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Abstract: Unmanned air vehicle (UAV) based imaging has been an attractive technology to be used
for wind turbine blades (WTBs) monitoring. In such applications, image motion blur is a challenging
problem which means that motion deblurring is of great significance in the monitoring of running
WTBs. However, an embarrassing fact for these applications is the lack of sufficient WTB images,
which should include better pairs of sharp images and blurred images captured under the same
conditions for network model training. To overcome the challenge of image pair acquisition, a
training sample synthesis method is proposed. Sharp images of static WTBs were first captured, and
then video sequences were prepared by running WTBs at different speeds. The blurred images were
identified from the video sequences and matched to the sharp images using image difference. To
expand the sample dataset, rotational motion blurs were simulated on different WTBs. Synthetic
image pairs were then produced by fusing sharp images and images of simulated blurs. Finally,
a total of 4000 image pairs were obtained. To conduct motion deblurring, a hybrid deblurring
network integrated with DeblurGAN and DeblurGANv2 was deployed. The results show that the
integration of DeblurGANv2 and Inception-ResNet-v2 provides better deblurred images, in terms
of both metrics of signal-to-noise ratio (80.138) and structural similarity (0.950) than those obtained
from the comparable networks of DeblurGAN and MobileNet-DeblurGANv2.

Keywords: wind turbine blades; UAV; motion deblurring; training sample synthesis; end-to-end net-
work

1. Introduction

Wind power has become an important source of global renewable energy [1,2]. As
wind turbines (WTs) often fail in extreme environments, including sleet, wind gusts, and
lightning strikes [3], wind turbine blades (WTBs) monitoring, such as fault prognostics,
health monitoring, and early failure warning, etc., is deemed an important task to ensure
their maintenance of normal operation [4–8]. Since machine vision techniques have shown
great advantages in object detection and recognition, installing visual systems onboard
unmanned aerial vehicles (UAVs) is a promising labor-saving and remote sensing approach
for WTB surface inspection [5,9]. However, most reported UAV-based WTB detection
methods mainly focus on the failed WTs [10–12], using clear and sharp images. In practice,
the development of UAV- and vision-based inspection technology has much more value
aimed at acquiring the condition of WTBs for early failure warning and maintenance plan-
ning. Online remote-monitoring of the running WTBs will be faced with the troublesome
problem of motion blur artefacts in the acquired images, which would result in ineluctable
image quality degradation and detection errors. This prevents a good understanding of the
WTB status. The fluctuation in WTBs rotation speed and the positional instability of the
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UAV further increase the complexity and difficulty of online inspection. Thus, the problem
of motion blur artefacts on WTB images must be highlighted and better addressed.

Image restoration and image enhancement are two main approaches to effectively
improve image quality [13,14], which is helpful for product defect detection, machine health
monitoring, and fault diagnostics. Methods, for instance, the Lucy–Richardson algorithm,
the Wiener filter, and the Tikhonov filter, are commonly used for image restoration [15].
However, the image deconvolution operations included in these algorithms depend on
the given kernel parameters, among which the blur kernel for WTB images cannot be
exactly determined because it changes with the WTB motion conditions. Alternatively,
the blurring parameters can be estimated using the Gaussian scale mixture priors [16],
the variational Bayesian [17], and the motion flow density function [18]. However, these
estimation methods are not robust in different WT working conditions.

Learning-based image blur identification methods have emerged to the state that
different types of image blur can be removed [19,20]. For example, the convolutional
neural network (CNN) was used to improve the accuracy and efficiency of the blur ker-
nel estimation. After the identification of the image blur types, blurred images can be
restored via the non-blind deconvolution operation. Recently, deep learning models such as
DeepDeblur [21] and DeblurGAN [22] have been accepted as effective methods for image
restoration. These networks are trained using image pairs of sharp and blurred images, and
an end-to-end network is deployed to restore the blurred images to clarity status. Results
have indicated that DeblurGAN has a much higher processing efficiency than DeepDeblur.
To improve the deblurring performance, the DeblurGANv2 model was proposed [23] by
integrating the feature pyramid network (FPN) and the backbone network.

WTB images captured in dynamic conditions have different motion flow densities. In
addition, it is difficult to obtain the blur kernels using non-uniform blurring models. In
this study, we explore the process of generating a synthetic UAV image pair dataset that
can be used to effectively train the deep network for UAV-based WTB online inspection.
The flowchart of the dataset synthesis process is shown in Figure 1. Videos captured
from running WTBs are used in our study to obtain the blurred WTB images, which are
then matched with the sharp images having the same background to form the running
WTB image pairs. The sharp images are further combined with simulated motion flow
to synthesize blurred images to expand the sample dataset. With the synthetic WTB
image dataset, a hybrid network combining both DeblurGANv2 and Inception-ResNet-v2
(I-DeblurGANv2) is adopted for deblurring.
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The contributions of this work include:
(1) A training sample synthesis method is proposed to obtain image pairs, including

blurred and sharp images. An image matching algorithm is developed to acquire image
pairs. Synthetic image pairs are generated by combining sharp images with motion flow
data to expand the datasets in different scenes.

(2) A hybrid network is updated using the synthesized samples for motion deblur-
ring. Its deblurring performance is evaluated using UAV images captured in different
scenes compared with DeblurGAN and MobileNet-DeblurGANv2 (M-DeblurGANv2). The
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end-to-end processing capability is significant for the automatic damage inspection of
running WTBs.

The rest of the paper is organized as follows. The image pair acquisition process is
presented in Section 2. In Section 3, motion deblurring using DeblurGANv2 is described.
The experiment results are shown in Section 4, and the discussion is given in Section 5.
Section 6 presents the conclusion.

2. Synthetic Training Datasets

To train WTB image deblurring deep learning networks, image pairs, including blurred
images and sharp images, have to be acquired. Although a 6D camera [24] and a high-
speed camera such as the GoPro [21] can be used to clear images of a rotating target, their
applications are limited because of the time-consuming processing and high cost of the
hardware system. Meanwhile, the high-speed cameras cannot meet the requirement of
WTB monitoring with various motion speeds. In comparison, simulation with clear images
and blur kernel [20] can be applied in various motion scenes. Therefore, in our study,
two strategies are employed to acquire the image pair samples. The first one is employed
to capture image samples of the rotating blades using a digital camera; however, from
different available methods, the clear images and their corresponding blur images are
obtained using the image matching method. The second strategy is used to employ the
sample synthesis method to prepare the image pair datasets of WTBs.

2.1. Image Pair Acquisition by Image Matching

The experimental site setup for image pair acquisition is shown in Figure 2. A high-
performance UAV (e.g., DJI Mavic 2) and a digital camera (e.g., Sony A7M3) are used to
capture the WTB images. During the imaging process, the UAV is controlled to fly stably,
and the camera is fixed. Specifically, fine weather that has little influence on UAV image
acquisition is necessary. Based on these working conditions, sharp images are captured
from static WTBs. Then the WTBs are driven to rotate at different speeds, and the video of
the rotating WTBs is captured with the same background. Blurred images are subsequently
extracted from the video. Note that the sharp images are selected manually to ensure the
image quality. In addition, the WTB motions are manually intervened to make the blades
rotate in an exact orientation.
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Figure 2. Image pair acquisition setup: (a) Imaging with a stably controlled UAV; (b) Imaging with a
fixed camera.

The sample acquisition process captured the sharp and blurred images in the same
scene, and pairing is performed based on image matching, as shown in Figure 3. First,
the sampled images are segmented using the Otus method [25] to separate the target
blade regions from the image background. Different images in the blurred image sequence
are obtained using image differences. Second, the difference image with the minimum
difference is used to extract a blurred image to match the sharp image. Then, a sharp–
blurred image pair with the same background is obtained. Note that image noise, shaking
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of the UAV camera, and minor changes in the environment could affect the image matching
result. However, these influences can be suppressed by object segmentation and minimum
image difference processing.
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A dataset (dataset #1) containing five hundred image pairs is prepared using this
method. Three examples are shown in Figure 4. The blades have two lengths of 810 mm
and 1140 mm. The rotation speed of the blades is less than 7 rad/s. Videos in 2K-HD-format
are captured using DJI Mavic2. The backgrounds include the sky, grass, walls, trees, etc.
Videos are captured at 60 fps.
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2.2. Image Pair Acquisition by Sample Synthesis

In practice, it is difficult to obtain WTB image pairs from different working condi-
tions. To expand the datasets for training the motion deblurring network to improve
generalization, two image pair datasets (dataset #2 and dataset #3) are synthesized. Using
synthesis, continuous image frames are extracted from the videos and are fused to obtain
the blurred images.

Dataset #2 synthesis: Clear image frames are continuously extracted from the video
captured by a stationary high-speed camera. The corresponding blurred images are gener-
ated by averaging the image sequences. The Sony A7M3 (100 fps) and Iphone11 (240 fps)
are used to capture videos of rotating WTBs. The rotation speed is less than 1 rad/s;
33,300 images are extracted from the videos. Blurred images are generated by averaging
20 consecutive image frames. Finally, a total of 1500 image pairs are synthesized using the
captured video frames. Three examples are shown in Figure 5.
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Figure 5. Three example images from dataset #2.

Dataset #3 synthesis: The rotation motion of WTBs is simulated, and the simulated
motion flow data is merged into sharp images to produce the corresponding blurred images,
as shown in Figure 6. The sharp images include the samples captured in Section 2.1 and are
selected from public datasets, as shown in Figure 1, to simulate the practical applications
in different scenes. Since relative motions occur between the WTB region and the camera,
ROI segmentation is performed to extract the WTB region to eliminate the influence of
the image background. Afterwards, the rotation motion of the WTB is simulated, and the
simulated motion flow data is merged with the sharp images to produce blurred images.
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Figure 6. The image pair synthesis process.

The Otsu method is used to obtain the region of interest (ROI) mask of the WTB to
extract the segmented image. Then, the WTB edge is obtained through morphological
operations. A motion flow map containing rotation speed and direction is generated on the
target region to simulate the WTB motion flow. The blur length and angle of the motion
flow data are calculated using the blind deconvolution method reported in [20,26].

The schematic diagram of the motion flow simulation is shown in Figure 7. An x-y-z
(Cartesian) coordinate system is located at the leftmost point of the ROI mask. The x-y
plane is parallel to the imaging plane, and the z-axis is aligned and pointed away from the
camera focal axis. To simplify the simulation process, the WTB angular velocity is assumed
constant, and the motion plane is parallel to the imaging plane.
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where * denotes convolution operation, N is additive noise, α is a linear fusion factor; Iroi(i, 
j) and Iedge(i, j) represent the ROI mask and the target edge region. The pseudo-code of the 
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Figure 7. Schematic diagram of the motion flow simulation.

Hence, the motion scale s(i, j) and the motion angle θ(i, j) of the image pixel I(i, j) can
be written as:

s(i, j) = ω ‖ (i, j)− (ic, jc) ‖2 (1)

θ(i, j) = arctan[(j− jc)/(i− ic)] (2)

where ω is the angular velocity of the WTB rotation motion. The rotation is regarded as
clockwise when ω > 0 and is bounded by ||ω|| < 2 rad/s. Furthermore, ω can be replaced
by its tangent value [20], that is:

s(i, j) = 2 tan(ω/2) ‖ (i, j)− (ic, jc) ‖2 (3)

Since the simulated motion flow is parallel to the image plane, the direction of motion
flow can be divided into vertical and horizontal components, and they are:

U(i, j) = s(i, j) cos(π/2− θ(i, j)) (4)

V(i, j) = s(i, j) sin(π/2− θ(i, j)) (5)

where U(i, j) and V(i, j) are the horizontal and vertical motions of pixel I(i, j), respectively.
Based on the blind deconvolution method reported in [26], the kernel of the motion flow
map (Km) is defined as:

Km = δ(i sin θ + j cos θ)/ ‖ (U(i, j), V(i, j)) ‖2 (6)

where δ(·) is the Dirac Delta function. Motion process is simulated by merging the motion
kernel to sharp images (Is), and blurred images (IB) can be obtained as:

| Ib(i, j) = Km ∗ Is(i, j) + N(i, j), i f (i, j) ∈ Iroi(i, j)
| Ib(i, j) = α(Km ∗ Is(i, j) + N(i, j)) + (1− α)Is(i, j), i f (i, j) ∈ Iedge(i, j)
| Ib(i, j) = Is(i, j), otherwise

(7)

where * denotes convolution operation, N is additive noise, α is a linear fusion factor; Iroi(i,
j) and Iedge(i, j) represent the ROI mask and the target edge region. The pseudo-code of the
synthesis processing is presented in Algorithm 1.
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Algorithm 1 Blurred image synthesis

Operation: morphological dilation
⊕

morphological erosion �
Dirac Delta function δ(·)

Input: sharp image Is
ROI mask Isroi

central point (ic, jc)
additive noise N is uniformed to (0, 0.5)
morphological structuring element Se with size s
angular velocity ω, ranging in (0, 2)
linear fusion factor α

1: Idilate ← Isroi

⊕
Se

2: Iedge ← Idilate − Isroi � Se
3: Km ← 0
4: for each pixel (i, j) in Idilate do
5: s(i, j)← 2tan(2/ω) ‖ (i, j)− (ic, jc) ‖2
6: θ(i, j)← arctan[(j− jc)/(i− ic)]
7: U(i, j)← s(i, j)cos(π/2− θ(i, j))
8: V(i, j)← s(i, j) sin(π/2− θ(i, j))
9: if ‖ (i, j) ‖2<‖ (U(i, j), V(i, j)) ‖2 /2 then
10: Km ← δ(i sin(θ) + j cos(θ))/ ‖ (U(i, j), V(i, j)) ‖2
11: end if
12: end for
13: for each pixel (i, j) in Is do
14: if Isroi (i, j) == true then
15: IB ← Km ∗ Is + N
16: else if Iedge(i, j) == true then
17: IB ← α(Km ∗ Is + N) + (1− α)Is
18: else
19: IB ← Isroi

20: end if
21: end for
Output: blurred image IB

In this simulation stage, two thousand image pairs are synthesized using 701 images
selected from the public dataset “DTU-Wind Turbine UAV Inspection Images” [12] to
generate dataset #3. Three examples are shown in Figure 8 with the fusion factor α = 0.75
and the kernel size s = 5. Different rotating speeds are also synthesized.
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3. Hybrid Motion Deblurring Network

As mentioned in the literature review, end-to-end networks such as DeepDeblur,
DeblurGAN, and DeblurGANv2 are effective image motion deblurring models. Deblur-
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GANv2 has better performance in accuracy and effectiveness. Hence, DeblurGANv2 is
built to remove the motion blur from WTB images, and the process is shown in Figure 9.
The model contains two sub-networks: the generator and the discriminator. The blurred
images are used as the input, and the generator estimates the sharp images. The discrimi-
nato calculates the similarity between the restored images and the expected sharp images.
The two sub-networks are updated based on their corresponding network loss values. The
network loss, including the generator loss and the discriminator loss, is calculated using
the RaGAN loss [23], the perceptual loss [27], and the mean square error (MSE) loss. After
the model is trained, the generator is applied for image restoration, and the discriminator
is frozen.
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3.1. Generator

Inception-RestNet-v2 and MobileNet can be used to establish the generator of De-
blurGANv2, which are respectively denoted as InceptionRestNetv2-DeblurGANv2 (I-
DeblurGANv2) [23] and MobileNet-DeblurGANv2 (M-DeblurGANv2) [28]. Due to the
higher accuracy, I-DeblurGANv2 is built for WTB image processing, and its generator struc-
ture is shown in Figure 10. The model can directly connect the input layers to the output
layers through a residual network. The FPN includes 5 pooling layers, 18 convolutional
layers, and 6 up-sampling layers, which consist of the bottom-top and top-down pathways.
The bottom–top pathway is used to extract image features and compress the semantic
context information. Then a top-down pathway is used to increase the spatial resolution
of the output from the semantic layers. The cross-link between the bottom-top and top-
down pathways provides high-resolution feature details that help detect and localize the
target objects. In addition, the FPN model can achieve high processing efficiency from the
multi-scale aggregation of extracted features.
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3.2. Discriminator

The purpose of motion deblurring is to improve the image quality for automatic and
precise WTBs inspection. Thus, it is necessary to obtain detailed information for surface
damage detection. The receptive field of PatchGAN [29] focuses on the local interest regions
of the input images; thus this network is used to establish the discriminator model, which
prompts the generator to extract the image texture details.

Generally, the motion blur is unevenly distributed in a WTB image. The local blade
regions must be identified using the discriminator to estimate the similarity of the restored
images and the actual clear images. Thus, the discriminator is constructed as an eight-layer
depth network to obtain a larger receptive field; the structure is shown in Figure 11. A
sharp image and a restored image are used as the input; the network outputs the similarity
values after the eight-layer convolutional operations. The step sizes of the first six and the
last two convolution layers were set to 2 and 1, respectively.
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3.3. Loss Function

The generator is designed to minimize the differences between restored images and
sharp images. However, the embedded discriminator maximizes this difference. These
operations may lead to gradient vanishing or explosions [30]. To address this problem,
and because motion blur is produced mainly in the blade regions, a global discriminator is
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constructed to avoid network learning in local background areas. The RaGAN loss is used
as the discriminator loss (Ld) to provide high-quality perceptual and clear outputs, and the
loss is defined as [23]:

Ld = EIs

[(
D(Is)− EG(Ib)

D(G(Ib))− 1
)2
]
+ EG(Ib)

[
(D(G(Ib))− EIsD(Is) + 1)2

]
(8)

where D(·) is the discriminator output, G(·) is the generator output, and EIs and EG(Ib) are
the expectation values of the probability distributions of Is and G(Ib).

For generator update, the MSE loss, discriminator loss, and perceptual loss are
weighted to compose the generator loss function (Lg), that is:

Lg = α1Lmse + α2Lp + α3Ld (9)

where α1, α2 and α3 are weights that are usually set to 0.5, 0.006 and 0.01, respectively [23].
Lmse represents the mean square error of the generated image and the sharp image, LP
represents the visual perception error [27] expressed by the L2 distance of the depth
feature map between the generated image and the expected output image. Lmse and Lp are
calculated by:

Lmse =
1

HW

H

∑
i=1

W

∑
j=1
‖ Is(i, j)− G(Ib(i, j)) ‖2 (10)

Lp =
1

W3,3H3,3

W3,3

∑
x=1

H3,3

∑
y=1
‖ Φ(Is)(x, y)−Φ(G(Ib))(x, y) ‖2 (11)

where W and H are the width and height of the input image, respectively; Φ(·) is the image
feature map obtained from the third convolution layer of the VGG-19 network, which is
trained using the ImgeNet samples [31]; W3,3 is the map width, and H3,3 is the map height.

4. Experimental Results

Based on the process described in Section 2, three datasets containing 4000 synthetic
image pair samples were acquired. Among these, the number of samples in 0–2 rad/s,
2–4 rad/s, and 4–7 rad/s are 2456, 979, and 565, respectively. In this work, 20% of all the
samples are used as testing samples. In this case, only 113 image pairs in 4–7 rad/s are used
for testing. Accordingly, 113 image pairs are selected from the image pairs in 0–2 rad/s,
2–4 rad/s as testing samples to ensure the sample balance. Therefore, a total of 339 image
pairs were randomly chosen to test the network model; the remaining 3661 image pairs were
used as the training samples. The image resolution of all image pairs is 600 × 800 pixels.
The computer system used was an Intel Core i5-9400F CPU with 16 GB RAM, integrated
with an NVIDIA GeForce GTX 1660 graphics card.

To evaluate the performance of motion deblurring networks, a comparative experiment
was conducted using DeblurGAN [22], M-DeblurGANv2 [28], and I-DeblurGANv2 [23].
These three network models were trained in a single batch. The learning rate of the
generator and the discriminator was initially set to 1Ee-4 and then reduced to zero during
the training process. As the image restoration results are influenced by the rotation speed
of the WTBs, the test samples were classified into three groups with rotational angular
velocities of 0–2 rad/s, 2–4 rad/s, and 4–7 rad/s. Figures 12–14 show the motion deblurring
results of the three groups using the aforementioned three networks.

In Figures 12 and 13, the images restored using I-DeblurGANv2 provide clearer and
more detailed blade surface characteristics, including scratches, notches, cracks, and erosion
marks. In Figure 14, more edge artefacts were generated in the restored images than in
Figures 12 and 13. Comparing the images in the third column in Figure 13 with the images
in the second and third column in Figure 14, the DeblurGAN produces pseudo colors and
artefacts on the WTB surfaces. In Figures 13d and 14d, the blade edges were distorted
from the M-DeblurGANv2 process. In contrast, I-DeblurGANv2 maintains clearer and
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smoother edges and texture information of the blade surfaces. Artefacts are difficult to
avoid during motion deblurring. A higher degree of blur produces more artefacts. Thus,
the image motion deblurring method has a limited application in WTB monitoring when
the blade speed is higher than 7 rad/s.
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Figure 13. Motion deblurring results for images captured with a rotational angular velocity of
2–4 rad/s (the blur length increases from left to right column): (a) Blurred images; (b) Sharp im-
ages; (c) Restored images using the DeblurGAN; (d) Restored images using the M-DeblurGANv2;
(e) Restored images using the I-DeblurGANv2.
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Figure 14. Motion deblurring results for images captured with a rotational angular velocity of
4–7 rad/s (the blur length increases from left to right column): (a) Blurred images; (b) Sharp im-
ages; (c) Restored images using the DeblurGAN; (d) Restored images using the M-DeblurGANv2;
(e) Restored images using the I-DeblurGANv2.

The metrics of the peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) [32–34] were used to quantitatively measure the restoration effectiveness. A larger
PSNR indicates that the restored image G(Ib) is closer to that of the sharp image Is. The
SSIM ranges from 0 to 1. A larger SSIM indicates that the structure of G(Ib) is more similar
to that of Is. PSNR and SSIM can be calculated from:

PSNR(Is, G(Ib)) = 10 log10
2552

Lmse
(12)

SSIM(Is, G(Ib)) =
(2µSµG + c1)(2σSG + c2)(

µ2
S + µ2

G + c1
)(

σ2
S + σ2

G + c2
) (13)

where µS and µG are the averages of Is and G(Ib), respectively; σS and σG represent the
deviations of Is and G(Ib), respectively; σSG is the covariance of Is and G(Ib). c1 and c2 are
constants usually set to 6.5025 and 58.5225, respectively [33].

Table 1 present the PSNR and SSIM values for G(Ib) with different rotational veloc-
ities. The I-DeblurGANv2 model produces the highest PSNR (80.138) and SSIM (0.950).
The PSNR (86.128, 77.609, and 76.676) and SSIM (0.975, 0.940, and 0.908) with different
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rotational speeds obtained by the I-DeblurGANv2 are also the highest, indicating that the
I-DeblurGANv2 model performs well in preserving object edge details, smoothness, and
texture information, which are significant for WTB surface damage inspection.

Table 1. PSNR and SSIM of G(Ib) with different rotational velocities.

Network Model
PSNR SSIM

0–2 rad/s 2–4 rad/s 4–7 rad/s Average 0–2 rad/s 2–4 rad/s 4–7 rad/s Average

DeblurGAN 80.922 74.179 72.355 75.819 0.953 0.846 0.766 0.855
M-DeblurGANv2 85.179 76.871 75.523 79.191 0.975 0.932 0.896 0.934
I-DeblurGANv2 86.128 77.609 76.676 80.138 0.975 0.940 0.908 0.950

The efficiencies of the three models were measured quantitatively (see Table 2). It
can be seen that DeblurGAN has the lowest efficiency for image restoration (0.389 s). The
processing time using I-DeblurGANv2 was 0.189 s, which is greater than that with M-
DeblurGANv2 (0.105s). As shown in Table 2, the M-DeblurGANv2 model is a lightweight
network that must operate 3.1 M parameters. The space consumption of the I-DeblurGANv2
model is 66.6 M parameters, leading to lower processing efficiency.

Table 2. Efficiency of the three models.

Network Model Number of Parameters Average Running Time

DeblurGAN 11.7 M 0.389 s
M-DeblurGANv2 3.1 M 0.105 s
I-DeblurGANv2 66.6 M 0.189 s

5. Discussion

Various blur scales and working in different scenes, including grassland, desert,
mountain, and sea, are two main causes of difficulty and complexity for real-time WTB
monitoring. For reliable and effective WTB inspection, different kinds of image pair samples
with various blur scales are necessary to be captured in different scenes to train the proposed
hybrid network to improve its generalization ability. It should be noted that clear and blur
image pairs captured by digital cameras cannot be exactly matched because of dynamic
environments. Accordingly, sample synthesis methods are more attractive to simulate the
motion-blur WTB images. Image fusion algorithms and motion blur simulation can be
combined together to acquire different kinds of image pairs.

It should also be noted that manual intervention is still required during image pair
acquisition. First, sharp images are manually selected from the captured images using
UAVs and digital cameras to guarantee the image quality. Second, the running motions
of WTBs need to be controlled to make sure that the blurred images can be matched to
the sharp images. Correspondingly, the human cost is an important problem to push
forward this work. This also indicates that the generated datasets have great values for
WTB monitoring.

With the available synthetic datasets, the proposed hybrid network, I-DeblurGANv2,
provides high image quality both in PSNR and SSIM. This indicates that the proposed
WTB image restoration model based on I-DeblurGANv2 is more suitable for maintaining
detailed image information for WTB damage detection. In this study, the proposed method
was verified to process blurred images sampled with a rotational velocity of less than
7 rad/s. Further research will be conducted to address blurred images with higher WTB
rotation velocities. In addition, processing efficiency is also important for the real-time
monitoring of running WTBs. However, a longer processing time (0.189 s of each image) is
needed with our network than with M-DeblurGANv2 (0.105 s of each image). Therefore,
the I-DeblurGANv2 model is necessary to be optimized by referencing a lightweight deep
learning network to improve its efficiency.
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6. Conclusions

In this study, we investigated the motion blur removal problem for UAV-based running
WTBs images with the hybrid end-to-end network I-DeblurGANv2. A new large dataset
including sharp-blurred image pairs of running WTBs was collected using a synthesis
method. Specifically, three procedures were performed: (a) Blurred images were extracted
from videos captured with rotational movement and matched to sharp images captured
under static conditions based on minimizing the image difference; (b) Clear image frame
sequences captured with a high-speed camera were used to produce synthetic blurred
images; (c) The WTB movements were simulated to obtain motion flow parameters, and
sharp images were synthesized with these parameters to produce blurred images. After
the training and testing of the networks, the hybrid I-DeblurGANv2 model demonstrated
better performance than the DeblurGANv2 and M-DeblurGANv2 models in terms of the
PSNR and SSIM. This indicates that the proposed WTB image restoration model based
on I-DeblurGANv2 is more suitable for maintaining detailed image information for WTB
damage detection. It cannot be denied that our method behaves well at a little cost of time.
Therefore, it is essential to investigate a more lightweight network framework that can be
used for real-time WTB monitoring.
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