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Abstract: Identification and mapping of various habitats with sufficient spatial details are essential to
support environmental planning and management. Considering the complexity of diverse habitat
types in a heterogeneous landscape, a context-dependent mapping framework is expected to be
superior to traditional classification techniques. With the aim to produce a territory-wide habitat
map in Hong Kong, a three-stage mapping procedure was developed to identify 21 habitats by
combining very-high-resolution satellite images, geographic information system (GIS) layers and
knowledge-based modification rules. In stage 1, several classification methods were tested to produce
initial results with 11 classes from a WorldView-2/3 image mosaic using a combination of spectral,
textural, topographic and geometric variables. In stage 2, modification rules were applied to refine
the classification results based on contextual properties and ancillary data layers. Evaluation of the
classified maps showed that the highest overall accuracy was obtained from pixel-based random
forest classification (84.0%) and the implementation of modification rules led to an average 8.8%
increase in the accuracy. In stage 3, the classification scheme was expanded to all 21 habitats through
the adoption of additional rules. The resulting habitat map achieved >80% accuracy for most of the
evaluated classes and >70% accuracy for the mixed habitats when validated using field-collected
points. The proposed mapping framework was able to utilize different information sources in a
systematic and controllable workflow. While transitional mixed habitats were mapped using class
membership probabilities and a soft classification method, the identification of other habitats benefited
from the hybrid use of remote-sensing classification and ancillary data. Adaptive implementation of
classification procedures, development of appropriate rules and combination with spatial data are
recommended when producing an integrated and accurate map.

Keywords: Multi-stage approach; post-classification modification; habitat mapping

1. Introduction

Identification and mapping of natural and artificial habitats can serve as the basis
for assessments of biodiversity and ecosystem services, thus supporting environmental
planning and management [1,2]. By reflecting changing ecological patterns at different
spatial and temporal scales, habitat mapping provides baseline data to understand potential
anthropogenic pressures and establish conservation policies [3,4]. Compared to traditional
field surveys, remote sensing offers a cost-effective, rapid and repeatable option for habitat
mapping, as it provides a synoptic view of phenomena on the ground continuously and
consistently from a wide range of sensors with various spatial and spectral resolutions [5,6].
Medium-resolution imageries, such as those from Landsat satellites at a spatial resolution of
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30 m, have been used to produce land cover products on regional and national scales [4,7].
By contrast, these datasets were argued to be lacking sufficient spatial and thematic details
for effective monitoring by local governments and communities [2,8]. Very high-resolution
(VHR) imageries (pixel size <5 m) potentially enable fine-scale mapping of small habitat
patches in spatially heterogeneous landscapes that can meet the demand of end-users [9,10].

Despite the well-established benefits of VHR satellite images [11], their applications
to map habitats over large geographical areas are uncommon [12,13]. In addition to the
time and cost requirements, several challenges to extract information from multiple scenes
were discussed in [14,15], including image acquisition, pre-processing, spatial diversity
and temporal heterogeneity. Nagendra et al. [8] added that provision of too much detail
in VHR images can decrease the accuracy in their classification. Furthermore, current
applications of VHR images often focused on distinctions within specific physiognomic
types, such as tree species [16], forest health [17] and grassland mapping [18,19]. In Hong
Kong, existing habitat mapping exercises using VHR images also concentrated on small
areas in a country park [20,21] or wetlands in a nature reserve [22,23]. A territory-wide and
seamless characterization of all major habitat types with sufficient spatial details, providing
an integrated view of the entire mosaic for local environmental management [24], is lacking
in many cities.

To map land cover patterns from satellite observations, various classification methods
have been gaining considerable attention including several relatively mature machine learn-
ing algorithms [25,26]. For instance, support vector machine (SVM) [27] and random forest
(RF) [28] are well-known classifiers that achieve promising results in the literature [29,30].
Object-based classification also emerged as a popular approach using segmented image
objects as the classification unit, which is expected to be of most benefit when a habitat
area is divided into many pixels in VHR images [12,31]. Nevertheless, there is no clear
consensus on the performance of classification methods for all purposes. While compara-
tive studies have shown the best performances could be obtained from different classifiers
when applied to different datasets [25,32], they argued that the choice of optimal algorithm
is case-specific, and evaluation of multiple methods is recommended [33]. Besides the
classification algorithms, the results can be dependent on several crucial steps in the map-
ping process such as characteristics of the study area, classification scheme, characteristics
of data sources, use of different types of variables and ancillary data [34,35]. Specific to
the scope of this study, it remains unknown which mapping procedure and classifier can
be efficient for large data volume, robust to small pixel size in VHR image and able to
distinguish subtle habitat differences.

Compared to the use of different elements in a single classification process, a multi-
stage mapping approach is examined to a lesser extent. By separating different land cover
types into a series of sub-classifications, the final results were found to be better than direct
classifications of all classes [36,37]. Some scholars adopted a similar idea of a hierarchical
classification framework, which usually identifies several main classes in the first level and
gradually distinguishes different subtypes of classes within each main class [7,38]. Another
attractive but also less investigated way to improve the mapping results is to apply post-
classification modification rules with thematic layers in a geographic information system
(GIS), such as terrain, land use, climatic and geological data [39,40]. The combination of
remotely sensed and ancillary data through knowledge-based rules was demonstrated to
provide contextual information that could enhance the classification accuracies [41–43].

In the context of habitat mapping, it was argued that habitat mapping is less straightfor-
ward and much harder to undertake compared to the delineation of land cover classes [8,44],
but it was also suggested that decision rules can be developed to translate land cover maps
to habitat categories based on different criteria [10,45]. Considering the complexity of di-
verse habitat types which makes it difficult for automated image classification to be optimal,
a dedicated and context-dependent classification framework is expected to be superior to
traditional classification techniques [46]. To date, there has been little work on the combina-
tion of a multi-stage mapping approach with a local GIS database for a habitat mapping
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exercise. In particular, although it is possible to infer habitat and ecological properties
indirectly from land cover categorization and spatially referenced information [3,14,45],
a multi-stage framework from VHR satellite images to end products in city-scale is not
yet available.

The major objective of this study is to produce a high-resolution territory-wide terres-
trial habitat map for Hong Kong, a city with heterogeneous landscapes and high biodiver-
sity. A multi-stage approach was developed to facilitate effective mapping of diverse habitat
classes through the integration of VHR satellite image, GIS database and post-classification
rules. In the first stage, initial classification was performed on a 2 m WorldView-2/3 im-
age to map several classes with a variety of variables and classification methods. In the
second and third stages, modification procedures were adopted with GIS data and spatial
relationships to identify further habitats and produce the final results. Specifically, this
study aimed to evaluate (i) the performance of different classification methods, (ii) the
potential improvement provided by post-classification rules compared to initial results,
and (iii) the effectiveness of the proposed multi-stage approach especially in identifying
complex habitats such as transitional ecotones and those related to human activities. This
suite of processing techniques was incorporated to provide the best solution in this specific
study context. Through collaboration with local ecologists and policymakers, the mapping
products were also believed to be of practical significance for future planning of the city.

2. Materials and Methods
2.1. Study Area

Hong Kong, a city with around 1110 km2 land area, lies at the northern limits of
the Asian tropics between latitudes 22◦08′ N and 22◦35′ N and longitudes 113◦49′ E and
114◦31′ E. The climate is subtropical, with hot wet summer and cool dry winter. Located
on the coast of South China Sea, the city has more than 700 km of coastline and more than
200 offshore islands. The terrain is mountainous and rugged, with the landscape rising
from sandy beaches and rocky foreshores to the highest point of 957 m at Tai Mo Shan
in the New Territories. Roughly 60% of the land areas are covered by natural terrain and
about 40% of land is designated as protected areas.

Despite the small territory size and the densely populated urban environment, the
topography and subtropical climate nurture a wide range of habitats in Hong Kong to
support rich biodiversity with more than 3300 species of vascular plants [47]. While local
studies suggested that natural succession and afforestation projects have brought rapid
changes in the woodland–shrubland–grassland continuum in past years [21], urbanization
and anthropogenic activities were identified as threats to some priority habitats [47]. In
view of the conservation challenges, the Hong Kong government has recently formulated
the first city-level Biodiversity Strategy and Action Plan [48] and one of the specific actions
is to improve our knowledge by compiling an updated territorial habitat map.

The study area comprises the entire 1110-km2 terrestrial area in Hong Kong (Figure 1).
The climax vegetation belongs to evergreen broadleaf forest of the subtropical flora, but due
to massive clearance during the Second World War, the majority of the existing vegetation
including secondary forest is developed from tree planting and natural succession in
the latter half of the 20th century [49]. The major types of vegetation in Hong Kong are
woodland, shrubland and grassland, while other habitats are found in relation to freshwater
and coastal environments.
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Figure 1. (a) The study area of this study; (b) location of Hong Kong in East Asia.

2.2. Data
2.2.1. WorldView-2 and -3 Satellite Image

VHR images from WorldView-2 and -3 satellites with eight multispectral bands at
2 m spatial resolution were used as the major data source. The high spatial resolution
provides sufficient resolving power for relatively small features in the study area. In
addition to the four conventional bands (Blue, Green, Red, Near-infrared), WorldView-2
and -3 provide four new spectral bands (Coastal blue, Yellow, Red Edge, Near-infrared 2)
which were proved to be effective in vegetation studies [16]. Two strips of WorldView-3
imagery acquired on 22 September 2019 and three strips of WorldView-2 imagery acquired
on 14 December 2019 were combined to achieve complete cloud-free coverage of the study
area (Figure 2). The two WorldView satellites bear strong resemblances to each other and
the similar acquisition dates ensure consistency in illumination and surface conditions.
Table 1 shows the scene ID and acquisition parameters of each image. The raw images
were ortho-rectified using ground control points with sub-pixel accuracies and converted
into surface reflectance values using ATCOR-3 (Atmospheric and Topographic Correction)
model [50] in PCI Geomatica 2018, followed by mosaicking into a single image.

Table 1. Information of the WorldView-2 (WV-2) and -3 (WV-3) images acquired for this study.

Strip Satellite ID Date Off Nadir (◦) Target Azimuth (◦) Coverage Area (km2)

1 WV-3 10400100528D3800 22 September 2019 23.0 128.4 236
2 WV-3 1040010052065F00 22 September 2019 24.3 114.0 547
3 WV-2 10300100A19B0600 14 December 2019 7.8 327.0 651
4 WV-2 103001009D694A00 14 December 2019 12.6 353.8 697
5 WV-2 103001009C0BA500 14 December 2019 17.3 2.2 180
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Figure 2. Mosaic of the satellite image consisted of five strips of WorldView-2 and -3 images used in
this study.

2.2.2. Field Survey

To collect reference data for training and accuracy assessment, 45 days of field surveys
were carried out from 13 January 2020 to 1 February 2021. Considering the heterogeneous
landscape in Hong Kong, the routes were planned with reference to an existing land
utilization map [51] to facilitate selection of points covering various habitat types. Stratified
random sampling was first performed to identify regions of interest from the existing
map according to different land uses, followed by formulation of survey routes that could
include diverse habitats within a feasible distance and cover different parts of the territory
with various altitudes.

The actual survey points were carefully selected during the survey, satisfying criteria
including uniform spatial coverage and high representativeness of specific habitat types
and sufficient distance from other survey points. A 10 × 10 m area was adopted as the
mapping unit in the field [52]. The position of each survey point was recorded using a
survey-grade Trimble R10 GNSS system with sub-meter accuracy. Local plant experts were
included in the survey team to visually examine the sites and identify the habitat types
according to the classification scheme (Section 2.3). Supplementary information related
to each site such as vegetation condition and species composition was also investigated
and recorded.

A total of 938 points were collected in all field surveys. Although the survey points
were selected along accessible routes [52], each habitat type was represented by adequate
numbers of points with large ranges of spatial and structural variabilities over the study
area. Spatial distribution and summary of the survey points are shown in the supplemen-
tary materials (Figures S1 and S2; Tables S1 and S2). We used 283 survey points as training
data while the remaining 655 points were used as validation data.

2.2.3. Geographic Information System (GIS) Database

In addition to the satellite image, ancillary layers from existing local GIS databases
(Table 2) were included to provide supplementary information in the mapping procedures.
For example, a high-resolution digital elevation model (DEM) was obtained from an
airborne LiDAR survey covering the whole territory in 2011 [53]. Some of the GIS layers,
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such as coastline, cultivated land and urban parks, were extracted as shapefiles from the
iB5000 digital topographic map maintained continuously by the Survey and Mapping
Office under the Lands Department of the Hong Kong government [54]. A few datasets
were also provided by the Agriculture, Fisheries and Conservation Department of the
Hong Kong government, including tree planting records and locations of seagrasses, which
were both gathered from long-term monitoring programmes. The GIS databases had been
updated within 1 year of the WorldView image acquisition and could facilitate integration
for temporal analysis, except for the LiDAR data for which negligible changes in the terrain
were assumed. The use of these GIS layers would be described in later sections.

Table 2. List of ancillary local geographic information system (GIS) data applied in this study. The
reference dates refer to dates of light detection and ranging (LiDAR) data collection (for DEM), image
acquisition (for artificial hard shoreline) and last update dates of the GIS database (for other layers).

Layer Source Reference Date

Digital elevation model (DEM) Airborne LiDAR survey (Civil Engineering and Development
Department of Hong Kong Government) [53]

1 December 2010–
8 January 2011

Coastline

iB5000 digital topographic map (Survey and Mapping Office,
Lands Department of Hong Kong Government) [54] 23 January 2019

Cultivated land

Urban park

Pond

Reservoir

Tree planting record Agriculture, Fisheries and Conservation Department of Hong
Kong Government

30 April 2019
Seagrass

Building shadow In-house computation from building height and solar angle at
image acquisition time 23 January 2019

Artificial hard shoreline Manual digitization from satellite image 22 September 2019–
14 December 2019

2.3. Classification Scheme

Previous studies in Hong Kong have suggested that classification schemes for sub-
tropical regions are not well developed and the selection of classes would need to be study
area-specific [20]. Habitat mapping in Hong Kong in earlier periods have developed a
classification scheme with 34 different categories, which were digitized through visual
interpretation of aerial photographs [55]. Later updates of the map simplified the scheme
to 24 habitat classes to facilitate mapping using satellite images and automated classifica-
tion [56]. This study followed the classification scheme used in [56] and further revised it
to 21 habitat categories (Table 3) based on multi-disciplinary expertise from local ecologists
and remote-sensing experts. Similar to other studies in this region [20,21], habitats were
classified mainly based on structural characteristics, since current vegetation in Hong Kong
has been developed mainly through structural succession [47]. Habitats located in the
intertidal zone were also included in the classification scheme and mapped in this study
according to the satellite observation.

Table 3. Habitat classification scheme and definitions adopted in this study.

Habitat Definition

Woodland Rural lands mainly covered by tree species.

Shrubland Rural lands mainly covered by shrub species.

Grassland Rural lands mainly covered by grass species.
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Table 3. Cont.

Habitat Definition

Rural plantation Rural lands mainly covered by woody plants and the top canopy is dominated by manually
planted species in an organized and systematic way.

Marsh/reed bed Lands, including abandoned agricultural land, covered with shallow waters and dominated
by hydrophytes seasonally or all year round.

Mangrove Coastal lands covered by true mangrove plant species.

Seagrass bed Coastal lands covered by seagrass species.

Soft shore Coastal lands of fine-grained sediment (i.e. sand, silt or finer particles) between high and
low tide marks.

Natural rocky shoreline Coastal lands of rocks between high and low tide marks.

Bare rock/soil Natural open rock faces or disturbed lands, or "badlands" denuded of vegetation.

Natural watercourse Rivers and streams experiencing natural flow patterns in unchanneled watercourse beds
and banks.

Modified watercourse Channelized rivers and streams, which are often without natural banks and beds, and are
not subject to natural flow patterns (e.g., drainage channels and nullahs).

Reservoirs Artificial lake used as a source of water supply.

Artificial hard shoreline Man-made intertidal hard shore habitats (e.g., seawalls, jetties, groins and piers).

Artificial ponds Small artificial water bodies constructed for the aquaculture purpose (e.g., gei wai
and fishponds).

Agricultural land Lands currently under cultivation, and lands not currently under land cultivation and yet to
transform into other habitats such as marsh/reed bed.

Green urban area Urban lands undergone artificial greening for various purposes (e.g., golf area courses,
urban parks, and vegetation on the roadside).

Other urban area Lands occupied by urban, other highly modified habitats (e.g., quarry, landfill) or industrial
storage/containers.

Woody shrubland Rural lands covered by a mixture of wood and shrub species and each of them occupies at
least 1/3 of the coverage.

Shrubby grassland Rural lands covered by a mixture of shrub and grass species and each of them occupies at
least 1/3 of the coverage.

Mixed barren land Rural lands covered by a mixture of grass and bare rock/ soil and each of them occupies at
least 1/3 of the coverage.

2.4. Multi-Stage Mapping Approach

In this study, a three-stage procedure was designed to map 21 habitats in separate
stages based on their characteristics (Figure 3). In the first stage, initial classification
results were produced from the WorldView-2/3 image mosaic with 11 distinctive categories
which are shown in the first column of Figure 3. The initial results were modified into a
classification map with 10 classes in the second stage and further transformed into a habitat
map with 21 classes in the last stage, through modification procedures with GIS data and
spatial relationships. The modification rules included spectral, topographic, relational,
class probability and ancillary data rules, which would be explained in corresponding
stages (Sections 2.6 and 2.7). A minimum mapping unit (MMU) of 100 m2 (25 pixels) was
also defined by considering the level of image details and size of habitats observed in
the field.
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Figure 3. The three-stage classification framework adopted in this study.

2.5. Stage 1: Initial Image Classification

In the first stage, both pixel-based and object-based supervised classification ap-
proaches were used [31] to identify the optimal classification result. In object-based ap-
proach, large-scale mean-shift segmentation in Orfeo Toolbox [57] was applied to segment
the image. Two segment sizes were adopted in this step to derive information in different
scales as suggested in [58], including a size of 20 pixels to delineate fine-scale features
similar to the defined MMU and a coarser size of 80 pixels to depict larger habitats.

2.5.1. Variables

Besides the spectral reflectance values from the WorldView-2/3 bands, another set of
variables was generated from spectral and spatial domains as classification inputs.

Spectral indices—many spectral indices can be calculated by combining the reflectance
at two or more wavelengths. In this study, several indices (Table 4) which are able to
quantify vegetation characteristics and adopted in similar studies [59,60] were selected,
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including the Normalized Difference Vegetation Index (NDVI) [61], Enhanced Vegetation
Index (EVI) [62] and Green Normalized Difference Vegetation Index (GNDVI) [63]. Two
indices aimed to utilize the availability of red-edge band in WorldView-2/3 images [59],
including the Red Edge Normalized Difference Vegetation Index (RENDVI) [63] as well as
the Modified Chlorophyll Absorption in Reflectance Index (MCARI) [64].

Table 4. Spectral indices used as classification variables.

Variable Equation Reference

Normalized Difference Vegetation
Index (NDVI)

NIR1−Red
NIR1+Red [61]

Enhanced Vegetation Index (EVI) 2.5× NIR1−Red
NIR1+6×Red−7.5×Blue+1 [62]

Green Normalized Difference Vegetation
Index (GNDVI)

NIR1−Green
NIR1+Green [63]

Red Edge Normalized Difference Vegetation
Index (RENDVI)

RedEdge−Red
RedEdge+Red

[63]

Modified Chlorophyll Absorption in
Reflectance Index (MCARI) [(RedEdge− Red)− 0.2× (RedEdge− Green)]× RedEdge

Red
[64]

Textures—grey level co-occurrence matrix (GLCM) is a second-order metric computing
the local variation of pixel values with surrounding pixels. Principal component analysis
was first performed on the image to extract the first principal component as the basis to
compute GLCM [65]. Since GLCM can be computed by moving a window size in four
directions (0◦, 45◦, 90◦, 135◦), an average of all directions was used to accommodate features
with varying shapes [66]. Eight GLCM statistics can be calculated in ENVI 5.5 software.
To identify suitable statistics and window sizes, a preliminary analysis was performed by
evaluating the importance scores of all statistics from 5 × 5 to 15 × 15 window sizes using
cross-validations of field survey data. Based on the results, a total of 10 GLCM features
were adopted in this study, including mean (13 × 13, 15 × 15), contrast (11 × 11, 13×13,
15 × 15), dissimilarity (15 × 15), entropy (15 × 15) and correlation (7 × 7, 9 × 9, 15 × 15).

Terrain—topographic variables were computed from the 2 m DEM using ArcMap
10.5.1. The variables included slope and aspect, both in degree units.

Geometry (object-based only)—geometric properties were also computed for each seg-
mented object in object-based classification, including area, compactness and rectangularity.
Compactness and rectangularity were calculated as the ratios of segment areas to the areas
of minimum bounding circle and rectangle [67], which had the largest values when the
object was a circle and a rectangle, respectively.

For object-based classification, spectral statistics for each segmented object were gen-
erated from the underlying pixels. The variables included mean and standard deviation,
characterizing average values and variations within the objects. The numbers of variables
included in pixel- and object-based classification were 25 and 47, respectively (Table 5).

Table 5. List of variables used in pixel- and object-based classifications.

Classification Type Description Number of Variables

Pixel-based
classification

Spectral bands WorldView-2/3 bands (Coastal blue, Blue, Green,
Yellow, Red, Red-edge, Near-infrared [NIR]-1, NIR-2) 8

Spectral indices NDVI, EVI, GNDVI, RENDVI, MCARI 5

Textures Grey level co-occurrence matrix (GLCM) features 10

Terrain Slope, Aspect 2

Total: 25
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Table 5. Cont.

Classification Type Description Number of Variables

Object-based
classification

Spectral band statistics

Means and standard deviations of eight bands at 20
segmentation scale 16

Means and standard deviations of eight bands at 80
segmentation scale 16

Spectral indices Means and standard deviations of five spectral indices 10

Terrain Slope, Aspect 2

Geometry Area, Compactness, Rectangularity 3

Total: 47

2.5.2. Training Data

Training data used in the classification process were obtained from part of the field
survey described in the previous section as well as visual interpretation of the satellite
image. While the field surveys focused more on vegetated habitats which could be difficult
to accurately select by viewing the satellite image, visual interpretation served as an efficient
way to add a complementary set of spatially well-distributed training data especially in
inaccessible areas and create balanced data for all classes.

The same set of training sites was applied to both pixel- and object-based classifications
to ensure consistency for comparison. Underlying pixels were used as training data in a
pixel-based approach while intersected segmented objects were used in an object-based
approach. The training dataset included 16,035 pixels (10,135 from field survey and 5900
from visual selection) for pixel-based and 836 objects (485 from field survey and 351 from
visual selection) for object-based classifications. The difference in numbers was due to the
transformation of each site (usually 10 × 10 m) to dozens of pixels with only a few objects.
Detailed distribution of the training dataset in different classes are provided in Table S3
and Figure S3.

2.5.3. Classification Algorithms

For both pixel- and object-based classifications, two promising machine learning
algorithms, SVM and RF, were applied to obtain the mapping results. SVM is a non-
parametric classification algorithm with no assumption on the data distribution and the
objective of SVM is to create hyperplanes to separate the dataset into classes [27]. SVM
implemented in e1071 package in R 3.6.3 [68] was adopted in this study with radial basis
function kernel. The package provides a tune.svm tool to find the best gamma and costs
parameters through cross-validation. A 10-fold cross-validation was applied to find the
optimal set of gamma from 0.015625 (2−6) to 4 (22) and cost from 0.5 (2−1) to 128 (27). Based
on the results, gamma = 0.5 and cost = 8, as well as gamma = 0.03125 and cost = 16, were
chosen to compute the pixel- and object-based SVM models, respectively.

RF is an ensemble classification technique, which combines hundreds of decision trees
and decides the final output class by the majority vote [28]. Randomization is involved in
RF models including the construction of each decision tree with part of the training samples
and a random subset of predictor variables to determine the tree split conditions [69]. RF
implemented in randomForest package in R [68] was adopted. The required parameters
included the number of classification trees (ntree) and the number of predictor variables
used in each split (mtry). The default ntree of 500 trees was applied. For mtry, a 10-fold
cross-validation was used to select the optimal value from 1 to 15. The selected mtry values
were 8 and 11 for the pixel- and object-based RF models, respectively.

2.6. Stage 2: Rectification of Misclassified Pixels

The initial classification results obtained from the above procedures were then modi-
fied using modification rules (Table 6). Similar to the practice in [41–43], this set of rules
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aimed to refine misclassified pixels according to the contextual and spatial relationships
with other classes and ancillary data layers. Four types of knowledge-based rules, includ-
ing spectral, topographic, relational (e.g., distance from the sea) and ancillary data rules
(e.g., overlap with vector) [5], were developed from known ecological characteristics of
the habitats. To identify the expected areas of divergence, the rectification of some classes
could comprise multiple rules spanning several categories.

Table 6. Modification rules used in stage 2 to rectify misclassified pixels.

Rule From Class Type Criteria To Class Objective

1
Natural rocky
shoreline OR

Soft shore

Topographic,
relational

Distance from coastline
> 50 m OR Terrain

height > 5 m

Bare rock/ soil OR
Other urban area

Merge rocky/ soft shore regions
located in highland to adjacent

bare or urban area

2 Mangrove Topographic,
relational

Distance from coastline
> 2000 m OR Terrain

height > 5 m

Woodland OR
Shrubland

Merge mangrove regions located
in highland to adjacent woodland

or shrubland

3 Marsh/ reed bed Topographic Terrain height > 5 m Grassland Rectify marsh/ reed bed regions
located in highland to grassland

4 Water Spectral,
ancillary data

GNDVI > 0.3 OR
Intersect with building

shadow layer
Shadow Rectify water pixels to shadow

based on spectral index

5 Other urban area
OR Shadow Ancillary data Not located inside

coastline layer Water Rectify pixels outside land area
to water

6 Shadow Relational All Class of the nearest
neighbour

Rectify shadow pixels (including
those generated in Rule 4) to

nearby classes

7 All Relational Area < 100 m2 (25 pixels)
Class of the nearest

neighbour

Eliminate regions with areas
smaller than minimum mapping

unit (MMU)

Specifically, Rules 1–3 removed coastal habitats located in the highland area according
to coastline layer and terrain height. Thresholds were set based on field survey observations
that all these habitats appeared in the lowland area with terrain height below 5 m (Table
S1). The threshold distances from the coastline were also determined by analysing the
survey site locations. Rules 4–5 aimed to reduce confusion between shadow and water
pixels using the building shadow layer, coastline layer and a spectral threshold set by trial
and error, followed by Rule 6 to replace shadows with neighbouring classes. Rule 7 was
related to the MMU and aimed to remove the salt-and-pepper effects by merging isolated
pixels with neighbouring classes. Figure 4 illustrates a sub-area of the classification map
before and after applying this set of rules. It should also be noted that while the explicit
rules and thresholds were customized for this context, local knowledge and data would be
necessary to develop appropriate rules when applied in other study areas.

2.7. Stage 3: Production of Habitat Map

While the above process generated classification maps with only 10 classes, post-
classification methods here aimed to expand the scheme to all 21 defined habitats.

2.7.1. Generation of Mixed Habitat Classes

The classification scheme used in this study included three mixed habitats, namely
woody shrubland, shrubby grassland and mixed barren land. A method to generate these
classes was developed based on a fuzzy set combining the probabilities belonging to
different classes for the target pixels [70]. Since the RF model provided probabilities of class
membership for each pixel indicated by the frequency of decision tree votes [16,71] and the



Remote Sens. 2022, 14, 67 12 of 27

mixed habitats were likely the transitional zone between two corresponding habitats, it
was expected that they could be identified using a soft classification approach [72].

Figure 4. A selected area of classification map before and after applying the modification rules in
stage 2; (a) initial classification result in stage 1 produced using pixel-based RF method; (b) refined
classification map in stage 2; (c) true-colour composite of the WorldView image; (d) topographic map
of the same area.

Based on this presumption, the underlying RF probability values were analysed using
the training pixels which were identified as mixed habitats obtained in the field surveys.
The mixed habitat pixels (orange points in Figure 5) were compared to random selections of
similar numbers of pixels which were classified as each of the two corresponding habitats
(green and blue points in Figure 5). The randomly selected habitat pixels served as pseudo-
absence background points [73], which were used to identify the optimal thresholds of
probability combinations. The threshold values were selected by analysing the resulting
accuracies through trial-and-error methods (yellow bounding box in Figure 5) and trans-
formed to Rules 1–3 in Table 7. The class of a pixel was modified if the probabilities of class
membership satisfied the defined criteria.

Figure 5. Illustration of development of the mixed habitat classes based on probabilities belonging to
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the pure classes as revealed by the random forest (RF) classification model; (a) classification of woody
shrubland based on woodland and shrubland probabilities; (b) classification of shrubby grassland
based on shrubland and grassland probabilities; (c) classification of mixed barren land based on
grassland and bare rock/ soil probabilities. The thresholds of probability combination were selected
by analysing the resulting accuracies through trial-and-error, i.e., maximizing the inclusion of mixed
habitat pixels (orange points) and minimizing the inclusion of corresponding habitats (green and
blue points).

Table 7. Modification rules used in stage 3 to expand from 10 to 21 habitat classes.

Rule From Class Criteria To Class Objective

1 Woodland OR
Shrubland

0.3 ≤ P(Woodland) ≤ 0.65 AND
0.3 ≤ P(Shrubland) ≤ 0.65 Woody shrubland

Create mixed habitats by
combining class

membership probabilities
2 Shrubland OR

Grassland

0.3 ≤ P(Shrubland) ≤ 0.8 AND
0.2 ≤ P(Grassland) ≤ 0.7 AND

P(Shrubland) + P(Grassland) ≥ 0.6
Shrubby grassland

3 Grassland OR
Bare rock/ soil

0.1 ≤ P(Grassland) ≤ 0.8 AND
0.05 ≤ P(Bare rock/ soil) ≤ 0.7 AND

P(Grassland) + P(Bare rock/ soil) ≥ 0.4
Mixed barren land

4 Woodland Random forest classification based on field
survey data Rural plantation Discriminate rural

plantation from woodland

5
Woodland OR

Woody
shrubland

Intersect with tree planting record layer Rural plantation
Create habitats based on

ancillary layers
6 Vegetation-

related Intersect with urban park layer Green urban area

7 Vegetation-
related Surrounded by other urban area Green urban area Create habitats based on

relational rules

8 Vegetation-
related Intersect with cultivated land layer Agricultural land

Create habitats based on
ancillary layers

9 All Intersect with seagrass layer Seagrass bed

10
Other urban

area OR Natural
rocky shoreline

Intersect with artificial hard shoreline layer Artificial hard
shoreline

11 Water Intersect with pond layer Artificial ponds

12 Water Intersect with reservoir layer Reservoirs

13 Water Surrounded by other urban area Modified
watercourse

Create habitats based on
relational rules

14 Water Not satisfying Rule 11–13 Natural
watercourse

Modify remaining
water pixels

15 Water Located outside the coastline layer No data Remove sea area

2.7.2. Expansion of Habitat Classification

Besides the mixed habitats described above, the second set of modification rules aimed
to create other new classes based on ancillary layers and expand the classification scheme
beyond the remote-sensing output (Table 7). For instance, for rural plantation habitat,
while existing GIS data covered some potential sites in the territory (Rule 5), additional
areas were identified using the satellite image with the aid of field-collected training data.
Observations in the field showed that rural plantation often differed from woodland class in
terms of species composition, hence a binary classification was chosen to separate the rural
plantation from the woodland class, using the same classification method and variables as
in stage 1 (Rule 4). A similar idea was also applied to green urban area habitat, where urban
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parks were mapped by GIS data (Rule 6) and street trees were identified by intersecting
vegetation-related class with urban areas (Rule 7). For other habitats such as agricultural
land, seagrass bed and artificial hard shoreline, corresponding ancillary layers were used
to extract these habitats from related classes (Rules 8–10). Water class in the classified
map was also separated into various habitats according to available GIS data and spatial
relationships (Rules 11–15). Figure 6 shows a sub-area of the map before and after applying
this set of modification rules.

Figure 6. A selected area of habitat map showing the results before and after applying the modification
rules in stage 3; (a) classification map with 10 classes in stage 2 produced using pixel-based RF
method; (b) habitat map with 21 classes in stage 3; (c) true-colour composite of the WorldView image;
(d) topographic map of the same area.

2.7.3. Accuracy Assessment

The mapping accuracies in different stages were evaluated using two sets of assess-
ment points. For the four classified maps in stage 1 and 2, stratified random sampling
was used to generate 770 points (Figure S4). Each point was then assigned to one of the
10 classes based on visual interpretation of the satellite image as well as supplementary
information such as aerial photographs and GIS maps, by an analyst with local knowledge
and an ecological background. To investigate the effectiveness of the post-classification
process, the randomly sampled points were applied to both classification results before
(stage 1) and after (stage 2) applying the first set of modification rules. For the habitat map
produced in stage 3, the accuracy was assessed using the validation set of field survey
points consisting of most of the habitats.

Several commonly used statistics were computed to report the performances, including
producer’s accuracies (PA) and user’s accuracies (UA) for each class and overall accuracies
(OA) of the map [74]. The Kappa coefficient was also calculated as a widely adopted indica-
tor of classification performance eliminating bias from chance agreement [75]. Considering
the sampling variability caused by the small and uneven distribution of assessment points
for some habitats, a confusion matrix of estimated area proportions was constructed to
statistically calculate the standard error associated with each class, and then quantify the
95% confidence intervals of PA, UA, OA and area estimates using the error-adjusted area
estimator, according to the methods suggested by [76,77].

3. Results
3.1. Classification Maps and Accuracies

Classification results obtained from the four classification methods achieved OA from
76.0% to 84.0% after the first set of post-classification modification rules were applied, with
corresponding Kappa statistics ranging from 0.73 to 0.82 (Table 8). The highest OA was
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obtained from pixel-based RF classification (84.0% and 0.82 Kappa). While object-based
SVM and RF classification methods obtained similar OA (76.6% and 77.1% respectively),
pixel-based SVM classification performed the worst with 76.0% accuracy. Before the
application of modification rules, the accuracies were between 67.7% and 73.1%, which
suggested that this set of modification rules were able to rectify the misclassified pixels and
resulted in an average increase of 8.8% in OA.

Table 8. Overall accuracies (OA) and Kappa statistics of the four classification methods, including
pixel-based support vector machine (SVM), pixel-based random forest (RF), object-based SVM and
object-based RF. The values inside the parentheses indicate the 95% confidence intervals of the OA.

Classification Accuracy Pixel-based SVM Pixel-based RF Object-based SVM Object-based RF

OA 76.0% (±3.9%) 84.0% (±3.1%) 77.1% (±4.2%) 76.6% (±4.1%)
Kappa 0.73 0.82 0.75 0.74

OA (before rules) 67.7% (±3.6%) 73.1% (±3.5%) 69.0% (±4.8%) 68.6% (±4.6%)

When accuracies of individual classes were considered (Figure 7), woodland, shrub-
land and grassland tended to perform poorer compared to other classes and sometimes had
accuracies lower than 70%. In particular, the lower accuracies for shrubland (55.8–83.3%)
might indicate the difficulty of accurately identifying these areas covered with intermediate
levels of vegetation. For these classes, pixel-based RF classification was the only method
that could obtain all PA and UA higher than 70%, and lower accuracies were generally
obtained from object-based (52.0–71.4%) compared to pixel-based approach (60.3–86.9%)
regardless of the algorithms. Classification of coastal habitats including marsh/reed bed,
mangrove, soft shore and natural rocky shoreline was encouraging, with the majority of
accuracies higher than 80% in all methods. Satisfactory levels of accuracies, mainly 70–80%,
were obtained for bare rock/soil and other urban area classes, except in pixel-based SVM
classification where confusion between these two classes was a major source of errors. As
expected, the water class provided high PA (98.6%) and UA (89.5–95.8%) with narrow confi-
dence intervals, especially when shadows had been eliminated using the modification rules.
The classification maps and confusion matrices are provided in Figure S5 and Tables S4–S7.

Figure 7. Comparison of (a) producer’s accuracies and (b) user’s accuracies of individual class
using the four classification methods obtained in stage 2. The error bars indicate the 95% confidence
intervals of the accuracy measures. The numbers inside the parentheses indicate the numbers of
assessment points.
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3.2. Habitat Map and Accuracies

Since the highest OA was obtained from pixel-based RF classification with superior
PA and UA compared to other methods for most classes, pixel-based RF classification result
was selected as the primary dataset for further processing. The habitat map produced in
this study, consisting of all 21 habitat categories, is displayed in Figure 8, with a sub-area
shown to visualize the mapping procedures and habitat distributions.

The habitat map produced after the three-stage classification procedure was assessed
using field survey points. Considering the imbalanced numbers of survey points which
could bias the computation of OA to dominating classes, individual PA and UA of habitats
with more than 15 points were investigated (Figure 9). The complete confusion matrix is
given in Table S8.

For woodland, the PA was 84.1% and the UA was 86.7%. Shrubland had similar
UA (86.1%) but lower PA (72.9%), which was mainly caused by confusion with woody
shrubland and shrubby grassland; 85.3% PA and 81.7% UA were produced for grassland.
While the rural plantation class had slightly lower PA (75.0%) and UA (73.8%) compared to
other vegetation habitats, the accuracy was satisfactory in view of the complicated nature
of the plantation, which is illustrated in Section 4.5.

Marsh/ reed bed, mangrove and agricultural land had 100% UA and slightly lower
PA (72.2–90.5%), and misclassification mainly occurred with woodland and grassland.
Although 100% accuracies were reported, the values might not represent the actual perfor-
mance considering the limited number of reference points and the fact that survey points
were often collected in areas with uniform coverage. Further visual interpretation showed
that commission errors of these habitats happened especially in isolated patches or edges.

Figure 8. (a) The habitat map produced in this study consisting of 21 categories; (b–e) selected area
for visualizing the results at different stages of the mapping procedures; (b) true-colour composite of
the WorldView image; (c) initial classification with 11 classes in stage 1 produced using pixel-based
RF method; (d) refined classification map with 10 classes in stage 2; (e) habitat map with 21 classes
in stage 3.



Remote Sens. 2022, 14, 67 17 of 27

Figure 9. Producer’s and user’s accuracies of the habitat classes in stage 3 evaluated using field
survey points. The error bars indicate the 95% confidence intervals of the accuracy measures. The
numbers inside the parentheses indicate the numbers of assessment points.

Soft shore and natural rocky shoreline were found to have relatively high PA
(85.7–96.2%) and UA (92.3–92.6%), despite the occasional confusion that appeared between
these two habitats. Finally, the three mixed habitats had 81.0–87.5% PA and 66.2–82.4% UA.
Most of the misclassifications occurred with the adjacent vegetation types. The resulting
accuracies were slightly lower than those obtained for other vegetation classes, suggesting
higher difficulty to identify these mixed habitats from the satellite image.

Considering the uncertainty caused by sampling variability, the 95% confidence inter-
vals for larger habitats including woodland, shrubland and grassland were within 4.4–9.1%
of estimated accuracies. The confidence intervals of PA of marsh/ reed bed, mangrove
and soft shore were relatively wide, which could be attributable to the smaller numbers of
assessment points, limited coverages of these habitats in the territory and the confusion
found with other major habitats. Larger uncertainties were also found for rural planta-
tions and the three mixed habitats (95% confidence intervals = ±7.0–24.4%). Besides the
confusion with other vegetation classes, this could be further influenced by the number
of assessment points, especially for mixed barren land. Nevertheless, the lower bounds
of confidence intervals of these habitats were all higher than 60%, proving the mapping
effectiveness when the sampling variability was taken into consideration.

Overall, this study was able to achieve higher than 80% accuracy for most of the
evaluated classes and higher than 70% accuracy for the more-challenging habitats. Figure 9
evaluates 13 habitats out of the total 21 mapped classes. For the remaining habitat categories,
most of them covered only less than 1% of the area of the territory according to the map
produced (Table S9), posing obstacles for the deployment of sufficient field survey points
and quantitative analysis of the results. In spite of this limitation, we are confident in the
mapping accuracies of these habitats, since they were produced from reliable databases
and a set of logical rules. For instance, the water-related habitats were derived from the
water class in stage 2, which was found to be accurate in previous evaluation. Further
visual interpretation supported the assertion that the coverages of these small habitats
were determined largely by the ancillary layers and modification rules compared to remote-
sensing classification.

4. Discussion

A systematic three-stage classification framework was developed in this study, which
combined remotely sensed VHR satellite images, GIS layers in existing databases and two
sets of post-classification modification rules. This study has achieved the following: (i) it
translated the habitat mapping process into a straightforward and controllable workflow
with enhanced accuracies; (ii) it revealed varying performances on specific habitats using
different classification methods which could be context-dependent; (iii) it exploited many-
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to-many relationships between habitat categories through geographical data and contextual
knowledge in the post-classification phase; (iv) it presented a method to identify mixed
habitats by combining the soft probability outputs from the RF classification model; and (v)
it demonstrated the benefits of integrating remote-sensing classification and GIS data to
extract particular habitats.

4.1. Three-Stage Mapping Procedure

One of the aims of this framework was to compensate for the limitations brought
by direct attribution of spectral signatures to all habitat classes [8]. This is especially
challenging when landscapes become more heterogeneous and the numbers of classes
increase [6,78], as experienced in this study. The multi-stage classification implemented
in [79] produced an average OA of 93.2% compared to the direct use of SVM (84.4%) and RF
(83.8%) in classifying coastal wetlands, while the methods in [37] increased the accuracy of
land use classification from 85% to 94%. Similarly, this study attempted to map 21 habitats
and was able to achieve higher than 80% accuracy for most of the evaluated classes and
higher than 70% accuracy for the more-challenging habitats.

Instead of a single uniform classification method, the proposed framework separated
mapping procedures into different stages with input from ecological specialists. By trans-
lating the ecological properties into simple GIS rule-models, this semi-automated approach
allows adaptive control in different nodes of the mapping process [3,7]. Starting with some
observable and basic habitat classes in the initial classification, the procedure gradually
expanded the classes to other habitats which were further distinguished using probability
combinations, overlay operations, morphological characteristics and spatial relationships.
Compared to fully automated classifiers, this knowledge-based method incorporated ex-
pert rules from ecologists and could enhance the understanding of habitats in the map
products [19].

4.2. Selection of Algorithms during Classification Process

A key consideration in stage 1 of this framework was the selection of the optimal clas-
sification method that was suitable for the study context. In this study, two machine
learning algorithms, SVM and RF, were tested with both pixel- and object-based ap-
proaches to produce different initial results. While investigation on the variable importance
(Figure S6) illustrated that the adopted spectral, textural, topographic and geometric vari-
ables could contribute to the identification of different habitats, the contrasts in variable
importance scores among methods and the classification accuracies presented above also
indicated the intrinsic difference of the implemented algorithms.

The accuracy assessment results showed that pixel-based RF classification performed
the best in this study context. Object-based classification was generally found to yield
higher accuracies compared to the pixel-based counterpart in existing literature [31,80],
especially when applied to VHR images. However, the relatively low accuracy found in this
study was possibly due to the lower number of training objects, uncertainty emerged during
the additional segmentation step [81], the ability of pixel-based texture variables to capture
contextual relationships similar to object-based statistics [69], and the flexibility to compute
textures and represent habitats with different vertical and horizontal heterogeneity [82] as
evidenced by the importance of texture variables obtained with multiple window sizes in
pixel-based models (Figure S6).

Comparing the classification algorithms, SVM produced slightly higher accuracy than
RF when an object-based approach was adopted, which was possibly due to the lower
number of training observations in object-based models and the higher generalization
capacity of SVM [27]. Despite the promising results obtained from pixel-based RF clas-
sification for most classes, slightly higher accuracies for mangrove and marsh/reed bed
classes were obtained from object-based SVM classification. Further visual interpretation
supported the assertion that object-based SVM classification was superior in distinguishing
these two habitats, especially in coastal areas, probably due to the irregular shapes and
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small habitat patch sizes (Figure 10). Textures in pixel-based models were generated in
rectangular windows while spectral statistics in object-based models were computed from
irregularly segmented objects in each band [69]. This might affect the classification perfor-
mance of specific habitats which had irregular coverage and possessed spectral variations in
specific bands.

The investigation above indicated that the optimal algorithm can be case-dependent
and requires specific evaluation with respect to the project [25,32]. As demonstrated in
this study, selecting classification variables from different aspects and comparing multiple
classification methods could be an effective approach. This was also vital in the habitat
mapping framework since the best classification map would be used as the primary dataset
for further processing into the finalized habitat map. Besides the overall superiority, this
study also found subtle mapping differences for particular habitats. Further combination
of these classification results in the post-classification stage, such as overlay operations [83],
could be a possibility to exploit the benefits of both maps.

Figure 10. A selected wetland site including both marsh/ reed bed (Point A) and mangrove (Point B)
habitats; (a) true-colour composite of the WorldView image; (b) classification result using pixel-based
random forest (RF) method; (c) classification result using object-based support vector machine (SVM)
method; (d) photo of point A taken in the field, which is covered mainly by Phragmites australis;
(e) photo of point B taken in the field, which is covered mainly by Kandelia obovata.

4.3. Use of Information Layers and Modification Rules to Enhance Mapping Accuracies and
Expand the Classification Scheme

In the post-classification phase, expert knowledge and ancillary reference data were
first utilized to develop modification rules and refine the initial classification outcomes
(stage 2). Similarly, Manandhar et al. [39] developed knowledge-based rules by incorporat-
ing data such as land use, DEM, spatial texture and NDVI value, while Rapinel et al. [43]
attempted to reclassify misclassified objects according to context, shape and texture criteria.
In this study, spectral (band and index), landscape (texture and shape), environmental
features (terrain) and vector layers were also jointly used in designing the mapping pro-
cedures to address the characteristics of various habitat features [40,84]. Such a decision
support system underpinned the suggestion of [42] to let geographical data have a stronger
voice rather than relying on the classification parameters.
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The implementation of modification rules in this study successfully improved the OA
from 67.7–73.1% to 76.0–84.0%. This was in line with other land cover mapping studies
applying post-classification corrections with ancillary data, which resulted in improvements
in OA from 72–79% to 87–91% [39] and from 67.8–71.9% to 82.8–87.4% [40] respectively.
Since the thematic layers were gathered from reliable sources and independent from the
satellite images, they are able to provide robust contextual information and be applied to
different parts of the study area under various observation conditions.

Apart from refining misclassified areas, another major function of post-classification
rules was to expand the classification scheme to all habitat classes (stage 3). The initial clas-
sification map was combined with contextual knowledge to obtain the desired additional
habitat information. It was suggested that classes defined in different mapping domains
can be translated through one-to-many and many-to-many relationships [45]. For instance,
the water class in stage 2 was separated into several habitats in stage 3, while agricultural
land and green urban area were derived from various vegetation-related classes. The
overall process increased the number of classes from 10 in stage 2 to 21 in stage 3. Harris
and Ventura [85] described this procedure as improving the specificity of mapping results,
such as the increase of the number of urban classes from 5 to 13 by adding population and
zoning information in their study.

4.4. Soft Classification Method to Identify Mixed Habitats

Mixed habitat classes were considered as many-to-many relationships that could
be resolved through modification rules in this study. Although mixed classes were also
defined in other mapping products, they were arguably challenging to accurately map,
due to the variations in thresholds and sub-pixel heterogeneity [86]. Furthermore, the
mixed classes defined in this study were mainly ecotones representing transitional zones
from grass to forest, which are important landscape structures with distinctive ecological
functions and wildlife importance [47,70,87]. This study presented a novel method to
identify the locations of mixed habitats by combining the soft probability outputs from the
RF classification model. Instead of a traditional hard classifier, fuzzy logic was adopted to
soften the decision boundaries by allowing mixed observations to have memberships in
corresponding classes. This was followed by a defuzzification process to assign the mixed
classes according to the classification scheme and optimized probability thresholds [14,70].

By utilizing probability outputs from a modern machine learning algorithm, the
methodology adopted here extended a previous study in Hong Kong, which placed fuzzy
boundaries between shrubs and grass using simple spectral thresholds [20], and another
study that considered the co-occurrence property in ratio maps interpolated from tree
species data [88]. The proposed defuzzification step was also more suitable for thematic
map production compared to similar use of RF probabilities to estimate sub-pixel fractional
abundance in [72]. Figure 11 illustrates a sub-area showing rapid changes of vegetation
structures from grassland through shrubby grassland, shrubland and woody shrubland to
woodland in a 500 m distance along a hiking trail. The produced habitat map successfully
revealed the transitional patterns and mapped the mixed habitats as spatial intergrades
between classes. As evidenced by the low accuracies in the direct classification approach,
these mixed habitats could be easily confused with other vegetation in a single classification
model, thus this soft classification method was believed to be a better method to discern
the spatial dynamics along ecological gradients.

4.5. Hybrid Approach to Identify Rural Plantation Habitats

Remote-sensing data offer direct land cover observation but it can be hard to deter-
mine land use information without the support of external data sources. For example,
rural plantation habitat focuses on the formation process of vegetation areas by humans.
Although the planting of pioneer species such as Acacia confusa and Lophostemon confertus
has taken place throughout the territory [49], natural succession has added more native
trees and made many plantations indistinguishable [20]. Recent plantation programmes
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and enrichment schemes also tended to adopt a higher portion of native seedlings and
increase species diversity. To facilitate correct classification of the rural plantation habitat,
two sources of information were combined, namely remote-sensing classification and GIS
data (planting records) provided by the government department.

This hybrid approach led to 75.0% PA and 73.8% UA for rural plantation habitat when
validated using field-collected points. Among the correctly identified points, two-thirds
were obtained from the classification and the remaining one-third were contributed from
the use of GIS data. Figure 12 illustrates two selected rural plantation areas that were
successfully mapped using the two sources of information. The planting record data were
found to focus mainly on large plantation areas in recent years especially those inside the
designated country parks. As the data were managed by the government, these contained
all varieties of plantations including mixtures of native trees, and were believed to be
accurate. In contrast, the classification model relied on field-collected training data and
image characteristics to identify potential plantation areas. Further investigation showed
that the model was able to extract some areas covered by a few particular tree species such
as Acacia confusa, Pinus massoniana, Melaleuca cajuputi and Eucalyptus spp. in all regions in
Hong Kong, probably due to their dominance in the canopy layer and the distribution of
training data.

Figure 11. A selected site showing the transition from grassland (Point A) to woodland (Point
E) within a short distance; (a) photo of point A taken in the field. Species included Dicranopteris
pedata, Blechnum orientale; (b) photo of point B taken in the field. Species included Baeckea frutescens,
Dicranopteris pedata; (c) photo of point C taken in the field. Species included Rhaphiolepis indica, Baeckea
frutescens; (d) photo of point D taken in the field. Species included Schefflera heptaphylla, Rhodomyrtus
tomentosa; (e) photo of point E taken in the field. Species included Cinnamomum camphora, Aporosa
dioica; (f) true-colour composite of the WorldView image; (g) topographic map; (h) habitat map
produced in this study.
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It is worth noting that besides describing the data products, this study also aimed to
present the procedures to reliably produce these maps. It has been a common practice to
intersect multiple datasets to construct a desired habitat map [89]. As explained in [41], the
actual definition of rules in one study was created from expert knowledge by observing
systematic error patterns in the maps and classification of other areas would require a
different set of rules. However, this rule-based approach has advantages in terms of its
transparency, efficiency and relative simplicity, which facilitate understanding by people
without a background in remote sensing [41]. Since the development of appropriate
rules also focused on identifying the ecological characteristics of target habitats [5,85], the
general process can be transferable to other applications where local knowledge and data
are available.

Figure 12. Selected sites of rural plantation identified by RF classification model (Point A) and
plantation record GIS data (Point B) respectively; (a) photo of point A taken in the field, which is a
plantation of Pinus massoniana; (b) photo of point B taken in the field, which is a plantation of Acacia
auriculiformis; (c) true-colour composite of the WorldView image; (d) topographic map; (e) habitat
map produced in this study.

5. Conclusions

The three-stage mapping procedures demonstrated in this study effectively utilized
the characteristics of various sources of information in a systematic workflow to produce
promising results, with the additional advantages of being straightforward, controllable
and easy to understand. As illustrated with examples of sub-area mapping results, tran-
sitional patterns of mixed habitats were successfully mapped using a soft classification
method and the identification of some habitats benefited from the hybrid use of remote-
sensing classification and GIS data. Nevertheless, the proposed method was also limited
by the availability and quality of useful ancillary data, as well as the efforts required to
customize modification rules for specific contexts. Adaptive implementation of classifi-
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cation procedures, development of appropriate rules and availability of reliable GIS data
were all believed to be vital for the production of a high-quality habitat map. In addition to
the optical satellite image, future studies can explore the combined use of other novel data
sources to enhance habitat information in multiple dimensions, such as three-dimensional
structures from LiDAR and unmanned aerial vehicles [22,90]. Overall, through collabo-
ration with local ecologists and policymakers, the three-stage approach of this study has
increased mapping accuracy for diverse and transitional habitats. We also recommend the
procedures developed are adopted in future map updates to facilitate long-term monitoring
of habitat changes. The resulting habitat map can be an informative resource for supporting
environmental planning and managing cities with heterogeneous landscapes.
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of each habitat type mapped in this study. Figure S6: Top 10 classification variables with the highest
importance using different evaluation metrics.
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