Assessment of Recent Flow, and Calving Rate of the Perito Moreno Glacier Using LANDSAT and SENTINEL2 Images
Abstract
:1. Introduction
2. Case Study Area
3. Data and Methods
3.1. Input Data
3.2. Surface Velocity
- (i)
- VS,max ≤ 5 m day−1 on the entire glaciers (whenever necessary, this was raised to 7 m day−1);
- (ii)
- VS,max ≤ 4 m day−1 and no West ward components in the ablation area;
- (iii)
- VS,max ≤ 2 m day−1 and flow direction only towards East in the front area, covering approximately the last 4 km.
3.3. Calving Rate
4. Results and Discussions
4.1. Model Calibration
4.2. Surface Velocity Validation
4.3. Calving Rates and Validation
4.4. Discussion and Benchmark against Recent Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saavedra, F.A.; Kampf, S.K.; Fassnacht, S.R.; Sibold, J.S. Changes in Andes snow cover from MODIS data, 2000–2016. Cryosphere 2018, 12, 1027–1046. [Google Scholar] [CrossRef] [Green Version]
- Migliavacca, F.; Confortola, G.; Soncini, A.; Senese, A.; Diolaiuti, G.A.; Smiraglia, C.; Barcaza, G.; Bocchiola, D. Hydrology and potential climate changes in the Rio Maipo (Chile). Geogr. Fis. Dinam. Quat. 2015, 38, 155–168. [Google Scholar]
- Bocchiola, D.; Soncini, A.; Senese, A.; Diolaiuti, G. Modelling Hydrological Components of the Rio Maipo of Chile, and Their Prospective Evolution under Climate Change. Climate 2018, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Casassa, G.; Rivera, A.; Aniya, M.; Naruse, R. Current knowledge of the Southern Patagonian Icefield. In The Patagonia Icefields; Kluwer Academic: New York, NY, USA, 2002; pp. 67–83. [Google Scholar]
- Rignot, E.; Rivera, A.; Casassa, G. Contribution of the Patagonia Icefields of South America to Sea Level Rise. Sci. 2003, 302, 434–437. [Google Scholar] [CrossRef] [Green Version]
- Pasquini, A.I.; Depetris, P.J. Southern Patagonia’s Perito Moreno Glacier, Lake Argentino, and Santa Cruz River hydrological system: An overview. J. Hydrol. 2011, 405, 48–56. [Google Scholar] [CrossRef]
- Ciappa, A.; Pietranera, L.; Battazza, F. Perito Moreno Glacier (Argentina) flow estimation by COSMO SkyMed sequence of high-resolution SAR-X imagery. Remote. Sens. Environ. 2010, 114, 2088–2096. [Google Scholar] [CrossRef]
- Skvarca, P.; Naruse, R. Dynamic behavior of Glaciar Perito Moreno, southern Patagonia. Ann. Glaciol. 1997, 24, 268–271. [Google Scholar] [CrossRef]
- Skvarca, P.; Naruse, R.; De Angelis, H. Recent thickening trend of glaciar Perito Moreno, southern Patagonia. Bull. Glaciol. Res. 2004, 21, 45–48. [Google Scholar]
- Aniya, M.; Skvarca, P. Characteristics and variations of Upsala and Moreno glaciers, southern Patagonia. Bull. Glacier Res. 1992, 10, 39–53. [Google Scholar]
- Naruse, R.; Aniya, M.; Skvarca, P.; Casassa, G. Recent variations of calving glaciers in Patagonia, South America, revealed by ground surveys, satellite-data analyses and numerical experiments. Ann. Glaciol. 1995, 21, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Mercer, J.H. Glacier variations in the Andes. Glaciol. Notes 1962, 12, 9–13. [Google Scholar]
- Warren, C.R. Freshwater calving and anomalous glacier oscillations: Recent behaviour of Moreno and Angelino Glaciers, Patagonia. Holocene 1994, 4, 422–429. [Google Scholar] [CrossRef]
- Funk, M.; Rothlisberger, H. Forecasting the effects of a planned reservoir which will partially flood the tongue of Unteraargletscher in Switze rland. Ann. Glaciol. 1989, 13, 76–78. [Google Scholar] [CrossRef] [Green Version]
- Warren, C.R.; Greene, D.R.; Glasser, N.F. Glaciar Upsala, Patagonia: Rapid calving retreat in fresh water. Ann. Glaciol. 1995, 21, 311–316. [Google Scholar] [CrossRef]
- Minora, U.; Bocchiola, D.; D’Agata, C.; Maragno, D.; Mayer, C.; Lambrecht, A.; Vuillermoz, E.; Senese, A.; Compostella, C.; Smiraglia, C.; et al. Glacier area stability in the Central Karakoram National Park (Pakistan) in 2001–2010: The Karakoram anomaly in the spotlight. Prog. Phys. Geogr. 2016, 40, 629–660. [Google Scholar] [CrossRef]
- Raffo, J.M.; Colqui, B.S.; Madejski, M.E. Glaciar Moreno. Meteoros 1953, 3, 293–341. [Google Scholar]
- Naruse, R. Flow of Soler Glacier and San Rafael Glacier. In Glaciological studies in Patagonia Northern Icefield, 1983–1984; Nakajima, C., Ed.; Japanese Society of Snow and Ice, Data Center for Glacier Research: Nagoya, Japan, 1985; pp. 64–69. [Google Scholar]
- Warren, C.R.; Glasser, N.F.; Harrison, S.; Winchester, V.; Kerr, A.R.; Rivera, A. Characteristics of tide-water calving at Glaciar San Rafael, Chile. J. Glaciol. 1995, 41, 273–289. [Google Scholar] [CrossRef] [Green Version]
- Naruse, R.; Skvarca, P.; Kadota, T.; Koizumi, K. Flow of Upsala and Moreno glaciers, southern Patagonia. Bull. Glacier Res. 1992, 10, 55–62. [Google Scholar]
- Naruse, R.; PSkvarca, K.; Satow, Y.T.; Nishida, K. Thickness change and short-term flow variation of Moreno Glacier, Patagonia. Bull. Glacier Res. 1995, 13, 21–28. [Google Scholar]
- Minowa, M.; Sugiyama, S.; Sakakibara, D.; Skvarca, P. Seasonal Variations in Ice-Front Position Controlled by Frontal Ablation at Glaciar Perito Moreno, the Southern Patagonia Icefield. Front. Earth Sci. 2017, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Minowa, M.; Podolskiy, E.A.; Sugiyama, S.; Sakakibara, D.; Skvarca, P. Glacier calving observed with time-lapse imagery and tsunami waves at Glaciar Perito Moreno, Patagonia. J. Glaciol. 2018, 64, 362–376. [Google Scholar] [CrossRef] [Green Version]
- Messerli, A.; Grinsted, A. Image georectification and feature tracking toolbox: ImGRAFT. Geosci. Instrum. Methods Data Syst. 2015, 4, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Winsvold, S.H.; Altena, B.; Nuth, C.; Nagler, T.; Wuite, J. Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and Geometric Performance, and Application to Ice Velocity. Remote Sens. 2016, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; SH Winsvold, A.; Kääb, T.; Nagler, G.S. Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef] [Green Version]
- Stuefer, M.; Rott, H.; Skvarca, P. Glaciar Perito Moreno, Patagonia: Climate sensitivities and glacier characteristics preceding the 2003/04 and 2005/06 damming events. J. Glaciol. 2007, 53, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Rott, H.; Stuefer, M.; Siegel, A.; Skvarca, P.; Eckstaller, A. Mass fluxes and dynamics of Moreno Glacier, Southern Patagonia Icefield. Geophys. Res. Lett. 1998, 25, 1407–1410. [Google Scholar] [CrossRef]
- Stuefer, M. Investigations on Mass Balance and Dynamics of Moreno Glacier Based on Field Measurements and Satellite Imagery. Master’s Thesis, Leopold-Franzens University Innsbruck, Innsbruck, Austria, 1999. [Google Scholar]
- Naruse, R.; Skvarca, P.; Takeuchi, Y. Thinning and retreat of glaciar upsala, and an estimate of annual ablation changes in southern Patagonia. Ann. Glaciol. 1997, 24, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Quincey, D.; Copland, L.; Mayer, C.; Bishop, M.; Luckman, A.; Belò, M. Ice velocity and climate variations for Baltoro glacier, Pakistan. J. Glaciol. 2009, 55, 1061–1071. [Google Scholar] [CrossRef] [Green Version]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers, 4th ed.; Academic Press: Amsterdam, The Netherlands, 2010; 704p, ISBN 10:0-123694-61-2. [Google Scholar]
- Chirico, F. Valutazione della dinamica del Perito Moreno Tramite Immagini Satellitari. [Assessment of Perito Moreno Dynamics Using Satellite Images]. Master’s Thesis, Politecnico di Milano, Milan, Italy, 2017. (In Italian). [Google Scholar]
- Foroosh, H.; Zerubia, J.B.; Berthod, M. Extension of phase correlation to subpixel registration. IEEE Trans. Image Process. 2002, 11, 188–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelson, R.A.; Krolik, J.H. The discrete correlation function—A new method for analyzing unevenly sampled variability data. Astrophys. J. 1988, 333, 646–659. [Google Scholar] [CrossRef]
- Yoo, J.-C.; Han, T.H. Fast Normalized Cross-Correlation. Circuits Syst. Signal Process. 2009, 28, 819–843. [Google Scholar] [CrossRef]
- Fitch, A.J.; Kadyrov, A.; Christmas, W.J.; Kittler, J. Orientation Correlation. In Proceedings of the British Machine Conference; BMVA Press: Cardiff, UK, 2002; pp. 133–142. [Google Scholar] [CrossRef]
- Sakakibara, D.; Sugiyama, S. Ice-front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 to 2011. J. Geophys. Res. Earth Surf. 2014, 119, 2541–2554. [Google Scholar] [CrossRef]
- Bown, F.; Rivera, A.; Pętlicki, M.; Bravo, C.; Oberreuter, J.; Moffat, C. Recent ice dynamics and mass balance of Jorge Montt Glacier, Southern Patagonia Icefield. J. Glaciol. 2019, 65, 732–744. [Google Scholar] [CrossRef] [Green Version]
ID | Satellite | Date A | Date B | Band | Res. [m] | Δt [day] | SNRAVE |
---|---|---|---|---|---|---|---|
75 | LANDSAT7 | 23 September 1999 | 9 October 1999 | Panchromatic | 15 | 16 | 16 |
73 | LANDSAT7 | 7 July 2000 | 24 August 2000 | Panchromatic | 15 | 48 | 14 |
72 | LANDSAT7 | 24 August 2000 | 25 September 2000 | Panchromatic | 15 | 32 | 19 |
71 | LANDSAT7 | 25 September 2000 | 27 October 2000 | Panchromatic | 15 | 32 | 10 |
70 | LANDSAT7 | 20 March 2001 | 7 May 2001 | Panchromatic | 15 | 48 | 13 |
87 | LANDSAT4-5 | 16 June 2001 | 18 July 2001 | Visible | 30 | 32 | 14 |
86 | LANDSAT4-5 | 18 July 2001 | 3 August 2001 | Visible | 30 | 16 | 22 |
85 | LANDSAT4-5 | 3 August 2001 | 4 September 2001 | Visible | 30 | 32 | 16 |
68 | LANDSAT7 | 18 January 2002 | 8 April 2002 | Panchromatic | 15 | 80 | 10 |
81 | LANDSAT4-5 | 21 April 2004 | 7 May 2004 | Visible | 30 | 16 | 16 |
80 | LANDSAT4-5 | 19 February 2005 | 24 April 2005 | Visible | 30 | 64 | 10 |
78 | LANDSAT4-5 | 13 July 2005 | 30 August 2005 | Visible | 30 | 48 | 13 |
77 | LANDSAT4-5 | 6 February 2006 | 22 February 2006 | Visible | 30 | 16 | 10 |
76 | LANDSAT4-5 | 13 November 2009 | 16 January 2010 | Visible | 30 | 64 | 13 |
34 | LANDSAT8 | 8 November 2013 | 24 November 2013 | Panchromatic | 15 | 16 | 16 |
31 | LANDSAT8 | 12 February 2014 | 28 February 2014 | Panchromatic | 15 | 16 | 19 |
30 | LANDSAT8 | 28 February 2014 | 16 March 2014 | Panchromatic | 15 | 16 | 10 |
29 | LANDSAT8 | 16 March 2014 | 1 April 2014 | Panchromatic | 15 | 16 | 17 |
26 | LANDSAT8 | 7 June 2015 | 9 July 2015 | Panchromatic | 15 | 32 | 17 |
16 | SENTINEL2 | 22 January 2016 | 22 March 2016 | RGB | 10 | 60 | 10 |
5 | LANDSAT8 | 2 February 2016 | 21 March 2016 | Panchromatic | 15 | 48 | 14 |
24 | LANDSAT8 | 21 March 2016 | 22 April 2016 | Panchromatic | 15 | 32 | 17 |
15 | SENTINEL2 | 22 March 2016 | 21 April 2016 | RGB | 10 | 30 | 14 |
23 | LANDSAT8 | 22 April 2016 | 8 May 2016 | Panchromatic | 15 | 16 | 22 |
6 | LANDSAT8 | 8 May 2016 | 24 May 2016 | Panchromatic | 15 | 16 | 24 |
22 | LANDSAT8 | 8 May 2016 | 24 May 2016 | Panchromatic | 15 | 16 | 24 |
21 | LANDSAT8 | 24 May 2016 | 11 July 2016 | Panchromatic | 15 | 48 | 16 |
20 | LANDSAT8 | 11 July 2016 | 12 August 2016 | Panchromatic | 15 | 32 | 19 |
19 | LANDSAT8 | 12 August 2016 | 29 September 2016 | Panchromatic | 15 | 48 | 16 |
3 | SENTINEL2 | 19 August 2016 | 28 September 2016 | RGB | 10 | 40 | 14 |
13 | SENTINEL2 | 28 September 2016 | 18 October 2016 | RGB | 10 | 20 | 11 |
12 | SENTINEL2 | 16 April 2017 | 2 June 2017 | RGB | 10 | 47 | 12 |
10 | SENTINEL2 | 2 June 2017 | 22 June 2017 | RGB | 10 | 20 | 16 |
11 | SENTINEL2 | 2 June 2017 | 12 July 2017 | RGB | 10 | 40 | 15 |
9 | SENTINEL2 | 22 June 2017 | 12 July 2017 | RGB | 10 | 20 | 21 |
7 | SENTINEL2 | 20 October 2017 | 2 November 2017 | RGB | 10 | 13 | 16 |
Satellite | Bias [%] | NSE [.] | RMSE [md−1] | NRMSE-Mean [%] | NRMSE-Range [%] |
---|---|---|---|---|---|
SENTINEL2 | 11 | 0.93 | 0.10 | 8.77 | 6.44 |
LANDSAT7-8 | 16 | 0.85 | 0.14 | 12.28 | 8.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bocchiola, D.; Chirico, F.; Soncini, A.; Azzoni, R.S.; Diolaiuti, G.A.; Senese, A. Assessment of Recent Flow, and Calving Rate of the Perito Moreno Glacier Using LANDSAT and SENTINEL2 Images. Remote Sens. 2022, 14, 52. https://doi.org/10.3390/rs14010052
Bocchiola D, Chirico F, Soncini A, Azzoni RS, Diolaiuti GA, Senese A. Assessment of Recent Flow, and Calving Rate of the Perito Moreno Glacier Using LANDSAT and SENTINEL2 Images. Remote Sensing. 2022; 14(1):52. https://doi.org/10.3390/rs14010052
Chicago/Turabian StyleBocchiola, Daniele, Francesco Chirico, Andrea Soncini, Roberto Sergio Azzoni, Guglielmina Adele Diolaiuti, and Antonella Senese. 2022. "Assessment of Recent Flow, and Calving Rate of the Perito Moreno Glacier Using LANDSAT and SENTINEL2 Images" Remote Sensing 14, no. 1: 52. https://doi.org/10.3390/rs14010052
APA StyleBocchiola, D., Chirico, F., Soncini, A., Azzoni, R. S., Diolaiuti, G. A., & Senese, A. (2022). Assessment of Recent Flow, and Calving Rate of the Perito Moreno Glacier Using LANDSAT and SENTINEL2 Images. Remote Sensing, 14(1), 52. https://doi.org/10.3390/rs14010052