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Abstract: Vegetation biophysical products offer unique opportunities to examine long-term vege-
tation dynamics and land surface phenology (LSP). It is important to understand the time-series
performances of various global biophysical products for global change research. However, few
endeavors have been dedicated to assessing the performances of long-term change characteristics or
LSP extraction derived from different satellite products, especially in mountainous areas with highly
fragmented and rugged surfaces. In this paper, we assessed the time-series characteristics and LSP
detections of Global LAnd Surface Satellite (GLASS) leaf area index (LAI), fractional vegetation cover
(FVC), and gross primary production (GPP) products across the Three-River Source Region (TRSR).
The performances of products’ temporal agreements and their statistical relationship as a function of
topographic indices and heterogeneous pixels, respectively, were investigated through intercompari-
son among three products during the period 2000 to 2018. The results show that the phenological
differences between FVC and two other products are beyond 10 days over more than 35% of the
pixels in TRSR. The long-term trend of FVC diverges significantly from GPP and LAI for 13.96% of
the total pixels, and the percentages of mismatched pixels between FVC and two other products are
33.24% in the correlation comparison. Moreover, good agreements are observed between GPP and
LAI, both in terms of LSP and interannual variations. Finally, the LSP and long-term dynamics of the
three products exhibit poor performances on heterogeneous surfaces and complex topographic areas,
which reflects the potential impacts of environmental factors and algorithmic imperfections on the
quality and performances of different products. Our study highlights the spatiotemporal disparities
in detections of surface vegetation activity in mountainous areas by using different biophysical
products. Future global change studies may require multiple high-quality satellite products with
long-term stability as data support.

Keywords: leaf area index; fractional vegetation cover; gross primary production; land surface
phenology; time-series characteristic

1. Introduction

Vegetation plays a vital role in the global terrestrial ecosystems [1]. In the past few
decades, credible observations, comprehensions, and forecasts of the vegetation tendency
or seasonal dynamics have been becoming one of the core missions in earth system science.
Satellites offer the capacity to monitor the surface vegetation over long periods at large
spatial scales and provide the opportunity for researchers to reveal both land surface
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phenology (LSP) and long-term variations in vegetation. LSP, especially dates at the
start of spring growing season (SOS) and end of the growing season (EOS), has been
widely reported as an independent method and powerful metric for estimating ecosystem
responses to the global changes [2]. Moreover, vegetation growth regulates the balance of
the terrestrial ecosystem, carbon sequestration, hydrologic cycle, and other biogeochemical
processes [3]. Thus, reliable information about LSP and spatiotemporal dynamics of
vegetation is significant to comprehend carbon budgets and climate change from regional
to global scales.

Since the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensor launched
in the 2000s, vegetation indices products (e.g., Normalized Difference Vegetation Index,
NDVI) have been produced and widely used in the long-term vegetation tendency analy-
sis [4,5], detecting interactions between vegetation dynamics and climate changes [5], and
carrying out phenological retrieval studies at global or regional scales [6–8]. Nevertheless,
the vegetation indices products often saturate during peak growing season and are suscepti-
ble to background soil information [9]. Compared with vegetation indices, satellite-derived
biophysical products, namely leaf area index (LAI) [10,11], fractional vegetation cover
(FVC) [12–14], and gross primary production (GPP) [15], offer new potential for vegetation
dynamics monitoring at global or regional scales. LAI is defined as half of the total green
leaf area (i.e., photosynthetic active leaf area) per unit of the land surface area [16]. FVC
represents the ratio of green vegetation projected vertically onto the ground surface [13].
GPP refers to the total amount of carbon fixed per unit of space and time during the process
of green vegetation photosynthesis [17]. As excellent proxies for vegetation growth status,
these biophysical products are more closely related to photosynthesis and vegetation tran-
spiration and are important factors when depicting energy exchange, material, and carbon
cycling between the Earth and the atmosphere [18,19].

Reasonable and reliable interpretation of terrestrial ecosystem trends is the primary
issue which these satellite products should address. The synergistic application of multi-
source biophysical products to study terrestrial vegetation dynamics and seasonal varia-
tions at global scales requires comprehensive analyses of the various products. However,
the long-term vegetation dynamic characteristics and phenological information inferred
from different products vary considerably across regions, due to the regional climatic stress,
land cover, and topographic complexity [3]. Zhang et al. [20] pointed out a much smaller
rise in global GPP when compared with the growth rate of global vegetation LAI mainly
caused by warming-induced drying. A survey in South Asia also showed that large areas
of surface vegetation greening represented by LAI did not bring proportional increases of
carbon uptake (i.e., GPP increase) [21]. In addition, the difference in data quality among
different sensors results in high inconsistencies in the detection of LSP metrics on the global
scale [22]. This was also confirmed in a study conducted in China, where their study further
highlighted the high mismatches of LSP derived from vegetation indices between those
from LAI in the areas with arid or high altitudes (e.g., Qinghai–Tibet Plateau) [23]. The
above studies pose a challenge for monitoring surface vegetation dynamics or LSP at large
spatiotemporal scales, depending on satellite products, especially in mountainous areas
with highly fragmented and rugged surfaces.

The Three-River Source Region (TRSR), as the birthplace of the Yangtze, Yellow, and
Lancang River in China, is one of the most eco-environmentally vulnerable areas in the
world due to its complicated land surface, high elevation, spatial heterogeneity, and com-
plex hydrological responses to variable climate conditions [24–28]. Long time-series satellite
products are necessary to understand the vegetation growth and make sustainable devel-
opment strategies in this region. However, most previous studies only use a single remote
sensing product to reveal the vegetation dynamics or LSP over TRSR. They do not provide
a comprehensive analysis of multiple biophysical products to reveal spatiotemporal vari-
ability of vegetation dynamics and LSP on the various surface characteristics. Moreover,
previous studies using different satellite products yielded partially contradictory conclu-
sions in the TRSR [9]. For example, the vegetation SOS obtained from different satellite data
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in the literature [29,30] showed obvious spatial mismatch, although the temporal periods
are slightly different.

Given that a reliable inference in phenological detection and vegetation dynamics
at large spatiotemporal scales affect the predictions of climate change, crop cultivation,
and deployment of sustainability development in the TRSR, it is critical to conduct a
comprehensive evaluation of time-series performances of various satellite products across
the TRSR. In addition, several studies [13,31–33] have proved that Global LAnd Surface
Satellite (GLASS) products exhibit good spatial, seasonal, and annual variability over
regional or global scales compared to other biophysical satellite products (e.g., MODIS). In
this context, GLASS biophysical products (i.e., LAI, FVC, GPP) are selected as good proxies
for interpreting vegetation changes in this study, and we carry out intercomparison among
three GLASS products over the TRSR. Our objectives are to (1) evaluate the characteristics
of LSP metrics derived from three products and the level of their agreement; (2) reveal
the performances of temporal variations of GLASS LAI, FVC, and GPP products and their
matching degree.

The organization of this study is as follows. Section 2 presents the GLASS LAI,
FVC, and GPP products. The ancillary data are also introduced. The research methods
are shown at the end of this section. Section 3 details the LSP and temporal variation
characteristics of GLASS products and their comparative analysis, as well as the time-series
performances of three products under different characteristics of topographic complexity
(TC) and land-cover heterogeneity (LCH). Discussions and conclusions are drawn in
Sections 4 and 5, respectively.

2. Materials and Methods

Figure 1 displays the flowchart of this study concerning the comparison of perfor-
mances among GLASS LAI, FVC, and GPP products. Firstly, based on the original data
with spatial and temporal resolutions of 500 m and 8-day, respectively, the annual mean
values of all datasets during the 2000–2018 growing seasons were obtained. Note that the
growing season in the TRSR was from the 129th to the 289th day of year (DOY) [24]. Then,
the time-series changing tendency of three products and their correlations were also calcu-
lated using the Theil–Sen’s slope estimator, Mann–Kendall test, and Spearman correlation
coefficient methods. On this basis, the long temporal variation characteristics of different
products were compared. In addition, the vegetation phenological metrics were extracted
in 2018 to compare their characteristics of LSP detection. Finally, the performances of long
temporal changes and LSP detection of three products under different characteristics of TC
and LCH were analyzed.
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Figure 1. Flowchart of the comparison scheme for GLASS LAI/FVC/GPP from 2000 to 2018 in the
TRSR. All abbreviations are mentioned in the text for the first time.

2.1. Study Area

The TRSR is located between 31◦39′–36◦16′N and 89◦24′–102◦23′E and lies in the
hinterland of the Qinghai–Tibet Plateau in China (Figure 2) [9]. It includes 22 counties
(e.g., Gonghe, Xinghai, Maduo, etc.) and its area is more than 369,000 km2. The TRSR
shows complex terrain and heterogeneous land-cover characteristics, and grasslands are the
main vegetation type, covering the majority of the study area. The TRSR is widely known
as the “Water Tower of China” because it offers 25%, 49%, and 15% of the water for the
Yangtze River, Yellow River, and Lancang River, respectively. The TRSR has a representative
continental climate, with a small difference in annual temperature and a large difference
in diurnal, hydrothermal conditions increasing from northwest to southeast. In the past
decades, the TRSR has attracted noticeable attention because it experienced marked climatic
changes, e.g., significant increases in rainfall, temperature, and solar radiation. Moreover,
the ecogeological environment security of the TRSR, and even the Southeast Asia region, is
facing a dangerous situation with the deteriorative regional ecosystem and a decrease in
water conservation function.
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Figure 2. Study area. The land-cover maps in the right panel were published by Gong et al. [34].

2.2. Datasets

All the GLASS products were obtained from the Nation Earth System Data Center,
National Science & Technology Infrastructure of China (http://www.geodata.cn, accessed
on 20 November 2021). Table 1 shows the product information. All the GLASS products
were firstly transformed from HDF to GeoTIFF format and then reprojected from the
sinusoidal to the AEA_WGS_1984 projection. Subsequently, the average composition
method was used to achieve the temporal GLASS datasets during the period of 2000 to
2018 growing seasons.

Table 1. GLASS products were investigated in the study.

Product Sensor Spatial
Resolution

Temporal
Resolution Algorithm Span Reference

LAI MODIS 500 m 8-day GRNN 2000–2018 Xiao et al. [10,11]
FVC MODIS 500 m 8-day MARS 2000–2018 Jia et al. [13,14]

GPP MODIS 500 m 8-day Revised
EC-LUE 2000–2018 Yuan et al. [15,33]

2.2.1. GLASS LAI

The GLASS LAI was calculated from the MOD09A1 using a general regression neural
network (GRNN) method at a global scale with spatial and temporal resolutions of 8-day
and 500 m, respectively [10]. The “effective” CYCLOPES LAI was firstly converted to the
actual value using the clumping index (Ω), using the following equation:

LAIact = LAIe f f /Ω (1)

Then, the MODIS and CYCLOPES LAI were fused in a weighted linear combination
to obtain the best LAI estimate. The MOD09A1 data were reprocessed to clear cloud barrier,
and the missing gaps were filled to obtain spatial–temporal continuous and smooth data
using the algorithm proposed by Tang et al. [35]. A GRNN was trained using the fused LAI
for each biome type and the MOD09A1 data over the Benchmark Land Multisite Analysis

http://www.geodata.cn


Remote Sens. 2022, 14, 61 6 of 22

and Intercomparison of Products (BELMANIP) sites. Ultimately, the annual LAI profiles
were retrieved using the neural network trained from the MOD09A1 reflectance data [10].

2.2.2. GLASS FVC

The GLASS FVC [12,13] was firstly generated by selecting a global sampling location
based on the BELMANIP sites, and high-quality Landsat TM/ETM+ data were employed
at each site to generate high spatial resolution FVC samples. Subsequently, Landsat data
were preprocessed using global land-cover data with 30 m resolution and global terrestrial
ecoregion, and the FVC was estimated using a dichotomous pixel model. In addition, the
MODIS surface reflectance data were reprocessed to eliminate cloud contamination and
other effects.

Based on the global high-resolution FVC sample dataset, four machine learning meth-
ods, namely back-propagation neural networks, GRNNs, support vector regression, and
multivariate adaptive regression splines (MARS), were evaluated to generate GLASS FVC.
All four machine learning methods were trained using sample data from the same sampling
location and by comparing their fitting accuracy and computational efficiency; the MARS
model was then selected as the most suitable method. Finally, the MARS was trained and
used to estimate the global surface FVC [14].

2.2.3. GLASS GPP

GLASS GPP products were produced using a revised eddy covariance light-use ef-
ficiency (EC-LUE) model, integrated by the following variables: atmospheric CO2 con-
centration, radiation components, and atmospheric water vapor pressure [15,33]. The
algorithm considered the effects of saturation water vapor pressure deficits, atmospheric
CO2 concentrations, and long-term changes in radiation. In addition, the development and
validation of the algorithm were based on global eddy flux towers data which includes
84 sites; it covers nine terrestrial ecosystem types: evergreen broadleaf forest, evergreen
needleleaf forest, deciduous broadleaf forest, mixed forest, grasslands, savannas, shrubs,
wetlands, croplands, etc. The revised model could interpret 68% and 83% of the spatial
variations in the annual GPP at 43 validation and 42 calibration sites, respectively. Hence,
the estimated GPP derived from the revised EC-LUE model provides an alternative and
reliable dataset at the long-term scale by integrating the important environmental variables.

2.2.4. Ancillary Data
Land-Cover Data

The global land-cover maps with 30 m spatial resolution were made using Landsat
time-series data [34]. An exclusive land-cover classification system was developed that
contains ten primary biomes (e.g., cropland, forest, grassland, shrubland, wetland, water,
tundra, impervious surface, bare land, and snow/ice). The first five biomes are consid-
ered as vegetation type pixels and other species are considered as nonvegetation type
pixels. Subsequently, the ratio of vegetation pixels (RVP) [36] is calculated by using the
spatial aggregation method under a 500 m spatial resolution grid, which reflects the LCH
characteristic more comprehensively.

DEM Data

The terrain data were derived from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer Global Digital Elevation Model Version 2 (ASTER-GDEM V2) with a
spatial resolution of 30 m. To reflect the complexity of the topographic features in the TRSR,
this study introduces the terrain niche index (TNI) [37] with the following equation:

T = log[(
E
E
+ 1)× (

S
S
+ 1)] (2)

where T is the TNI; E and E represent the elevation with 30 m spatial resolution and the
elevation aggregated to 500 m resolution using the spatial averaging method, respectively.
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Similarly, S and S perform the slope with 30 m and 500 m spatial resolution, respectively.
By employing the above equation, the original topographic properties (i.e., elevation and
slope) can be described by TNI. The areas with low TNI values represent low elevations
and flat terrains, and the areas with high TNI values indicate high elevations and sloping
terrains, whereas regions with middle TNI values mean the other cases.

The terrain and land-cover data were firstly projected, mosaicked, and aggregated to
match the GLASS grid, then terrain and surface heterogeneity metrics were extracted based
on a 500 m grid by using zonal statistics. Subsequently, the RVP metrics were then divided
into 10 (0–10%, 10–20%, . . . , 90–100%) groups based on an interval of 10% (Figure 3a).
Similarly, the TNI was divided into 12 groups (0–0.2, 0.2–0.4, . . . , >2.2) based on an interval
of 0.2 (Figure 3b).
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2.3. Research Methods

Comparison analyses of correlation [38] and trend [19] were effective methods to
evaluate the time series performances of different products. In this study, simple and
robust Theil–Sen’s slope estimator [39], Mann–Kendall test [40], and Spearman correlation
coefficients [41] were used to reflect the interannual consistency of change direction and
correlation among different products. Besides, Xia et al. [42] reported that, compared with
other models, the phenological metrics derived from the double-logistic function had the
highest accuracy. Hence, the LSP extracted by fitting the double-logistic regression function
was used in this study to explore the seasonal characteristics among different products.

2.3.1. Phenological Metrics

Several important LSP metrics can be inferred from the LAI/FVC/GPP annual profiles,
e.g., the SOS, the EOS, etc. These metrics represent the ecological responses of vegetation
communities to environmental variations over spaces and times and define the key pheno-
logical phases of vegetation dynamics at annual time scales, which are often used in remote
sensing-based phenology studies [43–46].

Here, we employ a double logistic regression function to reconstruct the annual
vegetation growth curve [47]. Based on this function, it is possible to systematically
determine the phenological metrics at regional, or even larger, scales. The smooth temporal
profile in LAI/FVC/GPP data for a whole year can be modeled using a function of the
following form:

f (x) = α1 +
α2

1 + e−∂1(x−β1)
− α3

1 + e−∂2(x−β2)
(3)

where x is time in the DOY; f (x) is the observed LAI/FVC/GPP at the DOY; α1 is the
background value; α2 − α1 is the difference between the early summer plateau and ampli-
tude of spring; and α3 − α1 is the difference between the background and the amplitude
of the summer and autumn plateau; ∂1 and ∂2 represent normalized slope coefficients of
spring and fall, respectively; β1 and β2 perform the midpoints in DOY of transitions for the
greening and browning, respectively.
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LSP metrics can be scientifically calculated by the reconstructed temporal trajectories.
We investigated and compared the SOS and EOS indicators inferred from three products
in 2018, respectively. The SOS and EOS correspond to the DOY of the local maxima and
minima of the first derivatives of the fitted curve, respectively.

2.3.2. Trend Detection

Temporal trends of each product are calculated by employing Theil–Sen’s slope esti-
mator with time as the independent variable and remote sensing data as the dependent
variable. This method is insensitive to outliers, so it is more robust, theoretically. We used
the modified Z-score to standardize the raw data before calculated the trend. The formula
of Theil–Sen’s slope estimator is as follows:

β = Median(
Xj − Xi

j− i
) 2000 ≤ i ≤ j ≤ 2018 (4)

where Median is a statistic function; Xj and Xi are the biophysical data, and β indicates
the indicates the trends for each pixel. The determination of the significance level is
supplemented by the Mann–Kendall test. The algorithms are as follows:

S =
n−1

∑
j=1

n

∑
i=j+1

sgn(Xj − Xi) (5)

sgn(Xj − Xi) =


1, (Xj − Xi) > 0
0, (Xj − Xi) = 0
−1, (Xj − Xi) < 0

(6)

where sgn is the symbolic function; n represents the number of years during 2000–2018, i.e.,
n = 19. The standard normal test statistic (Z) can be calculated by

Z =


S−1√
var(S)

, S > 0

0, S = 0
S+1√
var(S)

, S < 0
(7)

var(S) =
n(n− 1)(2n + 5)−

m
∑

i=1
ti(ti − 1)(2ti + 5)

18
(8)

where var indicates the variance; m is the number of recurring datasets in the series, and ti
is the number of repeated datasets in the i group.

The outputs of the Theil–Sen analysis and Mann–Kendall test are two images of the
slope and significance tests at the 500 m resolution. When |Z|> Z1−α/2, the null hypothesis
is refuted, and the trend is significant. The value of Z1−α/2 can be found in the standard
normal distribution table. In this research, significance degree at α = 0.05 is selected, which
corresponded to Z1−α/2 value of 1.96 to classify the slope values into three categories:
significant positive (β > 0, |Z| > 1.96), negative (β < 0, |Z| > 1.96), and insignificant
changes (β ∃, |Z| ≤ 1.96) [19,48].

2.3.3. Correlation Coefficient

The Spearman rho correlation coefficient is used to determine the level of correlation
between every two variables and is usually represented as r-values [49]. It is a nonparamet-
ric factor that estimates the dependence between the rankings of two products. If there are
no repeated values in the data and the two variables are perfectly monotonically correlated,
the Spearman correlation coefficient is either −1 or +1, with the former representing a
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completely negative correlation and the latter a totally positive correlation. The correlation
r of each two variables is calculated by the following equation:

rA_B = 1− 6∑ d2

n(n2 − 1)
(9)

where A and B represent the different products used in this research, respectively. d is the
discrepancies between the ranks of two products, and n is the length of each observation,
i.e., n = 19. The output r-values indicate the correlation coefficient between the two products
from 2000 to 2018.

Significance tests are selected at a level of α = 0.05 to classify the correlation types into
three categories: positive correlation (r > 0, α < 0.05), negative correlation (r < 0, α < 0.05),
and insignificant correlation (r∃, α > 0.05) [50,51]. The formula of significance test is shown
in [52].

2.3.4. Comprehensive Assessment Framework

To comprehensively evaluate the performances among GLASS products, the agree-
ment level of LSP metrics was firstly estimated by calculating their absolute difference
(days). In addition, the results of the long-term trend analysis and correlation detection
were counted and used to populate the comparisons framework, as framed in Figure 4. This
framework was used to assess the matching degree of interannual variation among three
products. Physical agreement situations were assumed as the following forms (Figure 4):

• The pixels with ID 0 indicate that all products are agreed in the trend comparison,
i.e., consistently positive, negative, or insignificant changes; while in the correlation
comparison, it means that three datasets are synchronously positively, negatively, or
insignificantly correlated between each other.

• In the tendency comparison, the pixels with ID 1 represent FVC and GPP agreement
in positive, negative, or insignificant changes, while LAI disagrees with the other
two products. In the correlation comparison, the pixels with ID 1 indicate FVC has a
consistently positive, negative, or insignificant relationship with LAI or GPP, while
LAI and GPP are oppositely correlated.

• The pixels with ID 2 indicate that GPP and LAI have the same trend direction in these
areas (i.e., positive, negative, or insignificant changes), however, FVC is inconsistent;
while in the correlation comparison, it means that GPP has the same positive, negative,
or insignificant relationship between FVC or LAI, but the correlation between FVC
and LAI is reversed in these regions.

• The pixels with ID 3 intend that LAI and FVC agree (i.e., accordant positive, negative,
or insignificant changes), nevertheless, GPP disagrees in the tendency directions;
while in correlation comparison, it means that LAI has the same positive, negative, or
insignificant correlation between FVC or GPP, while the correlation between GPP and
FVC is opposite.

In summary, pixels with ID 0 represent that the interannual trend and correlation
are in total agreement in comparison, and pixels with ID 1, 2, and 3 indicate the total
disagreement (i.e., interannual differences). Subsequently, the statistical distributions of
comparison results of LSP and interannual variation as a function of the RVP and TNI
indicators, respectively, are calculated to reveal the performances of temporal agreements
among LAI/FVC/GPP under different characteristics of TC and LCH.
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Figure 4. Comparison framework of (a) tendency and (b) correlation among three products.

3. Results
3.1. LSP Characteristics of Three Products
3.1.1. Spatial Patterns of LSP of LAI/FVC/GPP

Using the LAI/FVC/GPP data in 2018, we display the spatial patterns of the LSP in the
TRSR (Figure 5). In general, the patterns are elevation-dependent, and vegetation growth
in northwestern parts of the study areas (i.e., Zhiduo, Qumalai, and Golmud counties)
occurs a little later than the other areas. Most pixels’ SOS there begin after 135 DOY, while
EOS happen before 275 DOY. Eastward from the Zhiduo county, the SOS advances from
May to April, and the EOS postpones from September to October. In other words, with the
increasing elevation in the TRSR, the SOS delays from the southeast to northwest, while
EOS is in advancement.

Despite the similar spatial pattern exhibited by the three various products, there are
still noteworthy variances in the estimation of LSP metrics from different products (Table 2).
In the estimations of SOS, 42.22% and 39.80% of the pixels indicate that the phenological
differences of LAI_FVC and FVC_GPP are more than 10 days; while in the EOS estimates,
these percentages are 41.92% and 32.62%, respectively. In brief, at least 35% of the pixels
in the study area represent a significant difference between FVC and other products in
LSP estimation, which are mainly located at the Golmud, Zhiduo, Qumalai, and Gonghe
counties. However, 95.38% and 85.50% of the pixels prove that the phenological differences
between GPP and LAI are within 10 days, respectively. This phenomenon implies that the
LSP estimations by GPP and LAI enjoy better agreements in the vast majority of the study
area (more than 90%).

Table 2. The statistical distribution of absolute difference (days) of SOS and EOS between every
two products.

Phenological
Differences

(Days)

SOS EOS

LAI_FVC FVC_GPP GPP_LAI LAI_FVC FVC_GPP GPP_LAI

0–5 28.51% 29.41% 74.99% 31.45% 37.34% 61.02%
5–10 29.27% 30.79% 20.39% 26.63% 30.04% 24.48%
10–15 20.98% 23.50% 3.59% 19.75% 19.24% 10.25%
15–20 11.89% 9.93% 0.72% 9.32% 7.05% 2.49%
>20 9.35% 6.37% 0.31% 12.85% 6.33% 1.76%
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Figure 5. Spatial patterns of the land surface phenology derived from (a,b) LAI, (c,d) FVC, and
(e,f) GPP in 2018 across TRSR. The left panels display the start of the growing season, and the right
panels show the end of the growing season.

3.1.2. Performances of Phenological Differences among LAI/FVC/GPP under Different
Surface Conditions

The left and right panels in Figure 6 show the variation of phenological differences
(days) of SOS and EOS varying with RVP and TNI across TRSR, respectively. A clear
phenomenon can be derived in which the discrepancies of phenological indicators decrease
with the increase of RVP (the left panels). The minimum phenological differences are
simultaneously observed over the regions with homogeneous land cover (i.e., RVP level
larger than 80%), the maximum, conversely, are captured at the heterogeneous surfaces
(i.e., RVP level less than 30%). Note that the differences of SOS derived from LAI and
FVC products can reach about 10 days between the most homogeneous and heterogeneous
surfaces (panel a). This further illustrates that LSP retrievals from three products show
poor performances under heterogeneous surfaces.
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Figure 6. Phenological difference (days) between (a,b) LAI and FVC, (c,d) FVC and GPP, and (e,f)
GPP and LAI, varying with the ratio of vegetation pixel (left panels) and terrain niche index (right
panels) in 2018 across TRSR.

The absolute discrepancies of phenological metrics between every two products in-
crease with rising TNI (the right panels), which firstly remains relatively stable at the
0–1.0 level and then increases rapidly at the >1.0 level. Overall, the discrepancies at high
altitudes with rugged surfaces are larger than those at low elevations with flat terrain,
regardless of SOS and EOS. This suggests that the agreements of LSP metrics derived from
three products under the areas with high TNI values exhibit poor performances.

3.2. Long-Term Characteristics of Three Products
3.2.1. Tendency and Correlation of LAI/FVC/GPP

The left panels in Figure 7 present spatial distributions of vegetation change trends by
employing the Theil–Sen’s slope estimator. Note that the Mann–Kendall test not marked
in the panel. All datasets generally display a large area of significant positive trends in
the northeastern (e.g., Gonghe, Jianzha, Guide, Guinan counties, etc.) and northwest
TRSR (e.g., Zhiduo and Golmud counties). A few pixels with negative trends among three
products have been found in the northwestern and southern TRSR.



Remote Sens. 2022, 14, 61 13 of 22Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 23 
 

 

 

Figure 7. Spatial patterns of the slope values estimated from Theil–Sen trend analysis of LAI (a), 

FVC (c), and GPP (e), and the r-values estimated from Spearman rank correlation coefficient analysis 

between LAI_FVC (b), FVC_GPP (d), and GPP_LAI (f) during 2000–2018 across the TRSR. 

Table 3. Statistical results on the correlations and trends of LAI, FVC, and GPP products during 

2000–2018 (α = 0.05). 

Product 

Trend 
Paired 

Products 

Correlation 

Positive Negative 
Insignificant 

Changes 
Positive Negative 

Insignificant 

Correlation 

LAI 5.63% 4.81% 89.56% LAI_FVC 42.52% 0.09% 57.39% 

FVC 17.37% 2.55% 80.07% FVC_GPP 34.70% 0.05% 65.25% 

GPP 5.31% 0.16% 94.53% GPP_LAI 74.59% <0.01% 25.41% 

3.2.2. Comprehensive Assessment of Long-Term Changes in LAI/FVC/GPP 

Figure 8 presents the trend comparison map of LAI, FVC, and GPP, at a per-pixel 

level. The dark green and dark red pixels (i.e., ID 0) represent the three products showing 

consistent positive and negative trend directions, respectively. The agreed positive ten-

dency among three datasets is unambiguous across most of the northeastern (e.g., Jianzha, 

Guide, Tongren counties, etc.) and part of the northwestern TRSR (e.g., Zhiduo and Gol-

mud counties). A few agreed positive pixels were also found in the western part of Dari 

County. In addition, the areas of agreed negative are usually concentrated in the northern 

Figure 7. Spatial patterns of the slope values estimated from Theil–Sen trend analysis of LAI (a),
FVC (c), and GPP (e), and the r-values estimated from Spearman rank correlation coefficient analysis
between LAI_FVC (b), FVC_GPP (d), and GPP_LAI (f) during 2000–2018 across the TRSR.

Table 3 shows the statistical results of the change trends of three products from the 2000
to 2018 growing season. A significant tendency is observed for 10.44% of the LAI pixels,
including 5.63% positive trends and 4.81% negative trends, whereas the FVC analysis
generates approximately 19.92% significant pixels (17.37% and 2.55% with positive or
negative trends, respectively). In addition, the GPP produces about 5.47% significant pixels
(5.31% positive and 0.16% negative).

Table 3. Statistical results on the correlations and trends of LAI, FVC, and GPP products during
2000–2018 (α = 0.05).

Product
Trend

Paired
Products

Correlation

Positive Negative Insignificant
Changes Positive Negative Insignificant

Correlation

LAI 5.63% 4.81% 89.56% LAI_FVC 42.52% 0.09% 57.39%
FVC 17.37% 2.55% 80.07% FVC_GPP 34.70% 0.05% 65.25%
GPP 5.31% 0.16% 94.53% GPP_LAI 74.59% <0.01% 25.41%
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The right panels in Figure 7 show the correlation between each of the two products
using the Spearman rank correlation coefficient method from 2000 to 2018 growing seasons
in the TRSR. The highly positive relationship pixels among all datasets have been found in
the northeastern TRSR (e.g., Gonghe, Guide, Jianzha, Guinan, Xinghai counties, etc.), and
northern or northwestern TRSR (e.g., Maduo, Qumalai counties, etc.). Conversely, there
were a few negative pixels found in the Golmud, Nangqian, Yushu counties, etc. As far as
the statistical result was concerned, the proportion of positive correlation pixels between
GPP and LAI is 74.59%, while FVC~GPP and LAI~FVC is 34.70% and 42.52%, respectively
(Table 3).

3.2.2. Comprehensive Assessment of Long-Term Changes in LAI/FVC/GPP

Figure 8 presents the trend comparison map of LAI, FVC, and GPP, at a per-pixel
level. The dark green and dark red pixels (i.e., ID 0) represent the three products showing
consistent positive and negative trend directions, respectively. The agreed positive tendency
among three datasets is unambiguous across most of the northeastern (e.g., Jianzha, Guide,
Tongren counties, etc.) and part of the northwestern TRSR (e.g., Zhiduo and Golmud
counties). A few agreed positive pixels were also found in the western part of Dari County.
In addition, the areas of agreed negative are usually concentrated in the northern TRSR
(e.g., Qumalai county) and parts of the southeastern TRSR (e.g., Dari and Gande counties).
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Figure 8. Spatial patterns of long-term trend comparison estimated from LAI, FVC, and GPP during
the 2000–2018 growing season across the TRSR. The dark-colored pixels with ID 0 represent total
agreement in the trend direction, i.e., total agreed in positive (P0), negative (N0), and insignificant
changes (INS0), while light-colored pixels with ID 1, 2, or 3 represent total disagreement, i.e., total
disagreed in positive (P1, P2, or P3), negative (N1, N2, or N3), and insignificant changes (INS1, INS2,
or INS3), and the meanings of each ID are shown in Section 2.3.4.

Table 4 displays the statistical information of the metrics of interannual consistency
derived from trend analysis. The trend direction of all datasets agrees in 76.08% of the
whole TRSR, collectively displaying agreement with positive tendencies of 2.50% and very
few negative tendencies of 0.06%. The light-colored pixels (i.e., ID 1, 2, and 3) indicate
regions where two out of three products synchronously display a positive, negative, or
insignificant trend, while the third product exhibits an inconsistent tendency. In this region,
FVC most often shows an inconsonant tendency where the other two products show an
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accordant trend direction. The pixels with ID 2 accounts for about 13.96% of the whole
TRSR. Conversely, LAI (i.e., the pixels with ID 1) and, to a lesser extent, GPP (i.e., the pixels
with ID 3), show relatively few inconsistencies for 6.15% and 3.81% pixels, respectively.

Table 4. Comparison statistics of the agreement metrics of interannual variation difference, derived
from three products.

Types
Trend Correlation

Positive Negative Insignificant
Changes Positive Negative Insignificant

Correlation

0 2.50% 0.06% 73.52% 23.08% <0.01% 15.88%
1 1.22% <0.01% 4.93% 1.44% <0.01% 31.80%
2 0.31% 0.07% 13.58% 7.43% <0.01% 5.31%
3 1.33% 1.17% 1.31% 12.27% <0.01% 2.79%

Figure 9 depicts the correlation comparison map derived from the Spearman corre-
lation analysis by LAI, FVC, and GPP from the 2000 to 2018 growing season. The pixels
with ID 0 indicate a consistent positive or negative correlation for three products. Accor-
dantly, positive correlations among all products are obviously across the majority area of
the northeastern (e.g., Gonghe, Jianzha, Guide counties) and northwestern (e.g., Golmud
county) TRSR. In addition, there are a few consistently positively correlated pixels found in
the northern parts of the study area (e.g., Maduo county).
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Figure 9. Spatial patterns of long-term correlation comparison calculated by LAI, FVC, and GPP
during the 2000–2018 growing season across the TRSR. The dark-colored pixels with ID 0 represent
total agreement in the correlation, i.e., total agreement in positive (P0), negative (N0), and insignificant
correlation (INS0), while light-colored pixels with ID 1, 2, or 3 represent total disagreement, i.e., total
discordant in positive (P1, P2, or P3), negative (N1, N2, or N3), and insignificant correlation (INS1,
INS2, or INS3), and the meanings of each ID are shown in Section 2.3.4.

Table 4 shows the statistical results of the interannual correlated comparison derived
from the correlation analysis. The rank relation among all datasets agrees in 38.96% across
the whole TRSR, respectively, revealing a positive correlation of 23.08% and a negative
correlation of less than 0.01%. The percentages of light-colored pixels with ID 1, 2, and 3
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describe the extent to which FVC, GPP, and LAI are inconsistent with the other two products,
respectively. For example, the pixels with INS1 show the ratio of 31.80% in the whole TRSR,
which means that GPP is significantly correlated with LAI in these regions, while FVC is
not significantly correlated with both products. As far as the proportions of light-colored
pixels with ID 1, 2, or 3 are concerned (i.e., total disagreement), these account for 33.24%,
12.74%, or 15.06%, respectively, that is, FVC is the most inconsistent with the other two
products in the correlation comparison.

3.2.3. Performances of Long-Term Variations among LAI/FVC/GPP under
Various Situations

Figure 10 illustrates the performances of comparison of interannual variations among
three products over different degrees of RVP and TNI. As far as the comparison of long-
term trends is concerned (panels a and b in Figure 10), the total agreement tends to decline
(or rise) with increasing RVP (or TNI), and it seems that the long-term trends of the three
products have “good” performances over the areas with high heterogeneous surfaces or
complex terrain. Nevertheless, after separating the agreed positive changes (P0) from the
total agreement, an explicit differentiation pattern shows that the P0 tends to decrease
with the rising TNI (panel c) and increase with the ascending RVP (panel d). The INS0,
conversely, raises with the increasing TNI and declines with the increasing RVP (not marked
in the panel). This phenomenon indicates that the long-term trends of the three products
show poor performances under heterogeneous surfaces or complex terrain.
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Panels e and f in Figure 10 depict the performances of interannual correlation com-
parison of the three products under different levels of RVP and TNI. A clear statistical
distribution suggests that the percentage of total agreement tends to be decreasing with
increasing land-cover heterogeneity (RVP) or surface complexity (TNI), which indicates
the long-term correlations of the three products, also showing poor performances under
heterogeneous ground surfaces or complicated topography.

4. Discussions
4.1. Importance of Comprehensive Assessment for Biophysical Products

In this study, double-logistic function, Theil–Sen’s slope estimator, Mann–Kendall test,
and Spearman correlation coefficient were employed to examine the LSP and long-term
changes of vegetation of LAI, FVC, and GPP from 2000 to 2018 in the TRSR. Most previous
research for estimating vegetation tendency or phenological phases has been based on the
employment of vegetation indices. Yet, vegetation indices were greatly different in the LSP
estimations over specific spaces and various vegetation types [8]. Biophysical variables were
more sensitive than vegetation indices to dense vegetation. This was particularly significant
to describe the later phases of canopy growth and leaf maturity. In addition, phenological
and interannual tendency estimations were also expected to be more robust across different
biophysical data than those in vegetation indices, because vegetation indices highly depend
on the band characteristics across various sensors [23]. It was also reported that the high
discordances in the characteristics of seasonal patterns between various vegetation indices
and MODIS datasets, and vegetation indices seasonality still lacks a robust biophysical
explanation across the Amazon rainforest [53]. It further highlighted the shortcomings of
vegetation indices and the ecological significance of synergistic employment of biophysical
products for time-series analysis.

Nevertheless, previous researchers directly apply a single product to analyze vegeta-
tion dynamics or LSP, which often leads to contradictory conclusions in special cases [48].
Moreover, a comparative study on the time-series performance of different biophysical
products can also improve the cognition of the uncertainty of land surface models. Given
that these products are often combined with various satellite data as input parameters
into the land surface models, the credibility of results is crucial for users when GLASS
products are assimilated together into a land surface model. Therefore, the systematic
and reliable identification of phenology and interannual variations of surface vegetation
using multiple GLASS products at large spatiotemporal scales is of great significance to
clarify the patterns of spatial and temporal processes in typical mountain areas, and these
activities can also promote the effective deployment of sustainable management strategies
for mountain ecosystems.

4.2. Mismatches of Long-Term Variations and LSP among LAI/FVC/GPP

We find a significant positive tendency on surface vegetation over the northeastern and
northwestern TRSR during the last 20 years, which is consistent with one recent study [9].
However, there exists a large mismatch between FVC with other two products, regardless
of LSP detection, interannual trend, and correlation. These phenomena may be caused
by the influences of combinations of various factors, such as the algorithms and effects of
climate or other environmental factors.

Firstly, all these biophysical variables are typical indicators used to characterize the
growth status of green vegetation; FVC and LAI can also be linked by the Beer–Lambert
equation, theoretically [54,55]. Yet, FVC is not a proxy of LAI or GPP, as environment
and human activities may restrain the process of green vegetation carbon sequestration
over a long period. A recent study conducted in the Amur River basin also indicates a
much weaker rise in GPP growth rate when compared with the FVC, partly due to the
influences of environmental factors (e.g., warming-induced drying) [3]. In addition, current
retrieval algorithms of those products are mostly designed to acquire a single variable
from remote sensing observations. Thus, various parameters are retrieved from different
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models and schemes based on various physical assumptions [56]. These parameter-specific
approaches ignore the physical connections between the various datasets, resulting in a
difference among different time-series biophysical products even if they are estimated
from the same remote sensing data. Lastly, we observe good agreements between LAI
and GPP in the TRSR. The reason may be explained by LAI having significant effects on
the GPP estimations in the revised EC-LUE model [33,57]. More specifically, the absorbed
photosynthetically active radiation (APAR) by green leaves is an important parameter in
the revised EC-LUE model, while LAI is critical in the calculation of APAR.

Note that we find the LSP metrics and long-term changes of the three products
perform better on homogeneous surfaces (i.e., high RVP level) and flat terrain (i.e., low
TNI level). This phenomenon may be explained by the fact that the pixels with high
RVP or TNI values are usually located at high altitudes in the TRSR, and the climatic
warming-induced drying may significantly affect vegetation growth and carbon uptake
at high elevations [20]. In addition, the estimation of vegetation phenology at the pixel
level remains a large uncertainty and can reach approximately ±20 days, especially in
high-elevation areas [44]. Both the effects of species composition [45] and the frequency and
mixture of species present in each pixel [46] contribute to high variability in phenological
estimations. More specifically, the spatial resolution of satellite products used in our study
is 500 m, and the pixels are generally not composed of a homogeneous ground biome
type, but a mixture of several classes. The pixels, therefore, are not a single but mixed
reflections of spectral features of several ground communities [58]. The heterogeneous
pixels may have a significant negative effect on the accurate retrieval of global biophysical
products, whereas the current algorithms of GLASS products do not consider the mixed
characteristics of pixels.

On the other hand, the quality of satellite products becomes poor as the topographic
complexity increases. Firstly, local topography may cause the frequent occurrence of climate
change so that reflectance data in these regions often receive contaminations from aerosols,
clouds, and snow [59]. Fortunately, the surface reflectance data are reprocessed to remove
the influences of extreme climatic change before inputting the algorithm [35]. The rugged
surfaces also influence the irradiance and bidirectional reflectance distribution function
(BRDF) of optical satellite images [60]. Significant differences exist in the solar irradiance
received by areas with different slopes. Furthermore, the rugged surfaces result in the
raised angular variations between the satellite sensors and the sun, which may further
increase the complexity of BRDF and bring high uncertainties in data quality [61].

Overall, the LSP and long-term variations inferred from LAI, FVC, and GPP display
strong spatial heterogeneity with diverse spatial patterns, especially at high altitudes in the
TRSR. Commonly, this phenomenon is the comprehensive consequence of climate stress,
anthropogenic influence, and differences of retrieval algorithms for different products.
The mechanisms behind this phenomenon need further research to better understand and
improve the predictions of mountain vegetation activity under different climate scenarios
in the future.

4.3. Limitations and Prospects

As far as we know, this study is the first to analyze the performances of different
biophysical products in the TRSR region both in terms of LSP detection and long-term
changes; however, it must be emphasized that the regression model and Spearman correla-
tion coefficient used in this study are statistical analyses, whereas statistical analyses are
methods to objectively calculate the linear relationship between time variables and vege-
tation growth. Several studies [62,63] give evidence that the correlations and responding
mechanisms between ecosystem and natural variation are nonlinear, which highlights the
potential defect of linear statistical analysis. This limitation may be overcome by correctly
and appropriately adopting process-based ecosystem models in further studies.

Our study also indicates the high mismatch of LSP metrics observed in areas with
highly rugged surfaces or landscape fragmentations. Given the highly surface hetero-
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geneity and topographic complexity, the inversion accuracy of GLASS products should
be enhanced. Particularly, the high uncertainties of surface reflectance data limit latent
development of the algorithms of biophysical products, and subsequently influence the
performance of LSP retrievals of GLASS products over mountain areas. The improvement
of retrieval algorithms with topography and heterogeneous surface in consideration will
help to improve the inversion accuracy [32]. Furthermore, coarse-resolution pixels will
greatly increase the uncertainties of spectral information, which would propagate into the
production of global products. Paradoxical conclusions may arise from integrated analysis
by end-users using multiple time-series satellite products, which poses a challenge for
reliable monitoring and attribution in LSP and vegetation dynamics over some special
environments. Thus, it is an imminent study to develop various satellite products with finer
resolution (e.g., 30 m or even higher) over heterogeneous surfaces and complex terrains.

Overall, the disproportionate increase between vegetation greening trend, represented
by FVC, with vegetation carbon sequestration indicates that the climatic conditions and
human activities in the TRSR may hinder the conversion of vegetation greening to a
carbon sink. Therefore, we emphasize that the existing natural vegetation in the TRSR
needs to be further protected. The time-series analysis based on a single product may not
be directly considered as a convincing result when exploring the long-term changes of
vegetation, carbon, and water cycles in the TRSR. Hence, we propose the application of a
complementary combination of simulation data based on climate and human impacts with
multiple products as a new attempt for tendency analysis, which may greatly improve the
interpretation and attribution of vegetation trends.

5. Conclusions

In this study, the time-series characteristics of three GLASS products (LAI, FVC, and
GPP) were assessed based on the tendency, correlation, and phenological retrieval methods
during 2000 to 2018 in the TRSR. Moreover, the performances of these products over
different surfaces and terrain were analyzed. We found that three products reasonably
displayed the vegetation phenological characteristics and their interannual variations across
TRSR. Nevertheless, the phenological differences between FVC and two other products
were larger than 10 days in more than 35% of pixels in the study area, and the proportion
of large differences of LSP between GPP and LAI was only 10%. Moreover, we proved that
the long temporal variations of FVC were significantly different from LAI and GPP in the
TRSR from 2000 to 2018. The significant positive trends of LAI and GPP (~5%) were much
weaker than those in the FVC (~17%). Note that the poor performances of LSP metrics and
long-term changes were observed at the regions with heterogeneous land cover (i.e., low
RVP level) and rugged surfaces (i.e., high TNI level). This demonstrates that the complex
effects of both the algorithm and the environmental factors at high elevation can cause a
high degree of difference in the time-series performances of different products.

In brief, this research highlights the potentiality of joint application of GLASS products
for observing vegetation characteristics and regional carbon dynamics in mountainous
areas. The intercomparison of different time-series products is crucial for not only the recog-
nition of the relationship between vegetation greening and the carbon cycle in mountainous
areas, but also the refinement of the retrieval algorithm of global products over mountain
areas. In the future, we will evaluate the performance of various biophysical products with
high spatial resolution and utilize the process-based models to assess vegetation dynamics
at global or regional scales.
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