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Abstract: On 17 June 2020, a large ancient landslide over the Aniangzhai (ANZ) slope, Danba County,
Sichuan Province, China, was reactivated by a series of multiple phenomena, including debris flow
triggered by heavy rainfall and flooding. In this study, Synthetic Aperture Radar (SAR) images
acquired by the Sentinel-1A/B satellite and optical images captured by the PlanetScope satellites
were jointly used to analyze and explore the deformation characteristics and the Spatial-Temporal
evolution of the ANZ landslide before and after the multi-hazard chain. Several areas of pre-failure
movements were found from the multi-temporal optical images analysis before the reactivation of the
ANZ landslide. The large post-failure surface deformation over the ANZ slope was also retrieved by
the optical pixel offset tracking (POT) technique. A major northwest movement with the maximum
horizontal deformation of up to 14.4 m was found. A time-series InSAR technique was applied to
analyze the descending and ascending Sentinel-1A/B datasets spanning from March 2018 to July
2020, showing that the maximum magnitudes of the Line of Sight (LoS) displacement velocities were
−70 mm/year and 45 mm/year, respectively. The Spatial-Temporal evolution over the ANZ landslide
was analyzed based on the time-series results. No obvious change in acceleration (precursory
deformation) was detected before the multi-hazard chain, while clear accelerated deformation can be
observed over the slope after the event. This suggested that heavy rainfall was the most significant
triggering factor for the generation and reactivation of the ANZ landslide. Other preparatory factors,
including the deformation behavior, the undercutting and erosion of the river and the outburst
flood, the local terrain conditions, and earthquakes, might also have played an important role in the
generation and reactivation of the landslide.

Keywords: Aniangzhai landslide; Danba County; multi-hazard chain; time-series InSAR; optical
image analysis

1. Introduction

The movement of a wide range of ground elements, such as rock masses, soil, debris,
or garbage, is referred to as a landslide [1]. Landslides are natural phenomena distributed
all around the world; they pose a severe threat to lives and infrastructures and have caused
enormous loss to our society in terms of safety and economy. A series of geological, hydro-
meteorological, or even human-related factors, such as seismic and volcanic activity [2,3],
climate change [4], heavy rainfall [5–7], subsurface and surface engineering work [8,9], de-
forestation [10], agricultural activities, and urbanization [11], have significantly contributed
to the occurrence of landslides. The southwest part of China is prone to the occurrence of
landslides because of the abundant precipitation and mountainous topography. Sichuan
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Province is the one of the regions in the southwest part of China which frequently suffers
from medium- and large-scale landslides. On 10 July 2013, days of heavy rainfall and
floods triggered a landslide in Sanxi village, Dujiangyan city, Sichuan Province, which
caused 44 fatalities, 117 missing people, and the destruction of 12 houses [12,13]. The
catastrophic 2017 Maoxian landslide in Xinmo village, Sichuan Province, buried 64 houses,
killed 10 people, and left 73 people missing [6,14]. Landslide mapping and monitoring over
these landslide-prone regions is essential for understanding their failure mechanisms and
their long- and short-term evolutions. The measurement of the surface displacement caused
by landslides is the most intuitive indication for understanding the failure mechanisms and
evolution patterns over a long and short period. Conventional field investigation or in situ
measurements can indeed provide a high accuracy of measurements at centimetre to mil-
limetre levels [15–17]. However, the several limitations of these techniques are that: (1) only
measurements on a point-by-point basis can be provided; (2) there is a high demand for
the labour force, the techniques are time-consuming, and there are expensive costs for the
installation and maintenance of the survey network; and (3) plenty of landslides in remote
and rural areas are inaccessible.

The Spaceborne Interferometric Synthetic Aperture Radar (InSAR) technique, as a
radar remote-sensing technique, can measure surface deformation along the radar Line of
Sight (LoS) direction at high accuracy with all-weather and all-day operational capability,
wide spatial coverage, and high spatial resolution (up to 1 m) [18–22]. Multi-temporal
InSAR, also called time-series InSAR, is an improved InSAR technique. This technique can
significantly minimize the temporal and spatial decorrelation issues in the conventional
InSAR technique. A variety of time-series InSAR approaches were developed by different
researchers, for example the Permanent Scatterer InSAR (PSInSARTM) [23], the Small
Baseline Subset Approach (SBAS) [24,25], and the SqueeSARTM [26], which provide a
chance for researchers to detect the subtle movement of slow-moving landslides and gain
a retrospective view of the historic displacements in the temporal and spatial domain.
Time-series InSAR has been widely and successfully applied in landslide investigation,
including landslide detection [27–29], precursory deformation detection, and pre- and
post-failure analysis [6,30,31], as well as landslide inventory, susceptibility, and hazard
assessment [32].

For example, Intrieri et al. [30] have successfully applied the SqueeSARTM to detect the
precursors of failure before the 24 June 2017 Maoxian landslide in China; Zhou et al. [33]
used the Stanford Method for Persistent Scatterer (StaMPS) small baselines subset method
with Sentinel-1 images to detect the obvious spatiotemporal deformation of the Muyubao
landslide in the Three Gorges Reservoir area in China; Ciampalini et al. [34] have demon-
strated that the PSInSAR and SqueeSAR™ techniques, with the COSMO-SkyMed (CSK)
images, can be used to further refine the Landslide susceptibility maps (LSM) of the Messina
Province (Sicily, Italy); Dong et al. [35] developed a time-series InSAR method, known as
coherent scatterer InSAR (CSI), which can jointly analyse the persistent scatterers (PS) and
distributed scatterers (DS), and applied it to an investigation of the deformation characteris-
tics of the Jiaju landslide in Danba County, China, using the ALOS PALSAR and ENVISAT
ASAR datasets.

On the other hand, the optical remote-sensing technique can be used for visual inter-
pretation of the Spatial-Temporal evolution of the landslide boundary and the detection of
precursory features such as scarps and cracks over the slope surface. Besides, the optical
pixel offset tracking (POT) technique can be applied to retrieve the horizontal displacement
caused by slope movement with an accuracy of up to about 0.2 pixels of the optical images
used [36–38]. The relatively large displacement (up to tens of metres) of landslide is not
likely to be seen by the time-series InSAR technique due to high decorrelations. More
importantly, the time-series InSAR technique is not sensitive to the movement in the north–
south direction due to the near-polar orbits of SAR satellites [39]. Horizontal displacements
measured by the optical POT technique are therefore an excellent supplement for the
time-series InSAR technique in this regard. Hence, the time-series InSAR technique and the
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optical remote-sensing technique are complementary in their detection of Spatial-Temporal
evolution and their displacement measurements of landslides at different stages.

On 17 June 2020, an intense, short-duration rainfall struck the region of the Aniangzhai
and Guanzhou villages in Danba County, Sichuan Province, China, which triggered a
serious multi-hazard chain along the Xiaojinchuan River and, most importantly, reacti-
vated the ancient Aniangzhai (ANZ) landslide, posing a serious threat to 12 towns and
112 villages along the downstream of the Xiaojinchuan River, including over 20,000 people
in 5000 families. Emergency field investigations were conducted shortly after the occur-
rence of the event, which provided valuable and reliable information for our study [40,41].
The multi-hazard chain was also interpreted and characterized with the use of seismic
signal data [42]. However, these field survey results could not provide a deformation map
with dense measurement points and only post-event information could be obtained. By
using satellite remote-sensing data for monitoring the landslide, the characteristics of the
historic deformation with dense measurement points could be reviewed, and unstable
slopes could be identified in the early stage, which provided significant information for the
early warning of landslides and the emergency response.

In this study, the time-series InSAR technique was applied to process two stacks of
Sentinel-1A/B data (descending and ascending tracks) to map the surface displacement
and explore the Spatial-Temporal evolution of the ANZ landslide. Besides that, a time-
series optical images analysis, based on multi-temporal, high-resolution optical images
acquired from the PlanetScope satellite, was also conducted to investigate the evolution
of the landslide features over the ANZ slope. The large post-failure displacement over
the slope was retrieved using the optical POT technique. The displacement characteristics,
failure mechanism, and triggering factors of the ANZ landslide were further explored and
discussed, based on the radar and optical remote-sensing results.

2. Study Area

As shown in Figure 1a, the ANZ landslide is located in the central-west section of the
Sichuan Province, which is in the southwest part of China, with the location at 30.979◦ N,
102.024◦ E. The region lies at the transition zone between the Qinghai-Tibetan Plateau
and the Sichuan Basin where the elevation difference is up to 7000 m (Figure 1b). At the
same time, this region is located at the interaction zone of two large, active fault belts:
the Xianshuihe-Xiaojiang fault in the west and the Longmenshan thrust fault belt in the
east; this is a seismically active region with plenty of active faults around and numerous
geohazards occurring. According to the United States Geological Survey (USGS), there
have been 13 large historical earthquakes with a magnitude of over 6.0 on the Richter Scale
recorded in this region, including the 1933 MW 7.5 Diexi Earthquake on the Songpinggou
fault [43], the 1973 MS 7.6 Luhuo earthquake on the Xianshuihe fault [44], and the 2008 MW
7.9 Wenchuan Earthquake on the Longmenshan fault [45], as marked by the yellow and
blue stars in Figure 1b. The most recent event was recorded on 20 April 2013, with a
distance of 110 km in the southeast and a magnitude of 6.6 (MW).
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Figure 1. Geological setting of the study area: (a) overall location of the study area; (b) regional
tectonic setting and topography map derived from the 1-arc-second Digital Elevation Model (DEM)
of the Shuttle Radar Topography Mission (SRTM) [46]; (c) overview of the multi-hazard chain in the
study area. Black lines indicate the contour lines.

Figure 1c depicts the detailed overview of the multi-hazard chain on 17 June 2020. The
ANZ landslide is located on the left bank of the Xiaojinchuan River. The ANZ landslide
is an ancient landslide that once blocked the Xiaojinchuan River, and it has experienced
slow-creep deformation in recent years, according to local residents [40]. According to local
records, at about 3:00 am on 17 June 2020, the intense rainfall at midnight had triggered
the Meilong debris flow on the right bank of the Xiaojinchuan River. The hillslope failure
with a high elevation brought the deposits of the Meilong debris flow rapidly rushing
down to the Xiaojinchuan River. According to the field investigation [40], the riverbed was
uplifted by approximately 8–12 m, which blocked the Xiaojinchuan River in the upstream
and formed a large dammed lake just behind the Guanzhou power station. A new river
channel was then formed over the deposits, and it flowed down to the toe of the ANZ
landslide, which seriously washed and eroded the toe section. At about 11:00 p.m. local
time on the same day, the dammed lake began to breach and caused a flood [41]. Under
the continuous downcutting and erosion of the new river channel and outburst flood, the
whole toe section of the ANZ slope collapsed on 18 June 2020. Then, the lower and middle
sections of the ancient ANZ landslide were reactivated, and the affected area was named
the reactivated ANZ landslide. That formed a steep face with a slope of about 60–70◦ and
a height of 60 m at the toe of the ANZ landslide, according to the field investigation. In
contrast, the slope in the middle and upper section was relatively gentle, ranging from 35◦

to 45◦. The elevation difference of the ancient ANZ landslide is up to 1000 m, with about
3100 m at the top. According to the rainfall data recorded from the Danba Meteorological
Bureau, the annual rainfall in the area of the ANZ landslide is about 532.7–823.3 mm, 80%
of which is mainly concentrated between May and September [40]. The average annual
temperature in this area is 14.2 ◦C. According to the filed investigation and published work,
the lithology of the ANZ is mainly composed of the Lower Carboniferous Yaoji Formation
(D1q) and the Quaternary sedimentary layers [41]. The bedrock is primarily composed of
limestone, with a generally dipping attitude of N50− 60◦W/NE∠70− 80◦ and a visible
thickness of 5–20 m. The avalanche deposits are widely spread over the surface of the
slope, with the thickness ranging from 10 to 50 m. Fifty to eighty percent of this unit is
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rock fragments, which are mainly angular and sub-angular blocks from the detachment
of the rock avalanche. The ANZ landslide is located on a northwest-facing slope, with an
inclination of 50◦ at the top and 20◦ at the lower part.

3. Materials and Methods
3.1. Datasets
3.1.1. Optical Images

The PlanetScope satellite can acquire optical images with high resolution (3 m in
pixel size) in near daily global coverage, which can be used as a useful tool for landslide
detection and monitoring [47]. In this study, Planetscope images with four bands (blue,
green, red, and near infrared) were collected from the Planet Labs Company under a
research and education license. The level 3B surface reflectance product of PlanetScope
was chosen as it has been orthorectified and pre-processed with geometric, radiometric,
and atmospheric corrections [48]. A total of nine scenes of Planetscope images from
26 March 2020 to 27 July 2020 were selected with cloud-free (i.e., 0% cloud percentage) and
minimal shadow condition over the ANZ slope. The temporal coverage spans both the
pre-failure and post-failure stages of the multi-hazard chain. The detailed information of
the PlanetScope images is shown in Table 1.

Table 1. Optical images acquired by the PlanetScope satellite for this study.

Stage Imaging Date Sun Elevation Angle (Degree) Sun Azimuth Angle (Degree) Instrument

Pre-failure

26 March 2020 55.1◦ 140.7◦ PS2.SD
20 April 2020 63.3◦ 131.9◦ PS2.SD
10 May 2020 64.7◦ 115.9◦ PS2
18 May 2020 63.1◦ 108.3◦ PS2
30 May 2020 66.7◦ 107.1◦ PS2
15 June 2020 66.8◦ 103.1◦ PS2
16 June 2020 66.8◦ 103.1◦ PS2

Post-failure
24 June 2020 69.0◦ 105.5◦ PS2
27 July 2020 58.4◦ 104.2◦ PSB.SD

3.1.2. Satellite SAR Datasets

In this study, both the descending and the ascending tracks of the C-band Sentinel-
1A/B SAR images in the Terrain Observation by Progressive Scans (TOPS) mode were
collected for time-series InSAR analysis. The TOPS SAR data can cover a swath width
of 250 km at about 5 m by 20 m resolution in the range and azimuth directions, respec-
tively [49]. The basic parameters of the SAR images are shown in Table 2. Fifty-eight
images were included in the descending stack spanning from 27 March 2018 to 2 July 2020
and seventy-one images in the ascending stack for the period from 8 March 2018 to 7 July
2020. The spatial coverages of both tracks are shown in Figure 1b, with black and purple
rectangles for the descending and ascending tracks, respectively.

Table 2. Basic parameters of SAR data.

Satellite Orbit Imaging Mode Imaging Period Heading Angle (◦) Incidence Angle (◦) Number of Images

Sentinel-
1A/B

Descending TOPS 27 March 2018–2 July 2020 169.6◦ 37.1◦ 58

Ascending TOPS 08 March 2018–7 July 2020 −9.8◦ 44.2◦ 71

3.1.3. Rainfall Data

The monthly rainfall spanning from 2018 to 2020 was calculated from the daily rainfall
based on the CHIRPS (Climate Hazards Group InfraRed Precipitation with Station) data
from the Google Earth Engine [50,51]. In addition, the daily rainfall data between 1 May
2020 and 17 June 2020, according to the Anianggouer station, were collected from the
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published paper [40], as shown in Figure 2a. The daily rainfall data recorded after the
multi-hazard chain, from 22 June 2020 to 19 August 2020, were also collected from the
locally installed rainfall gauge (Figure 2b) [41]. The locations of the Anianggouer station
and locally installed rainfall gauge are shown in Figure 1c.
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Figure 2. (a) Daily rainfall data between 1 May 2020 and 17 June 2020, before the multi-hazard chain,
according to the Anianggouer weather station from the Danba Meteorological Bureau. The daily
rainfall data were collected from Zhao et al., 2021 [40]. (b) Daily rainfall data between 22 June 2020
and 19 August 2020, after the multi-hazard chain, according to the installed rainfall gauge over the
ANZ slope. These data were collected from Zhu et al., 2021 [41].

3.2. Optical Analysis Method

Three main procedures were conducted based on the collected optical images. Firstly,
true color PlanetScope images were generated by compositing three bands (red, green, and
blue) for the initial visual interpretation of the evolution of the surface features over the
ANZ slope. Secondly, by using the vegetation index, the pre- and post-failure landslide
features can be effectively mapped and detected, and the effect of the mountain shadows
can be minimized. The Atmospherically Resistant Vegetation Index (ARVI) time series
was derived and was then classified using unsupervised classification to investigate the
Spatial-Temporal evolution of the landslide in the pre- and post-failure stages [52]. Finally,
the optical pixel offset tracking (POT) technique was applied to obtain the post-failure
displacement of the ANZ slope.

The interpretation of the landslide features based on true color images could often
be influenced by the shadows in the images as the landslide generally occurred in the
mountain region. Using the Normalized Difference Vegetation Index (NDVI) for the
landslide interpretation could minimize the influence of the mountain shadows [53]. The
ARVI, an improved index compared to the NDVI, uses blue light reflectance measurements
to correct for the atmospheric scattering effects through a self-correction process. The ARVI
calculation can be expressed as [54]:

ARVI = (ρnir − ρrb)/(ρnir + ρrb)
ρrb = ρred − γ(ρblue − ρred)

(1)
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where ρnir, ρred, and ρnir are the near-infrared, red, and blue bands, respectively. The
assumption that γ = 1 is often used unless the aerosol model is known a priori.

In this study, the ARVI was calculated based on Equation (1) using the collected
PlanetScope images. These images were divided into two groups: the pre- and post-failure
groups. The ARVI images in the pre-failure and post-failure groups were stacked to form
the time-series ARVI with 6 and 2 layers, respectively, in a chronological order using the
Layer Stack module in the ENVI software. Then, the K-means unsupervised classification
method was applied to classify the pre-failure time-series ARVI and the post-failure time-
series ARVI image. The number of classes was set to 5 with other the default parameters in
the classification process.

COSI-Corr, a useful POT software for measuring sub-pixel ground surface deformation
based on the image correlation method [55], was used to map the post-failure displacement
over the ANZ slope. The PlanetScope image pair between 16 June 2020 (pre-failure) and
24 June 2020 (post-failure) was chosen as the input data, and the red band was used for the
POT calculation. The combinations of the initial and final window sizes used in this study
are 128 and 64, respectively, which can reduce the background noise and uncertainties [56].
Three layers of the POT results can be derived, including displacements in the east–west
and north–south directions, and the signal-to-noise ratio (SNR). Positive values in the east–
west and north–south displacement layers indicate eastward and northward movements,
respectively. Displacements to the west and south are represented by negative values. The
range of SNR values is from 0 to 1, and the higher value suggests the measurement with
the higher quality. Measurements with an SNR value of less than 0.95 were masked in
the east–west and north–south displacement datasets. To reduce the mismatch error for
the image pair, a stable area was selected near the ANZ slope. The displacements derived
from the stable area can be used to depress the background noise through removing the
co-registration errors within the image pair used. In this case, the mean east–west and
north–south displacement derived from stable area was used to correct the image mismatch
and generate the final corrected east–west and north–south displacement. The standard
deviations of the east–west and north–south displacements in the stable area were used
justify the uncertainties of the results [56]. The overall horizontal displacement was then
calculated based on the corrected east–west and north–south displacements.

3.3. Time-Series InSAR Analysis Method

The Persistent Scatterer (PS) and Small Baseline (SB) approaches were both exploited
and jointly processed for the time-series analysis. The combination of PS and Coherent
Scatterer (CS) points was applied to increase the density of the measurement points (MPs)
in the rural and mountainous region. Three major processing steps are included: PS
processing, SB processing, and combination processing of the PS and CS targets. The
Sentinel-1 datasets were pre-processed using the TOPSAR stack processor module in the
Interferometric synthetic aperture radar Scientific Computing Environment (ISCE) software
to generate single-master and multiple-master differential interferograms stacks [57]. Time-
series analysis was then conducted using the Stanford Method for Persistent Scatterers
(StaMPS) software based on the differential interferograms generated [58].

As for the PS processing, the PS candidates were initially selected based on the
Amplitude Dispersion Index (ADI) [23]. The pixels with ADI values over 0.4 were initially
selected as the PS candidates. Then, the final PS targets are further selected based on the
phase stability criterion [59].

For the case of the SB processing, the Spatial-Temporal distribution of the interfero-
metric combination of the Small Baseline network is shown in Figure 3. The perpendicular
baseline for over 90% of pairs was less than 100 m due to the precise orbit control of the
Sentinel-1A/B satellites. To ensure low temporal decorrelation, the maximum temporal
baseline was set to 120 days. The CS points were selected based on the amplitude difference
dispersion (D∆A), which is similar to DA [58].
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Figure 3. The interferometric combination of Small Baseline network for Sentinel-1A/B: (a) descend-
ing track and (b) ascending track. The red circles and black lines represent SAR image acquisitions
and interferometric pairs, respectively.

For both the PS and the SB processing, the topographic effects were removed using
the 1-arc-second SRTM DEM [46]. The overall wrapped differential phase ϕDi f f of a pixel
cell after flattening and removing the topographic phase can be expressed as follows:

ϕDi f f = W
{

ϕDe f o + ϕAtmos + ϕOrb + ϕDEM + ϕN

}
(2)

where W{} denotes the wrapping operator. ϕDe f o represents the Line of Sight (LoS)
deformation phase term. ϕAtmos indicates the atmospheric delay phase and ϕOrb is the
phase caused by orbit error. ϕDEM represents the residual topographic phase caused by the
DEM error and ϕN is the random noise phase, including thermal noise and co-registration
error. The deformation phase can be estimated and separated from the other phase terms
by iteratively filtering in the temporal–spatial domain. The detailed processing chain can
be referred to in [58,60,61].

The displacement velocities measured from the times-series InSAR are along the radar
Line-of-Sight (LoS) direction. Therefore, the displacement measured from the time-series
InSAR is a composite of vertical, easting, and northing displacement components, which
can be written as [62–66]:

[
cos(θ) −sin(θ)cos(α) sin(θ)sin(α)

] DV
DE
DN

 = DLoS (3)

where θ is the incidence angle and α is the heading angle of the satellite (positive clockwise
from the north). DV , DE, and DN are the vertical, eastward, and northward displacement,
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respectively. DLoS is the displacement measured in the radar LoS direction. Ideally, mea-
surements from at least three viewing geometries are needed to resolve the 3D deformation.

4. Results
4.1. Landslide Evolution and Deformation Mapped by Optical Datasets
4.1.1. Landslide Evolution Revealed by the Time-Series Optical Analysis

Visual interpretation based on multi-temporal optical images can provide useful
information from identifying surface moving features, which could directly reflect the
formation and evolution of landslides. As shown in Figure 4, true color images were
synthesized with three bands: red (B3 at 590–670 nm), green (B2 at 500–590 nm), and blue
(B1 at 455–515 nm). Before 17 June 2020, there were three flows on the pre-failure surfaces
observed, with two small masses over the main slope and a long flow at the upper neck.
After the multi-hazard chain occurred on 17 June 2020, the collapse area could be clearly
observed at the toe of the landslide, and the Xiaojinchuan River extended much wider
because of the flooding caused by the debris flow at the upstream.
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A long stripping flow was detected close to the left boundary of the ancient landslide
area. At the same time, multiple dislocations could be clearly observed over the roads at the
middle of the slope, which was also consistent with the published field investigation [40].
Two obvious head scarps at the middle were detected on the post-failure image acquired
on 24 June 2020, and it possibly penetrated down to the toe through the multiple road
dislocations at the upstream section. Those two head scarps were connected from the image
acquired on 27 July 2020. No obvious changes were seen at the pre-failure flowing mass on
the upper neck.
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Time-series ARVI images were generated based on high-resolution PlanetScope images
acquired from 26 March 2020 to 27 July 2020, as shown in Figure 5. The pre- and post-failure
flows over the slope can be obviously detected over the slope due to the bright background
and reduced influence of the mountain shadows. It is noted that the head scarps were
clearly observed to run through and down to the toe of the slope in the post-failure ARVI
image. For further investigation of the evolution of the landslide features over the slope, the
K-mean unsupervised classification based on the time-series ARVI images was conducted.
Two groups were divided, corresponding to two different stages: the pre-failure stage
(10 May 2020–16 June 2020) and the post-failure (24 June 2020–27 July 2020) stage, as shown
in Figure 6. The ARVI image on 30 May 2020 was discarded in the K-mean unsupervised
classification due to limited ground coverage. Five major classes were identified over the
slope. Class 1, with a red colour, consists of ground features with the lowest ARVI value,
including river and bare soil land. Class 2, with a pink colour, represents features with a
medium-low ARVI value, including road, landslide scarps, and buildings. The landslide
area includes flows, bare soil land, and landslide scarps. Therefore, the flows could be
jointly covered by class 1 and 2 in this case. Class 4 and 5 represent ground features with a
high ARVI value, including evergreen, tall, and dense vegetation over the slope. Class 3
is the transition zone among classes 1–2 and classes 4–5, possibly representing unstable
vegetation cover over this zone.

Landslide scarps and flows can be distinguished from rivers, roads, and buildings
as they are irregular features and located on the same slope. As shown in Figure 6a,
the Xiaojinchuan River and roads, as linear features, are detected in class 1 and class 2,
respectively. At the same time, three pre-failure flows were clearly detected during the
pre-failure stage, with two at the centre slope and one at the upper slope. As for the
post-failure stage on 24 June 2020 and 27 July 2020 in Figure 6b, the Xiaojinchuan River was
obviously much wider than before due to the occurrence of flooding caused by the debris
flow on the upstream. The post-failure flow next to the left boundary at the downstream
section was observed, with an area up to 22,000 m2. The pre-failure flow at the centre
upstream was extended further when compared with that from the pre-failure stage, while
no obvious change was observed for the pre-failure flow at the upper slope.

4.1.2. Post-Failure Displacement Detected from Optical Pixel Offset Tracking

Figure 7 shows the optical POT results between one pre-failure image on 16 June
2020 and one post-failure image on 24 June 2020. Positive values in the east–west and
north–south measurements indicated that the slope moved towards the west and north
directions, respectively. Westward and southward movements are represented by negative
values. The standard deviation of the east–west and north–south displacements in the
stable are 0.43 m and 0.49 m, respectively. These minor standard deviations indicated
that the selected stable area is reliable and can be used to derive the corrected east–west
and north–south displacements [56]. As shown in Figure 7a,b, post-failure movement
over the reactivated landslide area can be clearly observed from both the west–east and
north–south directions. The horizontal displacement is generated by combining these two
measurements in different directions (Figure 7c). The ANZ slope mainly moved towards
the northwest direction, with the maximum west and north displacement up to −13.7 m
and 10.0 m, respectively. The horizontal displacement peaks at 14.4 m, and most of the large
displacement ranging from 12.0 to 15.0 m, were found at the middle and upstream section
of the reactivated landslide area. However, less than 4 m of horizontal displacements
were observed in the upper section of the ancient landslide area during this period. The
overall reactivated boundary of the ANZ landslide can be clearly observed from the ancient
landslide area, showing an hourglass-shaped boundary from the top to the bottom.
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4.2. Deformation Velocity Measured by Time-Series InSAR Analysis

The LoS displacement annual-velocity map can be obtained from the time-series InSAR
processing of the Sentinel-1A/B datasets from the descending and ascending orbits, as
shown in Figure 8. The measurement points with a red colour (negative values) represent
targets moving away from the satellite along the LoS direction, while those with a blue
colour represent motion toward the satellite. Due to dense vegetation cover and steep
topography over the region, only limited measurement points were obtained. According to
the deformation characteristics and local topography, the ANZ landslide can be divided
into four zones: the central deformation zone (I), the landslide toe collapse zone (II),
the upstream deformation zone (III), and the landslide shoulder deformation zone (IV).
Deformation caused by the slope movement can be clearly observed from the descending
measurement at the central deformation zone (I), the landslide toe collapse zone (II), and
the upstream deformation zone (III), mostly ranging from −20 to −50 mm/year, as shown
in Figure 8a. The maximum magnitude of deformation velocity was up to −70 mm/year,
which was found at landslide toe collapse zone (II) near the Xiaojinchuan River. On the
other hand, the land surface was evolving less over the landslide shoulder deformation
zone (IV), and the deformation velocity ranging from 15 to −30 mm/year was observed.
As for the ascending measurement shown in Figure 8b, the overall detected deformation
velocity is smaller than the descending measurement because of the lower sensitivity of
the ascending SAR data for the northwest-facing slope [67]. The density of measurement
points is also lower, relatively, than that from the descending orbit. The deformation rate of
most measurement points was between 5 to 15 mm/year along the LoS direction. Similarly,
the largest deformation was found at zone (II), with a rate of 45 mm/year along the LoS
direction. In the upstream section of zone (II), where there was no measurement point
detected from the descending SAR data, it was detected to be unstable, with most of the
points ranging from 20–45 mm/year from the ascending data, which could probably be
uplifted accumulation at the left bank of the Xiaojinchuan River. In addition, much smaller
deformations were observed at zone IV, with the deformation rate ranging from −10 to
7 mm/year.
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Beside the ANZ landslide, an unstable slope was detected 200 m away from the
right side of the ANZ landslide, with its maximum deformation velocity up to 19 and
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30 mm/year from the descending and ascending measurements, respectively. As both
measurements showed positive movement over the detected unstable slope, such an area
is likely to be an uplifted area. The location of this unstable slope is just above the dammed
lake and next to the Guanzhou power station, which could form a secondary landslide and
causes a serious threat to the station.

In many InSAR studies, the LoS displacement measured from time-series InSAR can
be projected into the vertical direction by assuming that there was no displacement in
horizontal direction [63,68], whereas in this case the horizontal displacement was obviously
detected over the ANZ slope from the optical POT result (Figure 7) and could not be
neglected. In order to conduct a cross-validation between the descending and ascending
measurements, a stable area over the Guanzhou power station was selected. This power
station is expected to be relatively stable (i.e., no deformation) during the InSAR acquisition
period. Both the ascending and the descending measurements were first projected into the
vertical direction by dividing the cosine of the local incidence angle, and the differences
between the projected vertical displacements from both tracks were calculated. The stan-
dard deviation of the calculated differences is 5.5 mm/year. As shown in Figure 9, the
differences were mainly distributed in the range of −5 mm/year to 5 mm/year, accounting
for over 60% of the measurement points, indicating that the two measurements are highly
correlated with each other and that the time-series InSAR results are reliable.
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5. Discussion
5.1. Temporal–Spatial Evolution of the ANZ Landslide

To further investigate the temporal evolution of the pre-failure slope stability and
whether there were any precursory signals detected before the multi-hazard chain, a
time-series analysis of selected measurement points was conducted (Figure 10). Several
measurement points at four deformation zones of the ANZ landslide were selected, as
marked by the black circles in Figure 8. In order to investigate the effect of local rainfall on
the ANZ landslide, the monthly rainfall was calculated from the daily rainfall based on the
CHIRPS (Climate Hazards Group InfraRed Precipitation with Station) data from the Google
Earth Engine [50,51]. The mean of the measurement points in a specific spatial distance
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(with a radius of 30 m) was calculated to eliminate possible gross errors. Figure 10a shows
the time-series deformation of selected points (P1 and P2) at zone (I). Due to different
observation geometries of the descending and ascending data for the direction of the
slope movement, the LoS time-series deformations at point P1 show opposite trends.
That is consistent with the northwest movement detected from the optical POT result. No
obvious acceleration in surface movement was detected from the descending and ascending
measurements before the multi-hazard chain on 17 June 2020. Before the occurrence of
the multi-hazard chain, only a 6 mm change in cumulative deformation was observed
at point P1 between 1 June 2020 and 13 June 2020 from the ascending track. A sudden
acceleration in surface movement can be observed at point P1 from the ascending track
between 25 June 2020 and 7 July 2020, moving at approximately 14.5 mm along the LoS
direction within the final acquisition (12 days). According to the local rainfall data collected
from 22 June 2020 to 19 August 2020, a maximum daily rainfall of 10.2 mm was recorded
on 5 July 2020 (Figure 2b). This sudden change in surface movement was responding to
the intense daily rainfall recorded on 5 July 2020. An accelerated displacement was also
observed from a field survey on 5 July [41], showing that our InSAR result is in good
agreement with the field data. Conversely, a linear growth trend can be observed from
the descending measurement at point P1 until 2 July 2020. A gentle acceleration can be
observed at point P2 from the descending measurement between 8 June 2020 and 2 July
2020, and the cumulative deformation over the observation period is up to 110 mm.

At zone (II), the cumulative deformations at point P3 and P4 are 83 mm and −130 mm
for the observation period, respectively, which are significantly larger than those at point
P5 from both datasets, as shown in Figure 10b, and are probably caused by serious washout
and erosion of the river and the outburst flood caused by the Meilong debris flow at the
upstream and middle section of zone (II), where point P3 and P4 were located (Figure 8).
The rainfall season started in June with the intense rainfall of 38.1 mm recorded before the
multi-hazard chain on 17 June 2020. During this period, a clear acceleration in deformation
can also be observed at point P4 from the descending track, falling about 17 mm between
8 June 2020 and 2 July 2020. A sharp drop in cumulative deformation was obtained from
the ascending measurement at point P3 between 13 June 2020 and 25 June 2020 when the
multi-hazard chain occurred, which could have been caused by the collapse of the landslide
toe at the upstream section after the multi-hazard chain.

Figure 10c shows the time-series deformation at zone (III), the upstream section of
the ANZ landslide. The cumulative deformations at point P6 are 46 mm and 71 mm for
the descending and ascending measurements, respectively, which are both smaller than
those at zones (I-II). Similarly, there is a sudden acceleration in displacement observed at
point P6 from the ascending datasets from 1 June 2020, rising about 30 mm in about one
month. This is consistent with the rainfall season in June and the intense daily rainfall
recorded on 5 July 2020 (Figure 2). However, no obvious acceleration was detected from
the descending datasets.

The landslide shoulder zone (IV) is located at the upper section of the ancient landslide
area and close to the downstream section. Before June 2019, the cumulative displacements
for all of the two selected points in both tracks were fluctuating within a range of −20 mm
to 20 mm, which indicated that this section was in a relatively stable stage.

At point P7 (Figure 10d), both the descending and the ascending measurements
captured a clear acceleration at the last three acquisitions, mainly after the multi-hazard
chain and with the increasing monthly rainfall in June and July, moving 22 mm and
30 mm within one month, respectively. Point P8 is located at the pre-failure flow in the
upper section detected from the optical image analysis (Figures 4 and 5). The cumulative
deformation is smaller at point P8 in both datasets, mostly ranging from −30 to 30 mm.
It is noted that a similar acceleration of deformation was also captured by the ascending
measurements at point P8, rising about 25 mm in the last two acquisitions, which is
consistent with the ascending measurement at point P7.
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Figure 10. Pre-failure time-series plotting for selected measurement points from the different zones:
(a) central zone (I); (b) landslide toe zone (II); (c) upstream zone (III); (d) landslide shoulder zone (IV);
(e) unstable slope (V) zone in the pre-failure mean velocity map (Figure 8). Red dashed line indicates
the reactivation of the ANZ landslide.
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The time-series deformation over the detected unstable slope, located on the right side
of the ANZ landslide, is shown in Figure 10e. The maximum cumulative deformations are
63 mm and 126 mm for the descending and ascending measurements, respectively. It was
found that acceleration in deformation was detected from the descending measurement
since the end of May in 2020, moving 22 mm within the final four acquisitions, which
agreed with the increasing monthly rainfall in June. A dramatic change of cumulative
deformation was also found at the final two acquisitions (25 June 2020 to 7 July 2020) from
the ascending measurement, surging 30 mm within just 12 days, which is a response to the
intense rainfall recorded on 5 July 2020, suggesting that this unstable slope may develop to
failure after this event and that continuous monitoring should be further conducted over
this site.

To further explore the deformation evolution in the spatial domain, the cumulative
LoS deformation maps of the descending and ascending measurements are depicted in
Figures 11 and 12, respectively. Sixteen acquisitions were selected and referred to the initial
acquisition dates on 27 March 2018 and 8 March 2018 for the descending and ascending
maps, respectively. From the joint analysis of the descending and ascending cumulative de-
formation maps, the central and toe sections of the ANZ slope were found to move initially
in January 2019. It is noted from the descending map that the deformation detected at the
central section gradually expanded to the surrounding areas with increasing cumulative
deformation within the reactivated ANZ landslide area. Most of the points in the upper
section were in a relatively stable state with much smaller cumulative deformations. Most
importantly, no obvious accelerations were found in the cumulative deformation before
the multi-hazard chain on 17 June 2020 from either of the measurements. However, clear
changes in deformation can be observed over several sections of the ANZ slope from both
measurements after the multi-hazard chain.

5.2. Deformation Mechanism and Triggering/Preparatory Factor Analysis

When comparing the Spatial-Temporal evolution between the different zones above, it
is clearly seen that the movement of zones (I-II) at the central and toe sections of the ANZ
landslide has occurred since September 2018, long before the obvious movement detected
at zone (IV) in the upper section since June 2019. After the expansion of deformation
at the central section and following the collapse of the toe section, the upper section
gradually lost support at the bottom and presented movement. It is clearly seen that the
deformation at the upper section was much smaller than that from the central and toe
section, which indicated that the ANZ landslide was characteristic of the retrogressive
failure mechanism [69]. After the occurrence of the multi-hazard chain on 17 June 2020,
obvious accelerations of deformation from several sections of the ANZ landslide were
clearly captured by the Spatial-Temporal analysis of the time-series InSAR result. It is
evident that the reactivated ANZ landslide presented an acceleration between 17 June 2020
and the beginning of July 2020, which is highly consistent with the field survey [40,41].
At the same time, an unstable slope next to the ancient ANZ landslide was detected from
the time-series InSAR analysis, and it also presented an accelerated deformation similar to
that of the reactivated ANZ landslide after the multi-hazard chain. Therefore, continuous
monitoring over this area is essential for further assessment of the post-failure stability and
the detection of secondary landslides.
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Figure 11. Descending cumulative LOS deformation of the measurement points located at the
Aniangzhai slope for the 16 selected acquisition dates of Sentinel-1 descending datasets, referring to
the first SAR image acquired on 27 March 2018.

It is noted that a recently published work [70] found a clear acceleration over the upper
parts of the ANZ landslide starting in spring 2020 from the multi-temporal InSAR analysis
with the descending Sentinel-1A dataset [70]. However, the InSAR results obtained in this
study suggested that no obvious accelerations were detected before 17 June 2020, with both
the descending and the ascending Sentinel-1A datasets, which is consistent with another
published InSAR result with shorter temporal coverage (study period from 20 April 2018
to 20 May 2020) [41]. Such inconsistencies between the InSAR results could be caused by
different datasets and the pre-processing and post-processing strategies. Most importantly,
it is consistent that all three InSAR results confirmed the clear displacements over the ANZ
slope before the event, ranging from −50 to −80 millimetres/year.



Remote Sens. 2022, 14, 68 19 of 23Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 24 
 

 

 
Figure 12. Ascending cumulative LOS deformation of the measurement points located at the 
Aniangzhai slope for the 16 selected acquisition dates of Sentinel-1 descending datasets, referring 
to the first SAR image acquired on 8 March 2018. 

5.2. Deformation Mechanism and Triggering/Preparatory Factor Analysis 
When comparing the Spatial-Temporal evolution between the different zones above, 

it is clearly seen that the movement of zones (I-II) at the central and toe sections of the 
ANZ landslide has occurred since September 2018, long before the obvious movement 
detected at zone (IV) in the upper section since June 2019. After the expansion of defor-
mation at the central section and following the collapse of the toe section, the upper sec-
tion gradually lost support at the bottom and presented movement. It is clearly seen that 
the deformation at the upper section was much smaller than that from the central and toe 
section, which indicated that the ANZ landslide was characteristic of the retrogressive 
failure mechanism [69]. After the occurrence of the multi-hazard chain on 17 June 2020, 
obvious accelerations of deformation from several sections of the ANZ landslide were 
clearly captured by the Spatial-Temporal analysis of the time-series InSAR result. It is ev-
ident that the reactivated ANZ landslide presented an acceleration between 17 June 2020 
and the beginning of July 2020, which is highly consistent with the field survey [40,41]. At 
the same time, an unstable slope next to the ancient ANZ landslide was detected from the 
time-series InSAR analysis, and it also presented an accelerated deformation similar to 
that of the reactivated ANZ landslide after the multi-hazard chain. Therefore, continuous 
monitoring over this area is essential for further assessment of the post-failure stability 
and the detection of secondary landslides. 

Figure 12. Ascending cumulative LOS deformation of the measurement points located at the Ani-
angzhai slope for the 16 selected acquisition dates of Sentinel-1 descending datasets, referring to the
first SAR image acquired on 8 March 2018.

According to the rainfall data collected from the Anianggouer weather station, the
cumulative rainfall from 1 May to 17 June 2020 was over 250 mm and the daily rainfall
on 17 June 2020 was up to 38.1 mm, as shown in Figure 2a [40]. The Spatial-Temporal
evolution of the ANZ landslide from the time-series InSAR analysis clearly revealed that
there was no obvious acceleration (precursory signal) detected before the failure of the
multi-hazard chain on 17 June 2020, which is consistent with the published results [41].
This also suggested that the intense rainfall from May to June 2020 was one of the most
significant triggering factors for the ANZ landslide. In addition, several preparatory factors
also contributed to the occurrence of the ANZ landslide. Firstly, the short, intense rainfall
event on 17 June 2020 indeed triggered the failure of the Meilong debris flow, and then,
the undercutting river and outburst flood from the dammed lake seriously damaged the
stability of the toe section of the ANZ slope. The following collapse of the toe section further
reactivated the ANZ landslide and formed the accelerations of deformation. Secondly, the
ANZ landslide was located on a region with numerous active faults where numbers of
strong earthquakes occurred. The frequent occurrence of earthquakes would significantly
shake the ANZ slope and develop fractures and cracks over the slope, which could make
the slope looser and slide more easily. At the same time, the dip angle of the landslide
toe is up to 70◦. It is prone to fail under the effect of gravity and long-term washout and
erosion of the underlying river. The ANZ landslide body mainly consists of decimetre-scale
angular and sub-angular blocks, which make it easier for the rainwater and groundwater
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to infiltrate into the surface layers of the slope. This would increase the weight of the
soil in the surface layer and result in the reduction in the shear strength of the soil and
gradually contribute to the generation of a sliding surface over the slope. Besides that,
based on the high-resolution true colour images shown in Figure 4, multiple man-built
roads laterally crossed the middle section of the ANZ slope. When intense rainfall occurs
in a short duration, a large amount of rainwater will infiltrate the surface layer of the slope.
These roads in the middle section could temporally block the flow of rainwater over the
surface, which would probably have an influence on the movement of the superficial layers
over the slope. It is also consistent with the larger magnitude of deformation in the middle
section detected from the optical POT result in Figure 7. At the same time, from the true
colour images, there are no roads built in the upper section. Therefore, the magnitude of
deformation is much smaller from the optical POT result. The time-series InSAR result also
confirmed that the cumulative deformation in the upper section is smaller than the lower
section. Thus, it is believed that human activities might also have some influence on the
more superficial movement of the slope. Above all, the ANZ landslide was likely triggered
by the heavy rainfall, and several preparatory factors, including wash-out and erosion of
the river and outburst flood, seismic activities, and local terrain conditions over the slope,
also make significant contributions to this event.

6. Conclusions

In this study, the deformation characteristics and Spatial-Temporal evolution of the
ANZ landslide were investigated in detail by the joint use of multi-temporal optical images
and time-series InSAR analysis. The analysis of multi-temporal optical images clearly
showed the spatial evolution of pre- and post-failure landslide features over the slope.
Several pre-failure flows over the slope were observed. The post-failure displacement
was retrieved with the optical POT technique. These optical POT results revealed that the
maximum horizontal displacement was up to 14.4 m, and the ANZ slope mainly moved to-
wards the northwest direction. The deformation velocity and time series of the reactivated
ANZ landslide was also retrieved using time-series InSAR analysis with Sentinel-1A/B
datasets from the descending and ascending tracks. The maximum magnitude of the LoS
deformation velocity was up to −70 mm/year and 45 mm/year from the descending
and ascending measurements, respectively. The large deforming areas were found at the
landslide toe collapse zone. A large deforming area with a velocity of−20 to−50 mm/year
was clearly observed from the descending measurement at the central zone over the ANZ
slope. At the same time, an unstable slope was detected on the right side of the ANZ
landslide. Most importantly, the time-series analysis of multiple sections over the reacti-
vated ANZ landslide showed that no obvious accelerations of deformation (precursory
deformation) were detected before the multi-hazard chain on 17 June 2020. However, after
the occurrence of the multi-hazard chain, obvious accelerations can be observed over the
ANZ slope, which suggested that the ANZ landslide entered the acceleration status after
the reactivation. Through comparing the Spatial-Temporal evolution between different
zones of the slope, it is evident that the ANZ landslide presented retrogressive failure mode.
The Spatial-Temporal evolution and deformation behaviour derived from the time-series
InSAR result suggested the occurrence of the ANZ landslide is not the result of a single
triggering factor due to heavy rainfall, but a joint effect of several preparatory factors,
including frequent seismic activities, serious wash-out, and erosion of the river and the
outburst flood and local terrain conditions.

Satellite SAR interferometry demonstrated its effectiveness and usefulness for map-
ping and monitoring the surface deformation caused by landslides over a long period. At
the same time, the optical remote-sensing technique can provide valuable supplementary
information about landslide features and extremely large deformation-of-slope move-
ments. On-going monitoring of the reactivated ANZ landslide is recommended as the ANZ
slope presented a clear acceleration after the multi-hazard chain. Therefore, continuous
monitoring of the slope is essential for the detection of further failure and for emergency
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response. Thus, further investigation of post-failure monitoring with the time-series InSAR
technique and optical time-series analysis with the POT technique will be studied in our
future research.
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