.; Orlando, T.; Hibbitts, C.; Hurley, D.; Farrell, W. Molecular water detected on the sunlit Moon by SOFIA. Nat. Astron. 2021, 5, 121–127. [Google Scholar] [CrossRef]
- Hendrix, A.R.; Hurley, D.M.; Farrell, W.M.; Greenhagen, B.T.; Hayne, P.O.; Retherford, K.D.; Vilas, F.; Cahill, J.T.; Poston, M.J.; Liu, Y. Diurnally migrating lunar water: Evidence from ultraviolet data. Geophys. Res. Lett. 2019, 46, 2417–2424. [Google Scholar] [CrossRef]
- Farrell, W.; Hurley, D.; Zimmerman, M. Solar wind implantation into lunar regolith: Hydrogen retention in a surface with defects. Icarus 2015, 255, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Starukhina, L. Water on the Moon: What Is Derived from the Observations? In Moon: Prospective Energy and Material Resources; Springer: Berlin/Heidelberg, Germany, 2013; pp. 57–85. [Google Scholar]
- Tucker, O.J.; Farrell, W.M.; Poppe, A.R. On the effect of magnetospheric shielding on the lunar hydrogen cycle. J. Geophys. Res. Planets 2021, 126, e2020JE006552. [Google Scholar] [CrossRef]
- Klima, R.; Cahill, J.; Hagerty, J.; Lawrence, D. Remote detection of magmatic water in Bullialdus Crater on the Moon. Nat. Geosci. 2013, 6, 737–741. [Google Scholar] [CrossRef]
- Zhang, Y.; Stolper, E.M.; Wasserburg, G. Diffusion of water in rhyolitic glasses. Geochim. Cosmochim. Acta 1991, 55, 441–456. [Google Scholar] [CrossRef]
- Zhuravlev, L. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surfaces A Physicochem. Eng. Asp. 2000, 173, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Schörghofer, N.; Benna, M.; Berezhnoy, A.A.; Greenhagen, B.; Jones, B.M.; Li, S.; Orlando, T.M.; Prem, P.; Tucker, O.J.; Wöhler, C. Water group exospheres and surface interactions on the Moon, Mercury, and Ceres. Space Sci. Rev. 2021, 217, 1–35. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, Y.; Park, T.Y.S.; Hong, J.K.; Hashim, M.; Woo, J.; Ayoobi, I. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica. Polar Sci. 2018, 16, 23–46. [Google Scholar] [CrossRef]
- Papike, J.; Taylor, L.; Simon, S. Lunar minerals. In Lunar Sourcebook: A User’s Guide to the Moon; Heiken, G., Vaniman, D., French, B., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 121–182. [Google Scholar]
- Lucey, P.G. Radiative transfer model constraints on the shock state of remotely sensed lunar anorthosites. Geophys. Res. Lett. 2002, 29, 124-1–124-3. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nakamura, R.; Matsunaga, T.; Ogawa, Y.; Ishihara, Y.; Morota, T.; Hirata, N.; Ohtake, M.; Hiroi, T.; Yokota, Y.; et al. Featureless spectra on the Moon as evidence of residual lunar primordial crust. J. Geophys. Res. Planets 2015, 120, 2190–2205. [Google Scholar] [CrossRef]
- Mustard, J.F.; Pieters, C.M.; Isaacson, P.J.; Head, J.W.; Besse, S.; Clark, R.N.; Klima, R.L.; Petro, N.E.; Staid, M.I.; Sunshine, J.M.; et al. Compositional diversity and geologic insights of the Aristarchus crater from Moon Mineralogy Mapper data. J. Geophys. Res. Planets 2011, 116, E00G12. [Google Scholar] [CrossRef] [Green Version]
- Lucey, P.G.; Blewett, D.T.; Jolliff, B.L. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J. Geophys. Res. Planets 2000, 105, 20297–20305. [Google Scholar] [CrossRef]
- Sato, H.; Robinson, M.S.; Lawrence, S.J.; Denevi, B.W.; Hapke, B.; Jolliff, B.L.; Hiesinger, H. Lunar mare TiO2 abundances estimated from UV/Vis reflectance. Icarus 2017, 296, 216–238. [Google Scholar] [CrossRef]
- Le Mouelic, S.; Langevin, Y.; Erard, S.; Pinet, P.; Chevrel, S.; Daydou, Y. Discrimination between maturity and composition of lunar soils from integrated Clementine UV-visible/near-infrared data: Application to the Aristarchus Plateau. J. Geophys. Res. Planets 2000, 105, 9445–9456. [Google Scholar] [CrossRef]
- Wöhler, C.; Grumpe, A.; Berezhnoy, A.; Bhatt, M.U.; Mall, U. Integrated topographic, photometric and spectral analysis of the lunar surface: Application to impact melt flows and ponds. Icarus 2014, 235, 86–122. [Google Scholar] [CrossRef]
- Bhatt, M.; Mall, U.; Wöhler, C.; Grumpe, A.; Bugiolacchi, R. A comparative study of iron abundance estimation methods: Application to the western nearside of the Moon. Icarus 2015, 248, 72–88. [Google Scholar] [CrossRef]
- Bhatt, M.; Wöhler, C.; Grumpe, A.; Hasebe, N.; Naito, M. Global mapping of lunar refractory elements: Multivariate regression vs. machine learning. Astron. Astrophys. 2019, 627, A155. [Google Scholar] [CrossRef]
- Wöhler, C.; Berezhnoy, A.A.; Grumpe, A.; Shevchenko, V.V. Correlation Between Lunar Soil Composition and Weakly Bounded Surficial OH/H2O Component. In Proceedings of the European Lunar Symposium, Toulouse, France, 14–16 May 2018. [Google Scholar]
- Cheek, L.C.; Pieters, C.M.; Boardman, J.W.; Clark, R.N.; Combe, J.P.; Head, J.W.; Isaacson, P.J.; McCord, T.B.; Moriarty, D.; Nettles, J.W.; et al. Goldschmidt crater and the Moon’s north polar region: Results from the Moon Mineralogy Mapper (M3). J. Geophys. Res. Planets 2011, 116, E00G02. [Google Scholar] [CrossRef] [Green Version]
- Wöhler, C.; Grumpe, A.; Berezhnoy, A.A.; Feoktistova, E.A.; Evdokimova, N.A.; Kapoor, K.; Shevchenko, V.V. Temperature regime and water/hydroxyl behavior in the crater Boguslawsky on the Moon. Icarus 2017, 285, 118–136. [Google Scholar] [CrossRef]
- Delbo, M.; Mueller, M.; Emery, J.P.; Rozitis, B.; Capria, M.T. Asteroid Thermophysical Modeling; University of Arizona Press: Tucson, AZ, USA, 2015. [Google Scholar]
- Blewett, D.T.; Lucey, P.G.; Hawke, B.R.; Jolliff, B.L. Clementine images of the lunar sample-return stations: Refinement of FeO and TiO2 mapping techniques. J. Geophys. Res. Planets 1997, 102, 16319–16325. [Google Scholar] [CrossRef]
- Prinz, M.; Dowty, E.; Keil, K.; Bunch, T.E. Spinel Troctolite and Anorthosite in Apollo 16 Samples. Science 1973, 179, 74–76. [Google Scholar] [CrossRef]
- Pieters, C.M.; Besse, S.; Boardman, J.; Buratti, B.; Cheek, L.; Clark, R.N.; Combe, J.P.; Dhingra, D.; Goswami, J.N.; Green, R.O.; et al. Mg-spinel lithology: A new rock type on the lunar farside. J. Geophys. Res. Planets 2011, 116, E6. [Google Scholar] [CrossRef] [Green Version]
- Pieters, C.M.; Donaldson Hanna, K.; Cheek, L.; Dhingra, D.; Prissel, T.; Jackson, C.; Moriarty, D.; Parman, S.; A Taylor, L. The distribution of Mg-spinel across the Moon and constraints on crustal origin. Am. Mineral. 2014, 99, 1893–1910. [Google Scholar] [CrossRef]
- Sunshine, J.M.; Besse, S.; Petro, N.E.; Pieters, C.M.; Head, J.W.; Taylor, L.A.; Klima, R.L.; Isaacson, P.J.; Boardman, J.W.; Clark, R.C.; et al. Hidden in Plain Sight: Spinel-rich Deposits on the Nearside of the Moon as Revealed by Moon Mineralogy Mapper (M3). In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–5 March 2010; Volume 41, p. 1508. [Google Scholar]
- Yamamoto, S.; Nakamura, R.; Matsunaga, T.; Ogawa, Y.; Ishihara, Y.; Morota, T.; Hirata, N.; Ohtake, M.; Hiroi, T.; Yokota, Y.; et al. A new type of pyroclastic deposit on the Moon containing Fe-spinel and chromite. Geophys. Res. Lett. 2013, 40, 4549–4554. [Google Scholar] [CrossRef]
- Weitz, C.M.; Staid, M.I.; Gaddis, L.R.; Besse, S.; Sunshine, J.M. Investigation of Lunar Spinels at Sinus Aestuum. J. Geophys. Res. Planets 2017, 122, 2013–2033. [Google Scholar] [CrossRef]
- Cheek, L.; Pieters, C. Reflectance spectroscopy of plagioclase-dominated mineral mixtures: Implications for characterizing lunar anorthosites remotely. Am. Mineral. 2014, 99, 1871–1892. [Google Scholar] [CrossRef]
- NASA; JPL. Planetary Data System. 2019. Available online: https://pds-imaging.jpl.nasa.gov/volumes/m3.html (accessed on 10 June 2021).
- Hapke, B. Bidirectional Reflectance Spectroscopy: 5. The Coherent Backscatter Opposition Effect and Anisotropic Scattering. Icarus 2002, 157, 523–534. [Google Scholar] [CrossRef] [Green Version]
- Grumpe, A.; Wöhler, C. Recovery of Elevation from Estimated Gradient Fields Constrained by Digital Elevation Maps of Lower Lateral Resolution. ISPRS J. Photogramm. Remote Sens. 2014, 94, 37–54. [Google Scholar] [CrossRef]
- Speyerer, E.; Robinson, M.; Denevi, B. Lunar Reconnaissance Orbiter Camera global morphological map of the Moon. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 7–11 March 2011; p. 2387. [Google Scholar]
- Shkuratov, Y.; Kaydash, V.; Korokhin, V.; Velikodsky, Y.; Opanasenko, N.; Videen, G. Optical measurements of the Moon as a tool to study its surface. Planet. Space Sci. 2011, 59, 1326–1371. [Google Scholar] [CrossRef]
- Marsland, S. Machine Learning: An Algorithmic Perspective, 2 ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Fu, Z.; Robles-Kelly, A.; Caelli, T.; Tan, R.T. On Automatic Absorption Detection for Imaging Spectroscopy: A Comparative Study. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3827–3844. [Google Scholar] [CrossRef]
- Rommel, D.; Grumpe, A.; Felder, M.P.; Wöhler, C.; Mall, U.; Kronz, A. Automatic endmember selection and nonlinear spectral unmixing of Lunar analog minerals. Icarus 2017, 284, 126–149. [Google Scholar] [CrossRef]
- Dhingra, D.; Pieters, C.M.; Boardman, J.W.; Head, J.W.; Isaacson, P.J.; Taylor, L.A. Compositional diversity at Theophilus Crater: Understanding the geological context of Mg-spinel bearing central peaks. Geophys. Res. Lett. 2011, 38, A11. [Google Scholar] [CrossRef] [Green Version]
- Green, R.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; et al. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. J. Geophys. Res. Planets 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Isaacson, P.; Besse, S.; Petro, N.; Nettles, J.; the M3 Team. M3 Overview and Working with M3 Data; Technical Report; PDS; 2011. Available online: https://pds-imaging.jpl.nasa.gov/documentation/Isaacson_M3_Workshop_Final.pdf (accessed on 12 September 2021).
- Nash, D.B.; Conel, J.E. Spectral reflectance systematics for mixtures of powdered hypersthene, labradorite, and ilmenite. J. Geophys. Res. (1896–1977) 1974, 79, 1615–1621. [Google Scholar] [CrossRef]
- Lemelin, M.; Lucey, P.; Gaddis, L.; Hare, T.; Ohtake, M. Global map products from the Kaguya multiband imager at 512 ppd: Minerals, FeO, and OMAT. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016; Volume 47, p. 2994. [Google Scholar]
- Taylor, L.A.; Pieters, C.; Keller, L.P.; Morris, R.V.; Mckay, D.S.; Patchen, A.; Wentworth, S. The effects of space weathering on Apollo 17 mare soils: Petrographie and chemical characterization. Meteorit. Planet. Sci. 2001, 36, 285–299. [Google Scholar] [CrossRef]
- Coman, E.O.; Jolliff, B.L.; Carpenter, P. Mineralogy and chemistry of Ti-Bearing lunar soils: Effects on reflectance spectra and remote sensing observations. Icarus 2018, 306, 243–255. [Google Scholar] [CrossRef]
- Pieters, C.M.; Stankevich, D.; Shkuratov, Y.; Taylor, L. Statistical Analysis of the Links among Lunar Mare Soil Mineralogy, Chemistry, and Reflectance Spectra. Icarus 2002, 155, 285–298. [Google Scholar] [CrossRef]
- Nelson, D.; Koeber, S.; Daud, K.; Robinson, M.; Watters, T.; Banks, M.; Williams, N. Mapping lunar maria extents and lobate scarps using LROC image products. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 17–21 March 2014; Volume 45, p. 2861. [Google Scholar]
- Lemelin, M.; Lucey, P.G.; Miljković, K.; Gaddis, L.R.; Hare, T.; Ohtake, M. The compositions of the lunar crust and upper mantle: Spectral analysis of the inner rings of lunar impact basins. Planet. Space Sci. 2019, 165, 230–243. [Google Scholar] [CrossRef]
- Pieters, C.M.; Hiroi, T.; Pratt, S.F.; Patterson, B. Reflectance Experiment Laboratory (RELAB) Description and User’s Manual; 2004. Available online: https://ntrs.nasa.gov/api/citations/20040129713/downloads/20040129713.pdf (accessed on 10 September 2021).
- Cloutis, E.A.; Sunshine, J.M.; Morris, R.V. Spectral reflectance-compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry. Meteorit. Planet. Sci. 2004, 39, 545–565. [Google Scholar] [CrossRef]
- Rossman, G.R.; Smyth, J.R. Hydroxyl contents of accessory minerals in mantle eclogites and related rocks. Am. Mineral. 1990, 75, 775–780. [Google Scholar]
- Shkuratov, Y.G.; Starukhina, L.; Kreslavsky, M.; Opanasenko, N.; Stankevich, D.; Shevchenko, V. Principle of undulatory invariance in photometry of atmosphereless celestial bodies. Icarus 1994, 109, 168–190. [Google Scholar] [CrossRef]
- Shkuratov, Y.; Kaydash, V.; Gerasimenko, S.; Opanasenko, N.; Velikodsky, Y.; Korokhin, V.; Videen, G.; Pieters, C. Probable swirls detected as photometric anomalies in Oceanus Procellarum. Icarus 2010, 208, 20–30. [Google Scholar] [CrossRef]
- Hibbitts, C.; Grieves, G.; Poston, M.; Dyar, M.; Alexandrov, A.; Johnson, M.; Orlando, T. Thermal stability of water and hydroxyl on the surface of the Moon from temperature-programmed desorption measurements of lunar analog materials. Icarus 2011, 213, 64–72. [Google Scholar] [CrossRef]
- Poston, M.J.; Grieves, G.A.; Aleksandrov, A.B.; Hibbitts, C.A.; Dyar, M.D.; Orlando, T.M. Temperature programmed desorption studies of water interactions with Apollo lunar samples 12001 and 72501. Icarus 2015, 255, 24–29. [Google Scholar] [CrossRef]
- Grumpe, A.; Mengewein, N.; Rommel, D.; Mall, U.; Wöhler, C. Interpreting spectral unmixing coefficients: From spectral weights to mass fractions. Icarus 2018, 299, 1–14. [Google Scholar] [CrossRef]
- Shkuratov, Y.G.; Starukhina, L.; Kaidash, V.; Bondarenko, N. 3 He Distribution over the Lunar Visible Hemisphere. Sol. Syst. Res. 1999, 33, 409. [Google Scholar]
- Kim, K.J.; Wöhler, C.; Berezhnoy, A.A.; Bhatt, M.; Grumpe, A. Prospective 3He-rich landing sites on the Moon. Planet. Space Sci. 2019, 177, 104686. [Google Scholar] [CrossRef]
- Milliken, R.E.; Mustard, J.F. Estimating the water content of hydrated minerals using reflectance spectroscopy: I. Effects of darkening agents and low-albedo materials. Icarus 2007, 189, 550–573. [Google Scholar] [CrossRef]
- Staid, M.; Pieters, C.M.; Besse, S.; Boardman, J.; Dhingra, D.; Green, R.; Head, J.; Isaacson, P.; Klima, R.; Kramer, G.; et al. The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan-1. J. Geophys. Res. Planets 2011, 116. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, Y.; Zhang, Y.; Rossman, G.R.; Eiler, J.M.; Taylor, L.A. Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nat. Geosci. 2012, 5, 779–782. [Google Scholar] [CrossRef] [Green Version]
Mineral | Mare | Highland | ||||
---|---|---|---|---|---|---|
Morning | Midday | Difference | Morning | Midday | Difference | |
TiO (Ilmenite) | −0.30 | −0.71 | 0.43 | |||
Plagioclase | 0.20 | 0.65 | −0.54 | 0.49 | 0.65 | −0.34 |
Olivine | −0.08 | −0.33 | 0.29 | |||
Orthopyroxene | −0.07 | −0.36 | 0.33 | −0.55 | −0.67 | 0.30 |
Clinopyroxene | −0.22 | −0.50 | 0.37 | −0.34 | −0.46 | 0.24 |
Theophilus | Mare Moscoviense | ||
---|---|---|---|
08:45 Local Time | 09:20 Local Time | 11:15 Local Time | |
NLBD > 0.3 (spinel) | −0.436 | −0.295 | −0.563 |
NLBD < 0.3 (no spinel) | −0.385 | 0.043 | −0.195 |
Phase ratio | 0.126 | 0.043 | 0.096 |
Plagioclase | 0.022 | 0.055 | 0.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hess, M.; Wöhler, C.; Berezhnoy, A.A.; Bishop, J.L.; Shevchenko, V.V. Dependence of the Hydration of the Lunar Surface on the Concentrations of TiO2, Plagioclase, and Spinel. Remote Sens. 2022, 14, 47. https://doi.org/10.3390/rs14010047
Hess M, Wöhler C, Berezhnoy AA, Bishop JL, Shevchenko VV. Dependence of the Hydration of the Lunar Surface on the Concentrations of TiO2, Plagioclase, and Spinel. Remote Sensing. 2022; 14(1):47. https://doi.org/10.3390/rs14010047
Chicago/Turabian StyleHess, Marcel, Christian Wöhler, Alexey A. Berezhnoy, Janice L. Bishop, and Vladislav V. Shevchenko. 2022. "Dependence of the Hydration of the Lunar Surface on the Concentrations of TiO2, Plagioclase, and Spinel" Remote Sensing 14, no. 1: 47. https://doi.org/10.3390/rs14010047
APA StyleHess, M., Wöhler, C., Berezhnoy, A. A., Bishop, J. L., & Shevchenko, V. V. (2022). Dependence of the Hydration of the Lunar Surface on the Concentrations of TiO2, Plagioclase, and Spinel. Remote Sensing, 14(1), 47. https://doi.org/10.3390/rs14010047