Comparison between Automated and Manual Detection of Lava Fountains from Fixed Monitoring Thermal Cameras at Etna Volcano, Italy
Abstract
:1. Introduction
2. Methods
- −
- the areas , being the area in pixels of the i-th object and N the number of recognized objects;
- −
- the coordinates of the centroid, of the i_th object, and being the horizontal and vertical coordinates, respectively.
3. Results
3.1. Manual Estimation of the Eruptive Activity
3.2. Change Point Detection
- Choose a point and divide the signal into two sections.
- Compute an empirical estimate of the desired statistical property for each section.
- At each point within a section, measure how much the property deviates from the empirical estimate, and at the end, add the deviation for all points.
- Add the deviations section-to-section to find the total residual error.
- Vary the location of the division point until the total residual error attains a minimum.
3.3. Timing the Lava Fountains Occurring at Etna during 2020–2022
- −
- the user can quickly analyze the content of the image files recorded over days, an operation which, carried out manually, requires a considerable amount of time;
- −
- the user can speed up the computation of key quantities such as height and duration of the LF, which are necessary for the calculation of the volumes of erupted material);
- −
- it is possible to implement algorithms for automatically timing the transition from Strombolian to paroxysmal activity, which is otherwise left to human judgment, gaining in uniformity and repeatability;
- −
- in case of lack of visibility, since it is necessary to proceed with interpolation of the data, a rather difficult operation to perform manually, the user can resort to automated interpolation techniques (e.g., linear interpolation, nearest, etc.).
3.4. Timing the Lava Fountains by a Gaussian Function-Based Approach
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barreca, G.; Branca, S.; Corsaro, R.A.; Scarfì, L.; Cannavò, F.; Aloisi, M.; Monaco, C.; Faccenna, C. Slab detachment, mantle flow, and crustal collision in eastern Sicily (southern Italy): Implications on Mount Etna volcanism. Tectonics 2020, 39, e2020TC006188. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S. Major effusive eruptions and recent lava fountains: Balance between expected and erupted magma volumes at Etna volcano. Geophys. Res. Lett. 2013, 40, 6069–6073. [Google Scholar] [CrossRef]
- Calvari, S.; Cannavò, F.; Bonaccorso, A.; Spampinato, L.; Pellegrino, A.G. Paroxysmal Explosions, Lava Fountains and Ash Plumes at Etna Volcano: Eruptive Processes and Hazard Implications. Front. Earth Sci. 2018, 6, 107. [Google Scholar] [CrossRef]
- Calvari, S.; Bilotta, G.; Bonaccorso, A.; Caltabiano, T.; Cappello, A.; Corradino, C.; Del Negro, C.; Ganci, G.; Neri, M.; Pecora, E.; et al. The VEI 2 Christmas 2018 Etna Eruption: A Small but Intense Eruptive Event or the Starting Phase of a Larger One? Remote Sens. 2020, 12, 905. [Google Scholar] [CrossRef] [Green Version]
- Pailot-Bonnétat, S.; Harris, A.J.L.; Calvari, S.; De Michele, M.; Gurioli, L. Plume Height Time-Series Retrieval Using Shadow in Single Spatial Resolution Satellite Images. Remote Sens. 2020, 12, 3951. [Google Scholar] [CrossRef]
- Ganci, G.; Harris, A.J.L.; Del Negro, C.; Guéhenneux, Y.; Cappello, A.; Labazuy, P.; Calvari, S.; Gouhier, M. A year of lava fountaining at Etna: Volumes from SEVIRI. Geophys. Res. Lett. 2012, 39, L06305. [Google Scholar] [CrossRef]
- Ganci, G.; James, M.R.; Calvari, S.; Del Negro, C. Separating the thermal fingerprints of lava flows and simultaneous lava fountaining using ground-based thermal camera and SEVIRI measurements. Geophys. Res. Lett. 2013, 40, 5058–5063. [Google Scholar] [CrossRef]
- Calvari, S.; Salerno, G.G.; Spampinato, L.; Gouhier, M.; La Spina, A.; Pecora, E.; Harris, A.J.L.; Labazuy, P.; Biale, E.; Boschi, E. An unloading foam model to constrain Etna’s 11-13 January 2011 lava fountaining episode. J. Geophys. Res. 2011, 116, B11207. [Google Scholar] [CrossRef]
- De Beni, E.; Behncke, B.; Branca, S.; Nicolosi, I.; Carluccio, R.; Caracciolo D’Ajello, F.; Chiappini, M. The continuing story of Etna’s New Southeast Crater (2012–2014): Evolution and volume calculations based on field surveys and aerophotogrammetry. J. Volcanol. Geotherm. Res. 2015, 303, 175–186. [Google Scholar] [CrossRef]
- Andronico, D.; Cannata, A.; Di Grazia, G.; Ferrari, F. The 1986–2021 paroxysmal episodes at the summit craters of Mt. Etna: Insights into volcano dynamics and hazard. Earth-Sci. Rev. 2021, 220, 103686. [Google Scholar] [CrossRef]
- Freret-Lorgeril, V.; Donnadieu, F.; Scollo, S.; Provost, A.; Fréville, P.; Guéhenneux, Y.; Hervier, C.; Prestifilippo, M.; Coltelli, M. Mass eruption rates of tephra plumes during the 2011–2015 lava fountain paroxysms at Mt. Etna from doppler radar retrievals. Front. Earth Sci. 2018, 6, 73. [Google Scholar] [CrossRef]
- Corradini, S.; Guerrieri, L.; Lombardo, V.; Merucci, L.; Musacchio, M.; Prestifilippo, M.; Scollo, S.; Silvestri, M.; Spata, G.; Stelitano, D. Proximal Monitoring of the 2011–2015 Etna Lava Fountains Using MSG-SEVIRI Data. Geosciences 2018, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Neri, M.; Casu, F.; Acocella, V.; Solaro, G.; Pepe, S.; Berardino, P.; Sansosti, E.; Caltabiano, T.; Lundgren, P.; Lanari, R. Deformation and eruptions at Mt. Etna (Italy): A lesson from 15 years of observations. Geophys. Res. Lett. 2009, 36, L02309. [Google Scholar] [CrossRef]
- Guffanti, M.; Casadevall, T.J.; Budding, K. Encounters of Aircraft with Volcanic Ash Clouds: A Compilation of Known Incidents, 1953–2009; Version 1.0, Series 545, U.S. Geological Survey Data; U.S. Geological Survey: Reston, VA, USA, 2010; 12p., plus 4 appendixes including the compilation Database. Available online: http://pubs.usgs.gov/ds/545 (accessed on 22 March 2022).
- Small, C.; Naumann, T. The global distribution of human population and recent volcanism. Glob. Environ. Chang. Part B Environ. Hazards 2001, 3, 93–109. [Google Scholar] [CrossRef]
- Horwell, C.J.; Baxter, P.J. The respiratory health hazards of volcanic ash: A review for volcanic risk mitigation. Bull. Volcanol. 2006, 69, 1–24. [Google Scholar] [CrossRef]
- Pardini, F.; Corradini, S.; Costa, A.; Esposti Ongaro, T.; Merucci, L.; Neri, A.; Stelitano, D.; de’ Michieli Vitturi, M. Ensemble-Based Data Assimilation of Volcanic Ash Clouds from Satellite Observations: Application to the 24 December 2018 Mt. Etna Explosive Eruption. Atmosphere 2020, 11, 359. [Google Scholar] [CrossRef] [Green Version]
- Alparone, S.; Andronico, D.; Lodato, L.; Sgroi, T. Relationship between tremor and volcanic activity during the Southeast Crater eruption on Mount Etna in early 2000. J. Geophys. Res. 2003, 108, 2241. [Google Scholar] [CrossRef] [Green Version]
- Alparone, A.; Andronico, D.; Sgroi, T.; Ferrari, F.; Lodato, L.; Reitano, D. Alert system to mitigate tephra fallout hazards at Mt. Etna Volcano, Italy. Nat. Hazards 2007, 43, 333–350. [Google Scholar] [CrossRef]
- Cannavò, F.; Aranzulla, M.; Scollo, S.; Puglisi, G. A New GNSS-Based Approach for Volcanic Crater Location During Lava Fountains. IEEE Geosci. Remote Sens. Lett. 2019, 16, 697–701. [Google Scholar] [CrossRef]
- Cannavò, F.; Cannata, A.; Cassisi, C.; Di Grazia, G.; Montalto, P.; Prestifilippo, M.; Privitera, E.; Coltelli, M.; Gambino, S. A multivariate probabilistic graphical model for real-time volcano monitoring on Mount Etna. J. Geophys. Res. 2017, 122, 3480–3496. [Google Scholar] [CrossRef]
- Scollo, S.; Prestifilippo, M.; Pecora, E.; Corradini, S.; Merucci, L.; Spata, G.; Coltelli, M. Eruption column height estimation of the 2011–2013 Etna lava fountains. Ann. Geophys. 2014, 57, S0214. [Google Scholar] [CrossRef] [Green Version]
- Corradino, C.; Ganci, G.; Cappello, A.; Bilotta, G.; Calvari, S.; Del Negro, C. Recognizing Eruptions of Mount Etna through Machine Learning using Multiperspective Infrared Images. Remote Sens. 2020, 12, 970. [Google Scholar] [CrossRef] [Green Version]
- Walker, G.P.L. The Taupo pumice: Product of the most powerful known (Ultraplinian) eruption? J. Volcanol. Geother. Res. 1980, 8, 69–94. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Ganci, G. Quantifying lava flow hazards in response to effusive eruption. Geol. Soc. Am. Bull. 2016, 128, 752–763. [Google Scholar] [CrossRef]
- Del Negro, C.; Cappello, A.; Bilotta, G.; Ganci, G.; Hérault, A.; Zago, V. Living at the edge of an active volcano: Risk from lava flows on Mt. Etna. Geol. Soc. Am. Bull. 2020, 132, 1615–1625. [Google Scholar] [CrossRef]
- Scollo, S.; Prestifilippo, M.; Spata, G.; D’Agostino, M.; Coltelli, M. Monitoring and forecasting Etna volcanic plumes. Nat. Hazards Earth Syst. Sci. 2009, 9, 1573–1585. Available online: http://www.nat-hazards-earth-syst-sci.net/9/1573/2009/ (accessed on 22 March 2022). [CrossRef] [Green Version]
- Scollo, S.; Prestifilippo, M.; Bonadonna, C.; Cioni, R.; Corradini, S.; Degruyter, W.; Rossi, E.; Silvestri, M.; Biale, E.; Carparelli, G.; et al. Near-Real-Time Tephra Fallout Assessment at Mt. Etna, Italy. Remote Sens. 2019, 11, 2987. [Google Scholar] [CrossRef] [Green Version]
- Scollo, S.; Boselli, A.; Corradini, S.; Leto, G.; Guerrieri, L.; Merucci, L.; Prestifilippo, M.; Zanmar Sanchez, R.; Sannino, A.; Stelitano, D. Multi-Sensor Analysis of a Weak and Long-Lasting Volcanic Plume Emission. Remote Sens. 2020, 12, 3866. [Google Scholar] [CrossRef]
- Calvari, S.; Bonaccorso, A.; Ganci, G. Anatomy of a Paroxysmal Lava Fountain at Etna Volcano: The Case of the 12 March, 2021, Episode. Remote Sens. 2021, 13, 3052. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Calvari, S. A new approach to investigate an eruptive paroxysmal sequence using camera and strainmeter networks: Lessons from the 3–5 December2015 activity at Etna volcano. Earth Planet. Sci. Lett. 2017, 475, 231–241. [Google Scholar] [CrossRef]
- Sparks, R.S.J.; Bursik, M.I.; Carey, S.N.; Gilbert, J.S.; Glaze, L.S.; Sigurdsson, H.; Woods, A.W. Volcanic Plumes; John Wiley: New York, NY, USA, 1997; 574p. [Google Scholar]
- Bonadonna, C.; Phillips, J.C. Sedimentation from strong volcanic plumes. J. Geophys. Res. 2003, 108, 2340. [Google Scholar] [CrossRef]
- Orr, T.R.; Ulrich, G.E.; Heliker, C.; De Smither, L.G.; Hoffmann, J.P. The Pu‘u ‘Ō‘ō Eruption of Kīlauea Volcano, Hawai‘i—Episode 21 Through Early Episode 48, June 1984–April 1987; U.S. Geological Survey Scientific Investigations Report; United States Geological Survey: Reston, VA, USA, 2018; Volume 5109, 107p. [CrossRef]
- Carbone, D.; Zuccarello, L.; Messina, A.; Scollo, S.; Rymer, H. Balancing bulk gas accumulation and gas output before and during lava fountaining episodes at Mt. Etna. Sci. Rep. 2015, 5, 18049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andò, B.; Pecora, E. An advanced video-based system for monitoring active volcanoes. Comput. Geosci. 2006, 32, 8591. [Google Scholar] [CrossRef]
- Ball, M.; Pinkerton, H. Factors affecting the accuracy of thermal imaging cameras in volcanology. J. Geophys. Res. 2006, 111, B11203. [Google Scholar] [CrossRef]
- Sawyer, G.M.; Burton, M.R. Effects of a volcanic plume on thermal imaging data. Geophys. Res. Lett. 2006, 33, L14311. [Google Scholar] [CrossRef]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano surveillance using infrared cameras. Earth Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Harris, A.J.L. Thermal Remote Sensing of Active Volcanoes; Cambridge University Press: Cambridge, UK, 2013; 717p. [Google Scholar]
- Sheldrake, T.E.; Sparks, R.S.J.; Cashman, K.V.; Wadge, G.; Aspinall, W.P. Similarities and differences in the historical records of lava dome-building volcanoes: Implications for understanding magmatic processes and eruption forecasting. Earth-Sci. Rev. 2016, 160, 240–263. [Google Scholar] [CrossRef] [Green Version]
- Kauahikaua, J.; Mangan, M.; Heliker, C.; Mattox, T. A quantitative look at the demise of a basaltic vent: The death of Kupaianaha, Kilauea Volcano, Hawai’i. Bull. Volcanol. 1996, 57, 641–648. [Google Scholar] [CrossRef]
- Cannata, A.; Montalto, P.; Patané, D. Joint analysis of infrasound and seismic signals by cross wavelet Atmospheric transform: Detection of Mt. Etna explosive activity. Nat. Hazards Earth Syst. Sci. 2013, 13, 1669–1677. [Google Scholar] [CrossRef] [Green Version]
- Cannata, A.; Montalto, P.; Privitera, E.; Russo, G.; Gresta, S. Tracking eruptive phenomena by infrasound: May 13, 2008 eruption at Mt. Etna. Geophys. Res. Lett. 2009, 36, L05304. [Google Scholar] [CrossRef]
- Nunnari, G. Clustering activity at Mt Etna based on volcanic tremor: A case study. Earth Sci. Inform. 2021, 14, 1121–1143. [Google Scholar] [CrossRef]
- Moschella, S.; Cannata, A.; Di Grazia, G.; Gresta, S. Insights into lava fountain eruptions at Mt. Etna by improved source location of the volcanic tremor. Ann. Geophys. 2018, 61, VO446. [Google Scholar] [CrossRef]
- Bonaccorso, A.; Currenti, G.; Linde, A.; Sacks, S.; Sicali, A. Advances in Understanding Intrusive, Explosive and Effusive Processes as Revealed by the Borehole Dilatometer Network on Mt. Etna Volcano. Front. Earth Sci. 2020, 7, 357. [Google Scholar] [CrossRef] [Green Version]
- Bonaccorso, A.; Carleo, L.; Currenti, G.; Sicali, A. Magma Migration at Shallower Levels and Lava Fountains Sequence as Revealed by Borehole Dilatometers on Etna Volcano. Front. Earth Sci. 2021, 9, 740505. [Google Scholar] [CrossRef]
- Barsotti, S.; Andronico, D.; Neri, A.; Del Carlo, P.; Baxter, P.J.; Aspinall, W.P.; Hincks, T. Quantitative assessment of volcanic ash hazards for health and infrastructure at Mt. Etna (Italy) by numerical simulation. J. Volcanol. Geotherm. Res. 2010, 192, 85–96. [Google Scholar] [CrossRef]
- Horwell, C.J.; Sargent, P.; Andronico, D.; Lo Castro, M.D.; Tomatis, M.; Hillman, S.E.; Michnowicz, S.A.K.; Fubini, B. The iron-catalysed surface reactivity and health-pertinent physical characteristics of explosive volcanic ash from Mt. Etna, Italy. J. Appl. Volcanol. 2017, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Corradino, C.; Amato, E.; Torrisi, F.; Calvari, S.; Del Negro, C. Classifying Major Explosions and Paroxysms at Stromboli Volcano (Italy) From Space. Remote Sens. 2021, 13, 4080. [Google Scholar] [CrossRef]
- Fenner, D.; Rümpker, G.; Li, W.; Chakraborty, M.; Faber, J.; Köhler, J.; Stöcker, H.; Srivastava, N. Automated Seismo-Volcanic Event Detection Applied to Stromboli (Italy). Front. Earth Sci. 2022, 10, 809037. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Dehn, J.; Calvari, S. Lava effusion rate definition and measurement: A review. Bull. Volcanol. 2007, 70, 1–22. [Google Scholar] [CrossRef]
- Nunnari, G.; Cannavó, F. Online detection of offsets in GPS time series. Earth Sci. Inform. 2021, 14, 267–276. [Google Scholar] [CrossRef]
- Killick, R.; Fearnkead, P.; Eckley, I. Optimal detection of changepoints with linear computational cost. J. Am. Stat. Assoc. 2012, 107, 1590–1598. [Google Scholar] [CrossRef]
- Lavielle, M. Using penalized contrasts for the change-point problem. Signal. Process. 2015, 85, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
Label | Type | Location | Distance from the Craters (km) | Frame Rate | Field of View |
---|---|---|---|---|---|
ENT | Thermal FLIR A40M | Nicolosi, South flank 730 m a.s.l. | 15.0 | 2 frames/s | 320 × 240 pixels |
EBT | Thermal FLIR A320 | Bronte, NW flank 85 m a.s.l. | 13.5 | 2 frames/s | 25° × 18.8° |
EMCT | Thermal FLIR A320 | Mt. Cagliato, East flank 1160 m a.s.l. | 8.3 | 2 frames/s | 320 × 240 pixels |
EMOT | Thermal FLIR A320 | Montagnola, South flank 2600 m a.s.l. | 3.0 | 1 frame/s | 320 × 240 pixels |
Ep. # | Date | Starting Time (hh:mm) | Ending Time (hh:mm) | Duration (in Minutes and in Seconds) | Label of Cam-era Used | Max LF Height (m above the Crater) | Mean LF Height (m above the Crater) | LF Volume (×106 m3) | TADR (m3 s−1) |
---|---|---|---|---|---|---|---|---|---|
1 | 13 December 2020 | 22:00 | 22:48 | 48 min. 2880 s | ENT | 514 | 231 | 0.24 | 84 |
2 | 13–14 December 2020 | 23:58 | 00:11 | 13 min. 780 s | ENT | 400 | 235 | 0.07 | 90 |
3 | 14 December 2020 | 01:02 | 01:40 | 38 min. 2280 s | ENT | 286 | 121 | 0.13 | 59 |
4 | 21 December 2020 | 09:11 | 09:59 | 48 min. 2880 s | EBT | 3080 | 1296 | 0.58 | 201 |
5 | 22 December 2020 | 03:05 | 05:13 | 128 min. 7680 s | ENT | 800 | 295 | 0.72 | 93 |
6 | 18 January 2021 | 19:38 | 21:03 | 85 min. 5100 s | ENT | 1067 | 343 | 0.52 | 101 |
7 | 16 February 2021 | 16:11 | 17:02 | 51 min. 3060 s | EMCT | 1560 | 757 | 0.46 | 150 |
8 | 17–18 February 2021 | 22:32 | 00:51 | 139 min. 8340 s | EMCT | 1230 | 358 | 0.82 | 98 |
9 | 19 February 2021 | 08:16 | 10:06 | 110 min. 6600 s | EMCT | 1365 | 492 | 0.78 | 118 |
10 | 20–21 February 2021 | 21:32 | 01:15 | 223 min. 13,380 s | EMCT | 1500 | 386 | 1.43 | 107 |
11 | 22–23 February 2021 | 21:17 | 00:03 | 166 min. 9960 s | ENT EMOT EMCT | 3667 | 686 | 1.19 | 120 |
12 | 23 February 2021 | 03:52 | 04:50 | 58 min. 3480 s | ENT EMOT EMCT | 900 | 337 | 0.32 | 92 |
13 | 24 February 2021 | 18:56 | 21:41 | 165 min. 9900 s | ENT | 1800 | 649 | 1.37 | 139 |
14 | 28 February 2021 | 07:31 | 08:34 | 63 min. 3780 s | ENT | 3600 | 1376 | 0.70 | 185 |
15 | 2 March 2021 | 11:23 | 14:50 | 207 min. 12,420 s | EMOT | 606 | 278 | 1.03 | 83 |
16 | 4 March 2021 | 01:30 | 04:10 | 160 min. 9600 s | ENT | 600 | 204 | 0.75 | 78 |
17 | 4 March 2021 | 07:11 | 09:32 | 141 min. 8460 s | ENT | 3233 | 1275 | 1.58 | 186 |
18 | 7 March 2021 | 04:10 | 07:01 | 171 min. 10,260 s | EMOT EBT | 4000 | 638 | 1.07 | 104 |
19 | 9–10 March 2021 | 23:55 | 02:46 | 171 min. 10,260 s | ENT EMCT | 1860 | 655 | 1.44 | 140 |
20 | 12 March 2021 | 07:35 | 09:45 | 130 min. 7800 s | ENT EBT | 2400 | 1149 | 1.63 | 209 |
21 | 14–15 March 2021 | 23:12 | 01:42 | 150 min. 9000 s | ENT | 1333 | 670 | 0.53 | 59 |
22 | 17 March 2021 | 01:30 | 04:57 | 207 min. 12,420 s | ENT | 1533 | 538 | 1.58 | 128 |
23 | 19 March 2021 | 08:18 | 10:13 | 115 min. 6900 s | EMOT | 629 | 171 | 0.75 | 108 |
24 | 23–24 March 2021 | 21:33 | 08:19 | 646 min. 38,760 s | EMCT | 1333 | 456 | 4.56 | 118 |
25 | 31 March– 1 April 2021 | 19:30 | 08:53 | 803 min. 48,180 s | EMCT | 630 | 241 | 4.10 | 85 |
26 | 19 May 2021 | 00:50 | 04:25 | 215 min. 12,900 s | ENT | 667 | 482 | 1.59 | 124 |
27 | 21 May 2021 | 00:50 | 02:44 | 114 min. 6840 s | EMCT | 1533 | 683 | 0.99 | 145 |
28 | 22 May 2021 | 20:27 | 22:08 | 101 min. 6060 s | ENT | 1200 | 649 | 0.87 | 143 |
29 | 24 May 2021 | 20:25 | 21:49 | 84 min. 5040 s | ENT | 1467 | 831 | 0.82 | 162 |
30 | 25 May 2021 | 18:20 | 18:53 | 33 min. 1980 s | ENT | 533 | 317 | 0.20 | 102 |
31 | 26 May 2021 | 10:20 | 11:10 | 50 min. 3000 s | ENT | 1267 | 627 | 0.41 | 137 |
32 | 27 May 2021 | 12:00 | 13:00 | 60 min. 3600 s | EMCT | Poor visibility | Poor visibility | Poor visibility | Poor visibility |
33 | 28 May 2021 | 06:30 | 07:27 | 57 min. 3420 s | ENT | 800 | 433 | 0.40 | 116 |
34 | 28 May 2021 | 16:05 | 16:11 | 6 min. 360 s | ENT | 333 | 295 | 0.04 | 112 |
35 | 28 May 2021 | 19:48 | 20:50 | 62 min. 3720 s | ENT | 1000 | 601 | 0.51 | 138 |
36 | 30 May 2021 | 04:20 | 05:44 | 84 min. 5040 s | ENT | 1000 | 589 | 0.69 | 137 |
37 | 2 June 2021 | 08:30 | 10:46 | 136 min. 8160 s | EBT | 1640 | 924 | 1.38 | 170 |
38 | 4 June 2021 | 16:12 | 17:40 | 88 min. 5280 s | EMCT | 1170 | 665 | 0.76 | 143 |
39 | 12 June 2021 | 20:00 | 21:46 | 106 min. 6360 s | EMCT | 810 | 438 | 0.73 | 115 |
40 | 14 June 2021 | 21:15 | 22:21 | 66 min. 3960 s | EMCT | 870 | 419 | 0.45 | 112 |
41 | 16 June 2021 | 11:37 | 12:38 | 61 min. 3660 s | ENT | 1733 | 673 | 0.52 | 142 |
42 | 17 June 2021 | 22:40 | 23:55 | 75 min. 4500 s | EMCT | 1140 | 404 | 0.50 | 111 |
43 | 19 June 2021 | 18:47 | 19:35 | 48 min. 2880 s | EMCT | 1140 | 572 | 0.38 | 131 |
44 | 20 June 2021 | 22:40 | 23:44 | 64 min. 3840 s | ENT | 2467 | 892 | 0.63 | 165 |
45 | 22 June 2021 | 02:30 | 03:45 | 75 min. 4500 s | ENT | 2000 | 848 | 0.71 | 159 |
46 | 23 June 2021 | 02:44 | 03:19 | 35 min. 2100 s | ENT | 1867 | 1035 | 0.38 | 183 |
47 | 23 June 2021 | 18:00 | 19:12 | 72 min. 4320 s | ENT | 2933 | 1301 | 0.60 | 153 |
48 | 24 June 2021 | 09:45 | 10:26 | 41 min. 2460 s | ENT EMOT | 1733 | 825 | 0.39 | 157 |
49 | 25 June 2021 | 00:38 | 01:48 | 70 min. 4200 s | ENT | 2333 | 876 | 0.64 | 153 |
50 | 25 June 2021 | 18:40 | 19:20 | 40 min. 2400 s | ENT | 1133 | 691 | 0.36 | 149 |
51 | 26 June 2021 | 16:00 | 16:38 | 38 min. 2280 s | ENT | 1600 | 772 | 0.35 | 155 |
52 | 27 June 2021 | 08:53 | 09:43 | 50 min. 3000 s | ENT | 1600 | 674 | 0.43 | 143 |
53 | 28 June 2021 | 14:25 | 15:30 | 65 min. 3900 s | EBT | 2390 | 1211 | 0.75 | 193 |
54 | 1–2 July 2021 | 22:50 | 00:27 | 97 min. 5820 s | ENT | 1800 | 804 | 0.91 | 156 |
55 | 4 July 2021 | 15:15 | 16:50 | 95 min. 5700 s | ENT | 1467 | 873 | 0.94 | 164 |
56 | 6 July 2021 | 22:16 | 23:44 | 88 min. 5280 s | EBT | 3270 | 1673 | 1.20 | 227 |
57 | 8 July 2021 | 20:35 | 22:12 | 97 min. 5820 s | EBT | 2710 | 1242 | 1.12 | 192 |
58 | 14 July 2021 | 10:45 | 12:30 | 105 min. 6300 s | EBT | 2230 | 1097 | 1.15 | 183 |
59 | 20 July 2021 | 05:10 | 08:11 | 181 min. 10,860 s | EBT | 3510 | 1533 | 2.26 | 208 |
60 | 31 July 2021 | 19:44 | 23:37 | 233 min. 13,980 s | EBT | 3830 | 1473 | 2.83 | 202 |
61 | 9 August 2021 | 02:07 | 04:11 | 124 min. 7440 s | EBT | 2390 | 1280 | 1.48 | 199 |
62 | 29 August 2021 | 16:24 | 17:55 | 91 min. 5460 s | EBT | 2390 | 1310 | 1.10 | 202 |
63 | 21 September 2021 | 07:21 | 08:35 | 74 min. 4440 s | ENT | 2333 | 1234 | 0.88 | 199 |
64 | 23 October 2021 | 08:20 | 10:17 | 117 min. 7020 s | ENT | 4000 | 1844 | 1.63 | 232 |
65 | 10 February 2022 | 18:40 | 21:56 | 196 min. 11,760 s | ENT | 5714 | 2160 | 2.88 | 245 |
66 | 21 February 2022 | 11:11 | 12:50 | 99 min. 5940 s | ENT | 4057 | 1865 | 1.39 | 234 |
Average Duration (min./s) | Average Max LF height (m) | Average Mean LF height (m) | Average LF volume (×106 m3) | Average TADR (m3 s−1) | |||||
120/7171 | 1815 | 784 | 0.993 | 144.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvari, S.; Nunnari, G. Comparison between Automated and Manual Detection of Lava Fountains from Fixed Monitoring Thermal Cameras at Etna Volcano, Italy. Remote Sens. 2022, 14, 2392. https://doi.org/10.3390/rs14102392
Calvari S, Nunnari G. Comparison between Automated and Manual Detection of Lava Fountains from Fixed Monitoring Thermal Cameras at Etna Volcano, Italy. Remote Sensing. 2022; 14(10):2392. https://doi.org/10.3390/rs14102392
Chicago/Turabian StyleCalvari, Sonia, and Giuseppe Nunnari. 2022. "Comparison between Automated and Manual Detection of Lava Fountains from Fixed Monitoring Thermal Cameras at Etna Volcano, Italy" Remote Sensing 14, no. 10: 2392. https://doi.org/10.3390/rs14102392
APA StyleCalvari, S., & Nunnari, G. (2022). Comparison between Automated and Manual Detection of Lava Fountains from Fixed Monitoring Thermal Cameras at Etna Volcano, Italy. Remote Sensing, 14(10), 2392. https://doi.org/10.3390/rs14102392