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Abstract: Existing red tide detection methods have mainly been developed for ocean color satellite
data with low spatial resolution and high spectral resolution. Higher spatial resolution satellite images
are required for red tides with fine scale and scattered distribution. However, red tide detection
methods for ocean color satellite data cannot be directly applied to medium–high spatial resolution
satellite data owing to the shortage of red tide responsive bands. Therefore, a new red tide detection
method for medium–high spatial resolution satellite data is required. This study proposes the red
tide detection U−Net (RDU−Net) model by considering the HY−1D Coastal Zone Imager (HY−1D
CZI) as an example. RDU−Net employs the channel attention model to derive the inter−channel
relationship of red tide information in order to reduce the influence of the marine environment on
red tide detection. Moreover, the boundary and binary cross entropy (BBCE) loss function, which
incorporates the boundary loss, is used to obtain clear and accurate red tide boundaries. In addition,
a multi−feature dataset including the HY−1D CZI radiance and Normalized Difference Vegetation
Index (NDVI) is employed to enhance the spectral difference between red tides and seawater and
thus improve the accuracy of red tide detection. Experimental results show that RDU−Net can
detect red tides accurately without a precedent threshold. Precision and Recall of 87.47% and 86.62%,
respectively, are achieved, while the F1−score and Kappa are 0.87. Compared with the existing
method, the F1−score is improved by 0.07–0.21. Furthermore, the proposed method can detect red
tides accurately even under interference from clouds and fog, and it shows good performance in the
case of red tide edges and scattered distribution areas. Moreover, it shows good applicability and can
be successfully applied to other satellite data with high spatial resolution and large bandwidth, such
as GF−1 Wide Field of View 2 (WFV2) images.

Keywords: red tide detection; remote sensing; U−Net convolutional neural network; HY−1D CZI

1. Introduction

Red tides refer to harmful algal blooms (HABs) that constitute a marine ecological
disaster resulting from excessive reproduction or accumulation of plankton, protozoa, or
bacteria that cause water discoloration [1,2]. Red tide outbreaks are a threat to fisheries,
marine ecosystems, and human health [3–6]. The dominant phytoplankton which caused
red tide in China include dinoflagellates (such as Noctilucent scintillans [7], Prorocentrum
donghaiense (P. donghaiense) [8], Alexandrium catenella [9]), and diatom (such as Skeletonema
costatum (S. coatatum) [10]). In recent years, red tides have been found to occur more
frequently as a result of eutrophication [11–14]. According to statistics, in 2019 alone, a
total of 38 large−scale red tides occurred in China, resulting in direct economic losses of up
to USD 4.86 million [15]. Automatic detection and monitoring of red tides is important for
red tide prevention and reduction.
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Red tide detection and monitoring methods include in situ surveys and remote sens-
ing [16]. Owing to its wide range and short revisit period, remote sensing technology has
played an important role in red tide detection and monitoring [17–19]. Multiple ocean color
satellites, including the Coastal Zone Color Scanner (CZCS, NASA), Sea−Viewing Wide
Field–of–View Sensor (SeaWiFs, NASA), Moderate Resolution Imaging Spectroradiometer
(MODIS, NASA), Visible and Infrared Imager Radiometer Suite (VIIRS, NASA), Medium
Resolution Imaging Spectrometer (MERIS, ESA), and Geostationary Ocean Color Imager
(GOCI, South Korea), have been used for red tide detection and monitoring. However,
the spatial resolution of such ocean color satellite data is too low (>250 m) to detect red
tides with fine scale and scattered distribution [20]. Therefore, remote sensing images
with medium–high resolution have been increasing in use in red tide detection [21]. In
recent years, China has launched a series of remote sensing satellites with medium–high
resolution. For example, HY−1D, China’s fourth ocean optical satellite, was launched in
June 2020. The CZI onboard HY−1D, with a spatial resolution of 50 m, wide swaths of
950 km, and a revisit period of 3 days, has been increasingly used for monitoring marine
disasters including red tides.

Most existing red tide detection methods based on spectral features have been de-
veloped for ocean color satellites, such as the red tide index (RI) [22], P. donghaiense index
(PDI), and diatom index (DI) [23], as well as a series of improved RI algorithms [24,25]. Of
these, the RI is calculated by three bands at 443, 510, and 555 nm. PDI and DI utilize the
443, 510, and 555 nm bands and the 488, 531, and 555 nm bands, respectively. Studies have
also attempted to use the chlorophyll−a concentration, bio−optical properties of seawater,
or fluorescence line height (FLH) as alternative indicators of red tides [26–28]. However,
due to without corresponding bands, these red tide monitoring methods cannot be directly
applied to remote sensing satellite data with medium–high spatial resolution, such as
HY−1D CZI images for limited bands (R, G, B, and NIR) and broad bandwidth. Some red
tide detection algorithms have been developed for remote sensing satellites with medium–
high spatial resolution. For example, the spectral shape at 490 nm from multiple sensor
data, including Sentinel−2 MSI and Landsat OLI, was used by Shin et al. [29] to detect red
tides of M. polykrikoides near the Korean Peninsula with high performance. Liu et al. [20]
proposed a red tide detection algorithm (GF1_RI algorithm) for broad band satellite data
with high spatial resolution using GF−1 WFV data, which was successfully applied to the
red tide of Noctilucent scintillans detection and monitoring in Guangdong and Shandong
provinces, China. These studies verified the red tide detection capability of images with
medium–high spatial resolution with broad bandwidth. However, the aforementioned
methods usually require a predetermined threshold to diagnose red tides effectively, and
the selection of the threshold is strongly region−dependent and susceptible to the marine
environment. For example, the threshold may be invalid when the image is contaminated
by clouds, sun glint, or aerosols. Therefore, it is necessary to develop an automatic red tide
detection method for images with medium–high spatial resolution without a threshold.

Deep learning [30] has been widely used in remote sensing applications such as remote
sensing image classification [31–33], target recognition [34,35], and image fusion [36].
Owing to its powerful large data mining and feature extraction capabilities [37], deep
learning has also been applied to red tide detection with good results. Most existing red
tide detection methods based on deep learning use hyperspectral images [38,39], synthetic
dataset based Inherent Optical Properties (IOP) combinations [40], and in situ data [41],
which have rich red tide features and response bands. However, owing to the low spectral
resolution, the spectral information of satellite data with medium–high spatial resolution
is not as rich as that of hyperspectral data. As a nonlinear method with powerful data
mining capability, deep learning is expected to extract more red tide features from satellite
data with medium–high spatial resolution and detect red tide ranges more accurately.
Considering the red tide of Noctilucent scintillans that occurred in the East China Sea in
August 2020 which reported by the National Satellite Ocean Application Service (NSOAS)



Remote Sens. 2022, 14, 88 3 of 20

as an example, this study proposes an advanced red tide detection method based on the
U−Net model, namely RDU−Net.

The remainder of this paper is organized as follows. Section 2 introduces the satellite
data and related methodology. Section 3 presents the proposed method, namely RDU−Net,
and the experimental results. Section 4 discusses the effects of the loss function coefficients
and input characteristics on the proposed model. Finally, Section 5 concludes the paper.

2. Materials and Methods
2.1. Satellite Data

Noctilucent scintillans red tide occurred in the East China Sea in August 2020, as
reported by the National Satellite Ocean Application Service (NSOAS) [42] (Figure 1a).
The HY−1D CZI Level−1B data (Figure 1b) imaged during this red tide were acquired
from NSOAS. The CZI characteristics are summarized in Table 1. Compared with ocean
color satellites with spatial resolution >250 m, HY−1D CZI has an obvious advantage
owing to its spatial resolution of 50 m. Furthermore, CZI has the advantages of wide
swaths (950 km) and a short revisit period (3 days). Therefore, CZI has been widely used in
marine monitoring.

Figure 1. Study area (a), HY−1D Coastal Zone Imager (CZI) (b), and GF−1 Wide Field of View
(WFV) (c) images used in this study. The images are true color composites of bands 3(R), 2(G), and
1(B). The red boxes in (b,c) represent areas of red tide outbreaks. And the lower−right image of (b) is
the enlarged HY−1D CZI image where the red tide outbreak.
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Table 1. Sensor characteristics of HY−1D Coastal Zone Imager (CZI) and GF−1 Wide Field of
View (WFV).

Sensor Band
Number

Spectral
Range
(nm)

Central
Wavelength

(nm)

Resolution
(m)

Swath
(km)

Revisit Cycle
(Day)

HY−1D
CZI

1 420–500 460

50 950 3
2 520–600 560
3 610–690 650
4 760–890 825

GF−1
WFV

1 450–520 485

16 800 4
2 520–600 560
3 630–690 660
4 760–900 830

To explore the applicability of the proposed method, GF−1 Wide Field of View
(WFV) data were acquired from China’s Center for Resource Satellite Data and Appli-
cation (CRESDA) [43] in this study. As a representative Chinese high−resolution satellite,
the GF−1 with four WFV cameras was launched in 2013. GF−1 WFV also has the advan-
tage of high spatial resolution (16 m), wide scene swaths (800 km), and a short revisit period
(4 days). Therefore, GF−1 WFV images are often used in marine monitoring. The sensor
characteristics of GF−1 WFV [44] are summarized in Table 1. The GF−1 WFV2 Level−1
data are shown in Figure 1c. The detailed information of the two images is summarized in
Table 2.

Table 2. Detailed information of HY−1D CZI and GF−1 WFV images.

Sensor Date Longitude Latitude Function

HY−1D CZI August 17 2020 123◦36′53′′–
125◦31′17′′

31◦58′20′′–
33◦17′11′′

Algorithm design and
verification

GF−1 WFV August 15 2020 122◦57′07′′–
125◦46′19′′

31◦30′53′′–
33◦44′35′′

Exploration of algorithm
applicability

2.2. Dataset Construction

Considering the distribution characteristics of different objects in the study area,
three areas were selected when constructing the training sample dataset, as shown in
Figure 2. The true values (Figure 2b) were obtained on the basis of visual interpretation.
Moreover, considering the computer memory and speed, the input sample size of the
model was set to 256× 256. Therefore, the images and corresponding labels were randomly
divided into sample images with a size of 256 × 256 pixels. A total of 680 samples were
generated. Furthermore, three types of data augmentation were adopted to obtain sufficient
training data and avoid overfitting, including horizontal flip, vertical flip, and diagonal
flip. Therefore, a dataset containing 2720 samples was established and randomly divided
into training (80%) and validation (20%) datasets.

2.3. Related Methodology
2.3.1. U−Net Model

U−Net is an improved fully convolutional network proposed in 2015 by Ronneberger
et al. [45] for the semantic segmentation of biomedical images. U−Net has been widely used
in medical diagnosis [46,47], remote sensing [48], and other fields [49,50] as a pixel−wise
prediction model that can be trained in an end−to−end manner. Owing to context−based
learning, U−Net can propagate context information to higher resolution layers to build
high level features for precise detection. Moreover, U−Net can support image segmentation
with a few samples. Therefore, research on red tide detection has been carried out on the
basis of the U−Net model.
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Figure 2. Location of training samples (a) and corresponding true values (b). The HY−1D CZI
images are true color composites of bands 3(R), 2(G), and 1(B). The red pixels in (b) represent red
tides, while the black pixels represent seawater and clouds.

The structure of U−Net is mainly divided into an encoder and a decoder, which can
be represented by a U−shaped diagram. Unlike a general convolutional network, U−Net
does not have any fully connected layers and uses only the valid part of each convolution.
The encoder path is also known as the contracting path. It is used to extract features
from the input image following the typical architecture of a convolutional network. It
consists of five blocks, each of which includes two convolutions (unpadded convolutions),
an activation function, and a max pooling layer for down−sampling. In each block of the
encoder, the receptive field size is increased, the output size is halved, and the number
of feature channels is doubled. The decoder path is also known as the expansion path. It
consists of up−convolutions and concatenations with features from the contracting path.
Every block in the decoder path consists of an up−sampling, a concatenation with the
correspondingly cropped feature map from the contracting path, and two convolutions,
each followed by an activation function. The output of the decoder path consists of the
category and localization, i.e., a category label (red tide or not) is assigned to each pixel.

2.3.2. Comparison Methods

For comparison, three convolutional neural networks (including U−Net), a machine
learning method (SVM), and a spectral ratio method (GF1_RI) are selected in this study.
The details of each algorithm are as follows:

(1) Fully Convolutional Neural Networks (FCN)
The fully convolutional neural network (FCN) [51] has achieved good results. It

adopts the skip architecture to combine semantic information from a deep, coarse layer
with appearance information from a shallow, fine layer in order to produce accurate and
detailed segmentations. A series of networks developed on the basis of FCN have confirmed
its strong generalization ability [52]. FCN includes three networks: FCN−32s, FCN−16s,
and FCN−8s.
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FCN−8s is an advanced version of FCN−32s and FCN−16s, and it outperforms
FCN−16s and FCN−32s in image segmentation. Thus, FCN−8s was selected for com-
parative experiments. Furthermore, FCN−8s does not have fully connected layers. The
classification at the image label is extended to the pixel label by modifying fully connected
layers into convolutional layers.

(2) SegNet
SegNet [53] is a deep network for image semantic segmentation, which is similar to

FCN. SegNet was designed for scene segmentation with high learning speed and accuracy
using a highly unbalanced dataset [46]. The dataset used in this study was also unbalanced.
Hence, SegNet was chosen for comparison. The architecture of SegNet consists of encoder
and decoder processes. The encoder process involves image compression and feature
extraction using the rectified linear unit (ReLU) [54] during activation. Upon its completion,
the decoder process restores the image. Image spatial information is maintained during
the decoder process, as image restoration is performed using the same pooling layer as
that in the encoder process. This feature of SegNet distinguishes it from FCN. When the
image reconstruction is complete, the image is classified using a softmax function [47].
Compared with the corresponding structure of FCN, the volume of SegNet is much smaller
mainly because of the operation performed by SegNet to balance the computational ef-
fort: the location information of the recorded pooling process is used instead of a direct
deconvolution operation.

(3) SVM
SVM is a kernel−based supervised classification algorithm proposed by Cortes and

Vapnik [54]. It has been shown to be a powerful machine learning algorithm for pattern
recognition and nonlinear regression, and it is mainly used for classification, regression,
and time−series prediction [55,56]. The basic idea of SVM is to find the optimal hyperplane
that can correctly partition the training dataset with the maximum geometric spacing,
as follows:

f (Xi) =
N

∑
i=1

Wi ϕ(Xi) + b (1)

where ϕ(Xi) is the nonlinear mapping function, and Wi and b are the linear support vector
regression function parameters.

The common kernel functions in SVM include the linear kernel, polynomial kernel, and
Gaussian kernel [57]. Among them, only the Gaussian kernel needs to adjust its parameters
to achieve the best performance. The parameters of the Gaussian kernel function include
the penalty factor c and kernel width γ. Smaller values of c and γ will increase the training
error, while larger values will increase the complexity of the model and lead to overfitting.
In this study, the optimal parameters of the model were c = 2.0 and γ = 4.0.

(4) GF1_RI
GF1_RI is a red tide detection method for GF−1 WFV images proposed by Liu [20]

according to the spectral characteristics of red tides. The clouds, turbid water, and con-
struction regions in the image are first masked according to the spectrum of blue and green
bands; then, the red tide area is detected using the GF1_RI index as follows:

GF1_RI = L3− (L2 + L4)/2 (2)

where L2, L3, and L4 represent the radiance values of the green, red, and NIR
bands, respectively.

2.3.3. Accuracy Evaluation

The performance of the proposed method was evaluated using four criteria, including
Precision, Recall, F1−score, and Kappa. Precision is the ratio of red tide pixels accurately
detected to all red tide pixels identified. Recall represents the percentage of pixels classified
as red tides that are correctly classified. F1−score is an indicator of the accuracy of the
red tide detection method, which combines precision and recall. The kappa coefficient is a
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type of accuracy evaluation index used to measure the consistency of the red tide detection
results with greater objectivity. The calculation methods are given below:

Precision =
TP

TP + FP
× 100% (3)

Recall =
TP

TP + FN
× 100% (4)

F1− score = 2× Precission× Recall
Precession + Recall

(5)

Kappa =
TP + TN

(TN + FP)× (TN + FN) + (FN + TP)× (FP + TP)
(6)

where TP and FP denote the true positive and false positive, i.e., the number of red tide and
non−red tide pixels identified as red tide, respectively; FN denotes the false negative, i.e.,
the number of red tide pixels identified as non−red tide; and TN denotes the true negative,
i.e., the number of non−red tide pixels correctly identified as non−red tide.

3. RDU−Net Model for Red Tide Detection
3.1. RDU−Net Model Framework

Owing to limitations in terms of the bands and spectral resolution, red tide detection
for satellite images with medium–high resolution requires strong feature representations,
especially for red tides with fine scale and scattered distribution. In addition, U−net
is not effective in extracting detailed information of red tides [58], such as the red tide
boundary. Therefore, RDU−Net is proposed by incorporating channel attention and
improving the loss function on the basis of traditional U−Net. Furthermore, some layers
are also added in RDU−Net to improve the training performance. The batch normalization
(BN) layer [59] can achieve a stable distribution of activation values throughout training,
thereby accelerating the model convergence and increasing the model capacity. Moreover,
to make the output image size consistent with the input image size, the same strategy is
adopted to replace the valid part in the padding. In addition, as the model training in
this study is based on a small training set, a dropout layer is added before up−sampling
to avoid overfitting. This design retains the information lost by down−sampling to a
certain extent.

The RDU−Net model framework is shown in Figure 3.

Figure 3. RDU−Net model framework. The blue and red boxes represent the convolutional and
up−convolutional layers, respectively.
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3.1.1. Channel Attention Model

Red tides have different spectral characteristics in different bands (channels). Mining
the inter−channel features can facilitate red tide information detection. However, the
convolutional layer extracts feature by blending cross−channel and spatial information
together [60,61]. In recent years, the attention model has also been widely used in deep
learning networks to improve the performance. Channel attention can automatically obtain
valuable features by learning and exploring the inter−channel relationships. Therefore,
this study uses channel attention to generate the channel attention map by exploring the
characteristic relationship between channels, and greater attention is paid to the red tide
formation between different channels.

The channel attention module integrates MaxPool and AvgPool to enrich the extracted
high−level features and considerably improve the representation capability of the network.
The channel attention framework is shown in Figure 4.

Figure 4. Channel attention model.

The channel attention module can be expressed as follows:

FCA = FFM ⊗ σ(MLP(FMP)⊕MLP(FAP)) (7)

where FFM denotes the feature map from the convolution block and FCA denotes the
channel attention map; FMP and FAP represent the feature map obtained by the MaxPool
and AvgPool operations, respectively; σ denotes the activation function; and ⊕, ⊗ denote
element addition and multiplication, respectively.

First, two feature maps are obtained by applying the MaxPool and AvgPool operations
to the input features. Second, the two maps are input to the multi−layer perceptron (MLP)
with one hidden layer. Third, the output feature vectors are merged and activated by the
element−wise summation and activation function. Finally, the channel attention map is
obtained by multiplying the output feature vectors by the feature map obtained by the
convolution block.

3.1.2. Boundary and Binary Cross Entropy Loss Function

For unbalanced red tide samples, i.e., when the number of positive (red tide) and
negative samples (background) varies considerably, using only the loss function based on
the regional integrals can affect the performance of model training and red tide boundary
detection [62]. The boundary loss function can alleviate the difficulty arising from unbal-
anced red tide samples. Therefore, to achieve red tide edge detection with greater accuracy
and clarity, the boundary and binary cross entropy (BBCE) loss function, which combines
the boundary and region information, was chosen in this study.
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The boundary loss function [63] is proposed by calculating the distance between the
boundaries in a differentiable form:

Dist(∂G, ∂S) = 2
∫

∆S
DG(q)dq (8)

where G and S are two nearby regions; ∂G and ∂S are boundaries of G and S; ∆S represents
the region between ∂G and ∂S; and DG(q) denotes the distance between any point q and
the nearest point on ∂G.

Subsequently, the sum of the region integrals represented by the boundary−based
level set φG is calculated, and the final loss value is obtained by outputting the binary
variables Sθ(q) through the softmax probability of the network as follows:

LB(θ) =
∫

Ω
φG(q) sθ(q)dq (9)

In this study, the BCE loss function is used to measure the loss value of the region
as follows:

LBCE =
1
N

N

∑
n=1
−w[yn · log xn + (1− yn) · log(1− xn)] (10)

where w is a hyper−parameter, and x and y are the predicted result and true label, re-
spectively. By incorporating the boundary loss, the loss function LBBCE makes the training
consider the accuracy of the boundary:

LBBCE = αLBCE + (1− α)LB (11)

where α is an arbitrary weight belonging to [0, 1].

3.2. Flowchart of Red Tide Detection Based on RDU−Net Model

Figure 5 shows the overall flowchart of the proposed method.

Figure 5. Flowchart of the proposed method.
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3.2.1. Data Preprocessing

Data preprocessing includes geometric correction, feature combination, and data
normalization. In this study, we used ENVI 5.3 software to perform geometric correction.

High−resolution remote sensing images contain more intricate details and texture
information. However, owing to the limitation of band configuration, it is difficult to
distinguish features (such as turbid water) similar to red tides. Moreover, the separability
of the spectral information of red tides and seawater is weak at the red tide edges. From the
spectral curves of the selected samples, it can be seen that the red tides respond strongly
in the red and NIR bands. Therefore, NDVI was introduced to enhance the spectral
information of red tides. NDVI is calculated as:

NDVI =
R(NIR)− R(R)
R(NIR) + R(R)

(12)

where R(NIR) and R(R) denote the radiance values of the near−infrared and red bands,
respectively. As shown in Figure 6b, the statistics results show that the NDVI of red tides
is significantly different from that of other objects such as seawater. Therefore, NDVI is
taken as the input feature in this study. The average NDVI values were all less than 0,
among which that of seawater was the lowest with the minimum variance, followed by
red tides. By using the multi−feature multispectral data, which combines the original
multispectral data (four bands) and NDVI, high level information can be extracted. The
spatial information of seawater is suppressed, and the spectral differences between red
tides and seawater are increased.

Figure 6. Statistical results of different objects. (a) Radiance spectral curves and their standard
deviation; (b) NDVI value.

To unify the dimensions of multiple features, the maximum and minimum value
normalization method [64] was adopted to normalize the gray value of the preprocessed
image and samples to [0, 1]. The algorithm is given by:

x∗ =
x− xmin

xmax − xmin
(13)

where x* represents the normalized vector, x is the sample spectral vector, and xmax and
xmin are the maximum and minimum values of the sample spectral vector, respectively.

3.2.2. Splicing Method Based on Ignoring Boundary

Splicing method based on ignoring boundary is used to avoid the obvious stitching
marks. Following steps were performed to achieve the detection of the red tide.
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Step 1: Calculate the step size of image cropping by setting the ratio of the splicing
area to the input area. The formula is as follows.

s = n×OL_ratio (14)

where s represents the step size during image cropping, OL_ratio represents the ratio of the
splicing area to the input area, and n represents the width of the image block. In this paper,
the OL_ratio is set to 50%, and n takes 256 pixels.

Step 2: The whole image was cropped into a series of image blocks with a size of n × n
according to the s. Then, a dataset is created using these image blocks. These image blocks
have a specific overlapping area with adjacent images.

Step 3: Input the dataset created in Step 2 into the trained model for prediction.
Step 4: The detection results were spliced. The middle part of the adjacent predicted

image blocks is spliced except for the surrounding area.

3.3. Results

The experiments were performed on a computer with an Intel Core i5−10300H CPU
(2.50 GHz) and 16.0 GB of physical memory, using PyCharm 2019 (Python) as the program-
ming environment. For the RDU−Net model, which was implemented on the basis of
Keras, the input size was 256 × 256, the number of channels was 5, and the output was
a single−channel classified image of the same size. The α of the loss function is 0.8, the
initial learning rate of the model is 10–4, the batch size is 32, the optimizer uses Adam [65],
and the number of iterations is 100 times.

We compared our method with the five methods introduced in Section 2.3, namely
three fully convolutional neural networks (U−Net, FCN, and SegNet), the traditional
machine learning method (SVM), and GF1_RI. The parameters of the fully convolutional
neural networks used in this experiment were the same as those of RDU−Net. Table 3
summarizes the accuracy of these methods.

Table 3. Red tide detection accuracy of different methods.

Method Precision (%) Recall (%) F1−Score Kappa

RDU−Net 87.47 86.62 0.87 0.87
U−Net 81.33 79.52 0.80 0.80

FCN−8s 72.34 73.66 0.73 0.73
SegNet 75.39 63.04 0.69 0.68

SVM 74.46 66.60 0.70 0.70
GF1_RI 67.49 64.08 0.66 0.65

As can be seen in Table 3, the proposed method achieved high detection accuracy.
The Precision and Recall were greater than 86%, while the F1−score and Kappa were 0.87.
This is further corroborated by the detection results shown in Figure 7. The proposed
method could effectively detect the red tide pixels, whether they were in concentrated or
edge areas or surrounded by scattered clouds. Compared with the other five methods, the
precision and F1−score were improved by 6.14%–19.98% and 0.07–0.21, respectively. In
addition, with the same training set and parameters, U−Net outperformed FCN−8s and
SegNet, with Precision of 81.33%. Thus, the U−Net framework is more suitable for red
tide detection.
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Figure 7. Red tide detection results based on different methods. (a) HY−1D; (b) Validation map;
(c) RDU−Net; (d) U−Net; (e) FCN−8s; (f) SegNet; (g) SVM; (h) GF1_RI. The red regions represent
red tides.
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Furthermore, as can be seen from Figure 7, the proposed method has obvious ad-
vantages for red tide detection in scattered and edge distributed areas. Specifically, the
six methods work well for the concentrated area of red tide distribution, such as Area−A
in Figure 8. However, RDU−Net achieves the best performance in the red tide edges or
areas surrounded by scattered clouds. For example, as shown in Area−B and Area−C in
Figure 8, a large number of red tide pixels could not be identified in the methods used for
comparison, especially SVM and GF1_RI. In addition, even though U−Net extracts more
red tide information, the red tide edges are not as clear as those in the case of RDU−Net,
such as Area−C in Figure 8. This is because RDU−Net includes channel attention and
focuses on the boundary loss, which can train the samples more adequately and detect the
red tides more accurately in the edge areas compared to the traditional U−Net method.
Compared with SVM and GF1_RI, the deep learning method considerably reduces the
probability of classifying clouds and seawater as red tides. However, some red tide pix-
els cannot be detected in the case of FCN−8s and SegNet mainly because U−Net has a
large number of feature channels in the up−sampling part, which allows the network to
propagate context information to higher layers. Figure 8 confirms the red tide detection
accuracy of the methods listed in Table 3. These findings demonstrate the superiority of the
proposed method in the red tide detection of broadband HY−1D CZI data.

Figure 8. Local view of red tide detection results based on different methods. (a) Validation map;
(b) RDU−Net; (c) U−Net; (d) FCN−8s; (e) SegNet; (f) SVM; (g) GF1_RI. The red regions represent
red tides.

4. Discussion

In this section, the effects of the loss function coefficients and input characteristics
on the model are discussed. In addition, the red tide detection capability of the proposed
method from multi−source images with high spectral resolution is demonstrated using a
GF−1 WFV2 image.

4.1. Sensitivity Analysis of Loss Function Parameters

The loss function in RDU−Net is a combination of boundary loss and BCE loss,
which should be set during training. Therefore, sensitivity analysis of α was carried out
experimentally. Table 4 summarizes the red tide detection precision (F1−score) with α
ranging from 0.1 to 1.



Remote Sens. 2022, 14, 88 14 of 20

Table 4. Detection accuracy of red tides for different α.

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

F1−score 0.806 0.810 0.821 0.826 0.829 0.830 0.838 0.868 0.834 0.822

The results show that appropriate inclusion of the boundary loss in the BBCE loss
function can improve the red tide detection accuracy, and the highest F1−score is obtained
when α = 0.8. However, when α is less than 0.8, the F1−score decreases with α. Therefore,
0.8 is selected to construct the loss function in this study. In addition, as can be seen in
Table 4, the red tide detection will be affected when α is too small: when α is less than 0.4,
the F1−score is lower than that when using the BCE loss function.

4.2. Analysis of Multi−Feature Effect on Red Tide Detection

To evaluate the effect of using NDVI in the model, two datasets, including four bands
(R, G, B, and NIR) and multiple features (R, G, B, NIR, and NDVI), are used as the input
of the RDU−Net network. The red tide detection accuracy using the different datasets is
summarized in Table 5.

Table 5. Red tide detection accuracy of RDU−Net using different datasets.

Dataset Precision (%) Recall (%) F1−Score Kappa

Multi−feature dataset 87.47 86.62 0.87 0.87
Four−bands dataset 79.54 84.69 0.82 0.82

The results show that the four metrics are improved using the multi−feature dataset.
The Precision of the multi−feature dataset was 87.47%, i.e., 7.93% higher than that of
the four−bands dataset. Compared with the multi−feature dataset, the Recall of the
four−bands dataset was higher than the Precision.

The red tide detection results of the two datasets are shown in Figure 9. The detection
results indicate that most of the red tides can be detected with the two datasets, especially
in the concentrated area of red tide distribution. However, as shown in Figure 10 (Area−B
and Area−C), the red tide range detected using the multi−feature dataset is more accurate
in the case of the red tide edges or cloud−covered areas. It can be seen from the local view
that, consistent with Table 5, the red tide range obtained by the multi−feature dataset is
more accurate.

Figure 9. Red tide detection results based on different datasets. (a) Validation map; (b) Red tide
detection result for the multi−feature dataset; (c) Red tide detection result for the four−bands dataset.
The red regions represent red tides.
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Figure 10. Local view of red tide detection results based on different datasets. (a) Validation map;
(b) Red tide detection result for the multi−feature dataset; (c) Red tide detection result for the
four−bands dataset. The red regions represent red tides.

4.3. Applicability Analysis of Rayleigh Correction

It should be noted that the RDU−Net is designed based on the radiance value. Ac-
curate atmospheric correction is difficult to perform on the broad band sensors, such as
HY−1D CZI, because they do not have all bands needed for atmospheric correction [66].
The Rayleigh scattering by atmospheric molecules accounts for the largest proportion of the
atmospheric contribution [67]. Existing research has shown that the Rayleigh−corrected re-
flectance can be accurately calculated. In this paper, to explore the applicability of Rayleigh
correction, the Rayleigh−corrected reflectance (Rrc) was calculated using the predetermined
look−up table of Tong et al. [68] (Figure 11).

As shown in Table 6, the red tide detection accuracy using the Rrc image is close to
that of the radiance image. Red tide detection result based on the Rrc image (Figure 12b)
also shows that the RDU−Net is suitable for the Rayleigh correction image. Compared
with the Rayleigh correction product, the Radiance product is more readily available
and simpler to handle. Therefore, RDU−Net was designed using the Radiance product
in this paper.

Table 6. Red tide detection accuracy of RDU−Net using the Rayleigh correction product.

Data Precision (%) Recall (%) F1−Score Kappa

Rayleigh correction product 85.47 82.23 0.83 0.82
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Figure 11. Rayleigh−corrected reflectance image calculated by Tong. The red box is the red tide area,
and the image at the right bottom is the corresponding zoomed−in image.

Figure 12. Red tide detection result for Rayleigh correction product. (a) HY−1D Rayleigh correction
product; (b) RDU−Net. The red regions represent red tides.

4.4. Method Applicability Analysis

To explore the applicability of the red tide detection method to other high−resolution
satellite images, the method was applied to a GF−1 WFV2 image. Red tide, seawater, and
lots of clouds are also covered in GF−1 WFV2. The total number of samples of GF−1
WFV2 image after data augmentation (including horizontal flip, vertical flip, and diagonal
flip) was 1940, of which 1820 were used for training and 120 were used for verification.
The experiment environment and parameter setting of RDU−Net were consistent with
those of the HY−1D red tide detection experiment. The α of the loss function is 0.8, the
initial learning rate of the model is 10-4, the batch size is 32, and the number of iterations is
100 times.



Remote Sens. 2022, 14, 88 17 of 20

Table 7 shows the red tide detection accuracy for the GF−1 WF2 image. The Precision
and Recall are greater than 85%, and the F1−score and Kappa are 0.86. From Figure 13, we
can see that the proposed method can also effectively detect red tides in the GF−1 WFV2
image. The proposed method has been experimentally shown to have strong applicability,
and it can be applied to other high−resolution broadband satellite data with the same
band settings.

Table 7. Red tide detection accuracy of RDU−Net using GF−1 WF2 image.

Data Precision (%) Recall (%) F1−Score Kappa

GF−1 WF2 image 85.42 87.30 0.86 0.86

Figure 13. Red tide detection result using GF−1 WF2 image. The red regions represent red tides.

Unlike to the HY−1D CZI image in this work, the GF−1 WFV2 image has a large
area of thin clouds and fog. The radiance and NDVI values of the thin clouds and fog are
intermediate between seawater and thick clouds. Thin clouds and fog will be detected as
red tide when RDU−Net trained with HY−1D CZI images is used for red tide detection
on GF−1 WFV2. Therefore, it is necessary to consider the distribution of red tide in more
scenarios when constructing the training sample dataset.

5. Conclusions

Using an HY−1D CZI image, this study developed a red tide detection framework
based on RDU−Net for satellite images with medium to high spatial resolution. The
RDU−Net method focuses on the red tide feature relationship between different channels
using the channel attention model and detects more precise boundaries by introducing
the boundary loss function. A multi−feature dataset including four bands and NDVI
was selected as the input of the model to improve the separability of red tides, seawater,
and clouds. The experimental results showed that the proposed method outperforms the
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existing methods in terms of the accuracy of red tide detection. The red tide detection
accuracy of the proposed method reached 87.47%, and the F1−score was 0.87, representing
improvements of 6.14%–19.98% and 0.07–0.21, respectively, over the method used for
comparison. RDU−Net has obvious advantages in the detection of red tide edges and
cloud−covered areas. In addition, this method can be applied to other high−resolution
remote sensing images, such as GF−1 WFV images.

This study explored the application of deep learning and remote sensing with medium–
high spatial resolution to red tide detection using broadband data. Owing to its high
performance, the proposed method provides a new reference for developing red tide
detection methods. As the training dataset constructed in this study only includes HY−1D
data, it is necessary to reselect the sample when it is applied to other high–resolution images.
In the future, a larger training dataset will be built using satellite data with medium–high
resolution from multiple sources and different areas for detecting red tides in various
marine environments. The proposed method is expected to yield better performance with
sufficient training samples.
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