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Abstract: The results of aerial scene classification can provide valuable information for urban planning
and land monitoring. In this specific field, there are always a number of object-level semantic classes
in big remote-sensing pictures. Complex label-space makes it hard to detect all the targets and
perceive corresponding semantics in the typical scene, thereby weakening the sensing ability. Even
worse, the preparation of a labeled dataset for the training of deep networks is more difficult
due to multiple labels. In order to mine object-level visual features and make good use of label
dependency, we propose a novel framework in this article, namely a Cross-Modal Representation
Learning and Label Graph Mining-based Residual Multi-Attentional CNN-LSTM framework
(CM-GM framework). In this framework, a residual multi-attentional convolutional neural network
is developed to extract object-level image features. Moreover, semantic labels are embedded by
language model and then form a label graph which can be further mapped by advanced graph
convolutional networks (GCN). With these cross-modal feature representations (image, graph and
text), object-level visual features will be enhanced and aligned to GCN-based label embeddings. After
that, aligned visual signals are fed into a bi-LSTM subnetwork according to the built label graph.
The CM-GM framework is able to map both visual features and graph-based label representations
into a correlated space appropriately, using label dependency efficiently, thus improving the LSTM
predictor’s ability. Experimental results show that the proposed CM-GM framework is able to achieve
higher accuracy on many multi-label benchmark datasets in remote sensing field.

Keywords: aerial scene classification; multi-label classification; attention; label graph; graph convolu-
tional networks; cross-modal perception; feature representation

1. Introduction and Motivation

Content-based remote sensing image annotation plays an important role in land-
cover mapping and monitoring issues. Recently, with the rapid development of remote
sensing technologies, there is a huge amount of remote sensing data arising from advanced
sensors (e.g., satellite pictures). These data are valuable resources for many real-world
applications, from urban planning [1] to ecological monitoring [2]. The huge amount
of data makes it possible to perceive the abundant information about a typical region,
thereby benefiting more complex analysis tasks. On the other hand, the complexity of
data also presents a challenge to researchers in terms of their effective utilization. Existing
single-label classification techniques are not suitable for big and high-resolution satellite
pictures. In this paper, we mainly focus on a multi-label image categorization task, which
aims to assign remote sensing images into a group of pre-set object-level tags. The task can
automatically annotate remote sensing pictures, not only allowing researchers to retrieve
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pictures in a big archive quickly and accurately, but also providing high-level semantic
concepts and knowledge for different application scenarios.

Multi-label scene recognition is very common in many computer vision-based applica-
tions. With more than one correlated tag, a real-world picture can demonstrate a typical
scene or a group of objects in the region of interest in the remote sensing field. Although
deep learning methods have greatly promoted the development of image processing and
computer vision, the corresponding advances in remote sensing are still in the early stage.
Large-scale labeled datasets in this field are scarce. Compared with other tasks such as se-
mantic segmentation and detection which need pixel-level labels [3] or a large amount
of bounding boxes [4], the labeling work for multi-label annotation is relatively acceptable.
This task can also effectively mine the information in different pictures, enabling computers
to understand different complex scenes for different applications.

Similar to classical multi-label learning strategies, the main aim of this paper is also to
focus on the modeling and representation of images and labels, as well as the establishment
of a connection between them. In the past decade, CNN-based deep learning methods have
shown superior performance on many computer vision problems [5,6]. More and more ad-
vanced artificial intelligence techniques have been applied in the remote sensing arena [7–9].
However, there is still room for improvement, as discussed in the following points.

1. Although deep learning performs better in single-label recognition, how to extract
object-level features with low labeling costs in multi-label tasks is still a challenge.
Not to mention dense labels and bounding boxes, labeling all the object-level tags
in a complex scene is still a hard work. It is very common that some objects in one
picture are obvious, while inconspicuous in another [10].

2. There are also advances in exploiting label dependencies. In addition to dealing with
them by thresholds [11] or pair-wise ranking [12,13], some recent works consider
labels as a sequence [14] or a graph [15]. It is reasonable to believe that the construc-
tion of label sequences or label graphs (such as in Figure 1) will further enhance the
multi-label recognition capability in the remote sensing field.

3. In a sequence or a graph, the reliable labels (obvious objects in the picture) can be
regarded as valuable information for the prediction of other labels. The classifier needs
to make good use of this information.

4. It should be noted that the distribution of related concepts, e.g., objects in image
archives and words in large textual corpora, always has strong consistency in different
modalities (image, graph, and text). It is worthwhile to leverage large-scale textual
data as supplementary information, improving the feature representation of pictures
and labels jointly and cross-modally.
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Figure 1. The built label graph on UC-Merced [16,17] archive.

In this context, we designed a novel framework, namely Cross-Modal Representa-
tion Learning and Label Graph Mining-based Multi-Attentional CNN-LSTM (CM-GM
framework). In the CM-GM framework, object-level image patches are extracted by an
improved visual attention mechanism. Considering that the related objects are always
co-occurrent in one picture, we model the label dependencies as a directed graph (such
as in Figure 1) according to their co-occurrent conditional probabilities, then embed the
labels and, furthermore, the nodes in the graph, using an advanced graph mining method,
i.e., graph convolutional networks (GCN) [18]. In addition, popular word embedding
models trained on textual corpora are utilized to initialize label (node) representations
in GCN [18]. These visual vectors and label representations are aligned during the cross-
modal and alternative training process. With these object-level visual vectors, LSTM (Long
Short-Term Memory) [19] predictor performs better in many complex scenes.

Figure 1 shows the built graph of the UC-Merced archive [16] (after multi-label process-
ing, such as in reference [17]). As shown in Figure 1, the clockwise curves (directed edges)
represent that there are relationships between every 2 linked nodes, with the precon-
dition that the conditional probability is bigger than a threshold. The curve boldness
indicates the probability value. In this graph, it can be seen that some label pairs normally
appear simultaneously, such as “pavement” and “car”. As for the others, such as “sea” and
“water”, the story is different. When “sea” appears in the picture, “water” will also appear.
However, when “water” appears, “sea” might not appear in the scene. This is the reason
why we built the directed graph and excavated the knowledge within it. Figure 2 is a vivid
demonstration of this situation.
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(a) (b)

Figure 2. The “direction” among labels in UC-Merced [16,17] archive. (a) “Sea”→ “Water”. (b) “Wa-
ter”→ “River", not “Sea”.

Our contributions can be listed as follows:

1. We propose a novel CM-GM framework, extracting object-level visual features and
modeling label dependencies using GCN [18].

2. We improve an object-level, channel-wise attention mechanism utilized in fine-grained
image classification [20] and further introduce it into multi-label tasks. We call this
improved feature extractor “Residual Multi-Attention Mechanism (RMAM)”.

3. We designed the cross-modal representation learning strategy and carried it out
between the embeddings of image patches and associated labels during the alternative
training. We propose a graph-based Cross-Modal Alignment module (CMA) for this
shared mapping.

4. By taking advantage of label sequences, we utilize conspicuous objects or creditable
labels to predict and recheck all the associated labels. This method improves the
performance of all predictors.

5. We evaluated he proposed method on several benchmark datasets. The experimental
results show that our method is competitive and effective compared with the state-of-
the-art multi-label recognition models.

The rest of this paper is organized into six parts. Related works are reviewed in
Section 2. In Section 3, the proposed approach is described in detail. The experimental
results and relevant analyses are provided in Section 4. The discussion and conclusion are
given in Sections 5 and 6, respectively.

2. Related Work
2.1. Multi-Label Learning in Aerial Scene Classification

Scene classification plays an important role in the imagery interpretation for remote
sensing images. In the past, like most image processing works, aerial scene classifi-
cation is highly dependent on manual features such as HOG (Histograms of Oriented
Gradients) [21], CH (Color Histograms) [22], SIFT (Scale-invariant Feature Transform) [23],
Gist [24], or just a window of pixels [25]. With these features, an appropriate encoding
scheme can improve the performance of models significantly. Common encoding methods
include BoVW (Bag of Visual Words) [26] and its enhancement, SPM (Spatial Pyramid
Matching) [16]. With these descriptors, the main problem for scene classification is to link
the low-level image features to high-level semantic labels.

In order to narrow down the semantic gap between image and labels, multi-label
learning can be accomplished by discriminative models [27] or generative models [25,28].
Typical discriminative model is multi-label SVM [12] which has shown good performance
in many visual processing tasks with almost all the feature descriptors. Other discriminative
models include nearest neighbour-based model [29], boosting [30] and Gaussian process-
based marginal likelihood analysis [31]. Gaussian process is also an effective way in multi-
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instance multi-label learning [31]. Generative models adopt "topic” to model features [28],
then the probabilistic inference methods can be utilized to exploit label relationships.
Probabilistic latent semantic analysis (pLSA) [32] and latent Dirichlet allocation (LDA) [25]
are common generative probabilistic inference models.

Generally speaking, these sparse, low-dimensional feature extracting strategies can
effectively obtain the shape, color and texture information of the image. Under most
circumstances, the computing source and time can be both limited in an appropriate range.
They are demonstrated to be good ways to handle many small-sample image processing
tasks. However, the major disadvantage of these strategies is that the man-made feature
extractors are not intelligent and automated enough, and the suitable features in one
scenario may be not valid in another. In the remote sensing field, it will become harder
to handle the task when images are large and the label-space is complex. In recent years,
researchers from the remote sensing community pay more attention on deep learning-
based methods.

2.2. CNN-Based Visual Recognition and Attention

In the past decade, represented by Convolutional Neural Networks (CNN) [6], deep
learning approaches have been regarded as one of the most powerful algorithms to extract
complex features from images and videos. Rising out of from LeNet [33], more and more
improved models, such as AlexNet [6], VGGNet [34], GoogLeNet [35] and ResNet [5],
refresh the records of large-scale image classification tasks. Similarly, deep learning can
also be utilized in many remote sensing tasks such as segmentation [36] and detection [7],
so as to perceive different targets in remote sensing graphics. In the past few years, many
studies with deep features (such as multi-layer [8] or multi-scale [9] CNN features) have
gained state-of-the-art performance on scene classification.

Common CNN-based multi-label models deal with label dependencies as a path
(sequence) [14] or a graph [17]. In these models, one important issue is to extract object-level
visual features. Different from single-label recognition, feature extraction in multi-label
tasks is more difficult since the objects in the image are manifold and also correlated with
each other. The attention mechanism is a popular solution to recognize different image
patches of interest. In this mechanism, attention masks can be generated in two kinds of
style, i.e., spatial-wise and channel-wise styles. Reference [37], which discusses Spatial
Transformer Networks, is the classical work for attention proposal. In this framework, a
spatial transformer can adaptively select and transform bounding boxes for handwritten
numbers. SENET [38] is an effective channel-wise attention mechanism. In SENET, specially
designed Squeeze-and-Excitation blocks improve the original pooling method in CNN,
squeezing (implemented by global average pooling) feature maps in different channels and
exciting them channel by channel. The Dual Attention Network in [39] appended two types
of attention modules in the original network, generating attention masks in the spatial
and channel dimensions, exploiting the long-range context. Similarly, the Convolutional
Block Attention Module in [40] also enhanced the channel-wise attention and spatial
attention using different structures, recognizing different objects, and locating them by
different structures. The Residual Attention Network in [41] introduced residual attention
learning, using the feature map before an attention mask as an attentional input. Those
stacking attention modules enable the framework to keep the discriminative information
and gradients; therefore, a network with even hundreds of layers can be optimized smoothly.
In terms of feature recognition, this paper is inspired by reference [20], which can effectively
propose attention parts in specified channel groups and obtain a superior performance
in fine-grained image classification. For the specific case of multi-label classification, this
paper makes three improvements based on MA-CNN, as outlined below.

1. We train a convolution network instead of using a fully connected layer to inference
the categories for different attention parts.

2. To balance the number of channels in different groups, this paper utilizes channel-wise
normalization.
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3. We adopt a residual attentional mechanism [41] to recognize visual information
holistically.

2.3. Label Graph Mining and Label Representation Learning

As mentioned in Section 1, the representation of label dependencies and label seman-
tics is an important issue in multi-label learning. Existing works deal with it as a sequence
or a graph. In [14], Wang et al. proposed the classical deep learning-based multi-label learn-
ing framework, CNN-RNN, which adopted CNN to extract visual features, and LSTM [19]
to model the label dependencies. In [42], a structured knowledge graph, WordNet, is
introduced in a multi-label framework to model the label relationship. Experimental results
show that a knowledge graph can even help the model predict unseen labels. In [15], Chen
et al. model the labels as a directed graph, then apply a popular graph mining network,
GCN [18], to map labels and label graphs (correlation matrix).

In the remote sensing field, there are also some valuable achievements. Chaudhuri et al.
proposed a semi-supervised graph-theoretic method, i.e., an image neighborhood graph for
remote sensing image retrieval [17]. In [17], the authors also improved the UC-Merced [16]
dataset, labeling each sample with more than one label. In [43], Tan et al. utilized a low-rank
representation to construct a feature-based graph (image) and a semantic graph (labels).
In [27], Zhang et al. designed an non-negative matrix tri-factorization-based collaborative
filtering framework, modeling image graph and label graph, respectively, so as to match
the pictures and semantic labels in a shared space. Although these strategies show excellent
performance on multi-label remote sensing image processing, they are highly dependent
on sparse low-dimensional features.

Considering the limited representation ability of classical feature descriptors, it is
reasonable to believe that the introduction of deep visual representation models can
further improve the accuracy of remote sensing image recognition. As an extension
of [14], Hua et al. adopted attentional CNN as a feature extractor, then modeled label
relationships as a sequence, too [44]. Chen et al. further constructed a directed graph over
object labels [15]. Inspired by [14,15,44], in this article, we also employ CNN-based visual
representation structures and model labels as a graph. The semantic information in this
graph can be further mined by graph convolutional neural networks (GCN) [18].

Deep network-based graph mining is a valuable research topic which attracts in-
creasing attention from the machine learning community. The rudiment of the graph
neural network (GNN) was first proposed by Gori et al. [45] and further developed by
Scarselli et al. [46] and Micheli [47]. In GNN, every node has a hidden state and a feature
vector. The optimization of this graph representation learning process is to find a con-
vergence state using a gradient back-propagation algorithm (Almeida-Pineda recurrent
backpropagation). The propagation in GNN is similar to that in Recurrent Neural Network
(RNN) [48], so it can also be unfolded in time. One limitation of GNN is the iterations need
conform “contraction mapping”, so as to ensure convergence. In terms of this issue, a Gated
Graph Neural Network (GGNN) is proposed based on GRU (Gated Recurrent Unit), updat-
ing states by “gate” instead of “contraction mapping” [49]. GNN-based methods mine the
graph in the time domain. Correspondingly, GCN-based methods mainly focus on spatial
information, analysing the node by its adjacency matrix and sharing parameters between
different layers [50–52], similar to kernels in CNN [33]. In multi-label remote sensing im-
age classification, according to the actual situation that related objects always co-occur
in samples, GCN is more in line with the task. Other graph representation methods
include deepwalk [53], node2vec [54], transE [55], etc.

3. The Proposed Method

How to represent pictures and labels and then measure their relevance in a shared
space is the key point for multi-label image annotation. Correspondingly, there are three
basic sub-tasks in multi-label scene recognition: representing images, modeling label
dependencies, and matching the sample with related labels. Classical works mainly focus
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on the modeling of pictures, e.g., designing effective feature descriptors [21–23] and making
improvements in deep learning-based feature extractors [8,9]. There are also some works
which tried to model images and labels uniformly, generating sub-graphs with similar
strategies (e.g., sparse matrix [21,27]) so as to match them easily with related attributes.
In this paper, we pay more attention to labels. Considering the structure gap between
the data in different modes, we map them with different strategies so as to have a good
use of advanced representation learning algorithms. In addition to CNN-based image
representation, the advanced language model and the graph model are introduced for
the representation of labels.

As shown in Figure 3, there are four sub-modules in the proposed CM-GM framework:
a residual attention-based visual feature extractor, a GCN-based label representation net-
work, a cross-modal alignment module for mapping into the shared space, and a Bi-LSTM
predictor for label matching.

Figure 3. The proposed CM-GM framework.

In the framework above, the object-level visual features would be extracted by the
improved channel-wise multi-attentional CNN and then aligned to label vectors. After
cross-modal mapping, we feed those object-level signals to a Bi-LSTM [19] predictor accord-
ing to a label sequence that is generated by the probabilistic inference on label graph.
The framework will be presented in detail in the following sections.

3.1. Residual Multi-Attention Mechanism

In this article, we introduce the advanced attention mechanism, MA-CNN [20], and
further improve it for multi-label tasks. MA-CNN is proposed for fine-grained image
categorization. For all training samples, the coordinates of peak response in each CNN
layer are selected as the feature vector. With these vectors, CNN layers can be clustered into
N groups, generating related discriminative attention parts. This is understandable, since
the region with the peak response is always the most distinctive. This grouping operation is
executed for the initialization of N attention parts. Correspondingly, N c-dimensional fully
connected layers are designed to generate the weights of different channels (c channels) for
these N attention parts. The fully connected layers will be optimized during the further
end-to-end part learning. More details are described in reference [20].
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Due to the fact that MA-CNN is proposed for fine-grained categorization for which
the label for each sample is only one, we further improve MA-CNN in three aspects so as
to make it appropriate for multi-label classification.

Firstly, the attention parts in MA-CNN [20] are proposed adaptively according to
related labels. It is possible that more than one attention part is associated with the same
tag. We utilize a pre-trained CNN to predict the labels for different attention parts. The
part with the higher response value will be selected, as written in Equation (1):

Yn=V(Pn(X)) = V(
c

∑
j=1

([W1 ∗ X]j ·Mn)), (1)

where Yn is the predicted label for the No.n attention part Mn; Pn is the final feature
representation of this attention part; V is the pre-trained CNN predictor; c is the number of
channels; W1 denotes the CNN parameters for the feature extraction and attention proposal;
the dot product means element-wise multiplication; X denotes the input samples; and ∗
means the convolutional and attention-proposal operation.

Secondly, because of the above, the attention proposal in MA-CNN is implemented by
channel grouping; the channels in the CNN kernels always distribute unevenly in different
groups. This can be improved by channel-wise normalization, as written in Equation (2):

Pn(X) =
1(

c
∑

j=1
dj

) c

∑
j=1

(dj[W1 ∗ X]j ·Mn), (2)

where Pn(X) denotes the extracted feature associated with No.n attention mask, Mn; dj
is one of the weights of the CNN channels generated from the fully-connected layers
in MA-CNN; W1 denotes the trainable CNN parameters; and the dot product means
element-wise multiplication.

In addition, we introduce the residual attentional learning [41] in different channel
groups, mining the residual, channel-wise, and regional information not only in depth but
also crosswise, as in Equation (3):

Pn(X) =
1(

c
∑

j=1
dj

) c

∑
j=1

(dj[W1 ∗ X]j · (1 + Mn)). (3)

This residual, multi-attention mechanism (RMAM) is suitable for the analysis of
complex remote sensing pictures with many labels. We visualize the generated attention
parts in the picture “golfcourse79” (UC-Merced [16,17]) using the basic attention layer,
MA-CNN, and the proposed RMAM, as in Figure 4. In these experiments, ResNet-50 [5] is
selected as the backbone.

(a) Original (b) Classical Attention
Layer

(c) MA-CNN (d) RMAM

Figure 4. Attention parts generated by different mechanisms for picture “golfcourse79” in
UC-Merced [16,17] dataset.
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As illustrated in Figure 4, MA-CNN is more sensitive for object-level features than
the basic attention layer. The perceived attention parts by our RMAN are most obvious,
especially for label “tree” and the label “grass”.

Figures 5–7 show the generated attention parts associated with different labels by
RMAN on three typical pictures. It is evident that RMAM is able to perceive object-level
visual features effectively.

(a) Original (b) Bare Soil (c) Grass (d) Tree (e) All

Figure 5. The picture “golfcourse79” in UC-Merced [16,17] dataset and its attention parts generated
by RMAM.

(a) Original (b) Airplane (c) Pavement (d) Building (e) All

Figure 6. The picture “airplane79” in UC-Merced [16,17] dataset and its attention parts generated
by RMAM.

(a) Original (b) Water (c) Ship (d) Dock (e) All

Figure 7. The picture “harbor33” in UC-Merced [16,17] dataset and its attention parts generated
by RMAM.

These extracted object-level visual signals will be further processed and then utilized
for a sequence prediction which will be described in Sections 3.3 and 3.4.

3.2. GCN-Based Label Representation Learning

As mentioned in Section 1 the most important issue in multi-label classification is to
match visual features to semantic labels. If we pay more attention to label representation,
multi-label classification can be regarded as a typical cross-modal learning process which
tries to translate the high-level semantic concepts in pictures to a group of words. In this
paper, we adopt a language model and label a graph to represent the labels, then map
them to visual features. The mapping strategy will be described in Section 3.3.

Over the past few years, with the development of multi-media techniques, the data
resource in the new period is characterized as multi-source and heterogeneous but highly
correlated with high-level semantics [56]. Multi-modal machine learning has become a
research hotpot in the past few years. As defined by [57], “modality” has a more fine-
grained meaning compared with “medium”. It refers to a typical data source with a
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standard structure in a unified channel. On this precondition, pictures, texts, vocal signals,
time series, or graphs can all be regarded as independent modes, respectively.

Textual data present valuable cross-modal supplementary information for the com-
prehension of label semantics. On a large scale corpus, images and texts, similar concepts
(objects in pictures and entities in sentences), will always co-occur in specialized scenes.
Most word-representation models are based on word distribution, e.g., close prediction in
sentences, which is similar to object co-occurrence in pictures. In this article, in addition to
mapping remote sensing images by CNN with residual multi-attention module (RMAM in
Section 3.1 with attention masks optimized in the training process for associated labels),
we also adopt an advanced language model, Bert [58], to initialize label representation
with a large textual corpus.

Language model-based label representation is effective due to the fact that related
entities always co-occur in large scale textual corpora. From another perspective, the
large-scale data will also dilute the valuable information among specific words about
the multi-label dataset. In order to ensure the good use of label dependencies, we further
exploit them in a graph which is mined by GCN [18]. This is the so-called “label graph
mining”-based label (node in graph), which embeds strategy in the proposed framework.

To begin, we built the label graph referred to as labels’ co-occurrence conditional
probabilities, as Equation (4):

P(Lb|La) =
P(La, Lb)

P(La)
, (4)

where La and Lb denote label a and label b. If P(Lb|La) is greater than a threshold (in this
article, we set it 0.4), we consider that if La appears, Lb will also appear. The connection
from La to Lb exists in the graph (such as in Figure 1).

Through the statistical analysis of training data, we can obtain a label graph. This
graph can further be modeled by GCN [18]. The function for one GCN layer can be written
in Equation (5):

H l+1 = σ(D̃−
1
2 ÃD̃−

1
2 H lW l

G), (5)

where H l is the result of the convolutional operation in No.l GCN layer; Ã = A + IN is
the adjacency matrix of the graph; H0 is initialized by a matrix of node feature vectors
Xi; D̃ii = ∑

j
Ãij, where the introduction of D̃ is to normalize adjacency matrix; WG is a

matrix of trainable variables in GCN; and σ(·) is an nonlinear activation function, such as
ReLU [59].

As mentioned above, we employ a language model to extract semantics in a textual
corpus cross-modally, leveraging Bert [58] to embed labels initially. These label vectors
will form the initial states (nodes) of the graph, also the Xi and H0 in Equation (5). Our
CM-GM framework can not only extract word semantics in large corpus, but also take
advantage of label dependencies by label graph mining.

It can be seen in Figure 8, compared with initial label vectors by Bert in Figure 8d,
that further GCN mapping can make the related labels in one typical scene appear closer
to each other, as shown in Figure 8e. In these experiments, we chose a pre-trained Bert
model [58]. The dimension of the label vectors were set to 1000. t-SNE [60] is employed to
reduce the dimensions of the label vectors for visualization.
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(a) Golf (b) Airplane (c) Harbor

(d) Bert (e) GCN

Figure 8. t-SNE visualization of label vectors in three pictures by different representation methods.

3.3. Cross-Modal Feature Alignment and Training Approach

For multi-label classification and other multi-modal learning tasks, cross-modal feature
alignment is a key point. With those visual embeddings (such as attentional feature
vectors in Figures 5–7) and graph-based label embeddings (such as in Figure 8), it is an
important issue to align feature representations between 2 modes. In this article, we
proposed an improved cross-modal representation learning strategy to enhance features
in the framework cross-modally. That is minimizing hinge rank loss [61] to optimize the
CNN layer, as Equation (6):

Lcross = ∑
a 6=label

max[0, margin−glabelW2Plabel + gaW2Plabel ], (6)

where Plabel is a column vector generated from object-level attention mechanism as men-
tioned in Section 3.1; glabel denotes the label embedding, a row vector, of the matched
label; ga are those embeddings of other labels (nodes) in the graph; and W2 are trainable
parameters in Cross Modal Alignment module (CMA).

Plabel , glabel and ga can be calculated as Equations (7)–(9),

Plabel = RMAM(X), (7)

glabel = GCN(Li), (8)

ga = GCN(La), a 6= i, (9)

where X is the input sample, and Li is the label vector generated by Bert [58], and this label
is associated with Plabel .

In Figure 9, we visualize the extracted label–level feature vectors from three typical
pictures. The vectors in Figure 9d are generated by RMAM, as mentioned in Section 3.1.
After cross-modal feature alignment, visual vectors in the same scene become closer to
each other and farther from those in other pictures, as shown in Figure 9e. Similarly, we
use t-SNE [60] for dimensionality reduction. In fact, it has been analyzed that related
objects and attributes are always distributed similarly in large corpora of different modes,
and this data character is useful. This cross-modal similarity has been utilized in many
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complex computer vision tasks, e.g., zero-shot image classification based on semantic
embedding [61,62].

(a) Golf (b) Airplane (c) Harbor

(d) Before (RMAM) (e) After

Figure 9. t-SNE visualization of visual feature vectors in the pictures before and after cross-modal alignment.

In the training, we preserve two groups of trainable CNN parameters in the CM-GM
framework, W1 and W2, for attention propose and cross-modal alignment, respectively.
W1 is to be used for the object-level visual feature extraction in RMAM, as mentioned in
Section 3.1. ResNet-50 [5] is selected as the backbone. We use a similar training strategy for
W1 to MA-CNN, with the accumulation of binary cross-entropy loss and channel-grouping
loss [20]. W1 and the fully connected layer (FC layer) designed in the original MA-CNN
can help our CM-GM framework to generate appropriate attention parts for different labels.
With these attention parts, object (label)-level visual signals can be extracted one by one
and aligned with associated label vectors by another CNN-based mapping with W2, as
written in Equation (6). The training processes for W1, W2 and the fully-connected layer
(FC layer) for channel grouping in MA-CNN are individual and alternative. It can be
summarized as follows:

1. Train W1 with fixed FC layer;
2. Train FC layer with fixed W1 generated in step 1;
3. Train W2 with attention parts generated by fixed W1 and FC layer (updated in this

loop); go to step 1 (next loop): train W1 with the fixed and updated FC layer generated
in this loop.

3.4. Credible Labels for LSTM Predictor

After being aligned and enhanced by a cross-modal alignment module, those object-
level visual features would be fed into a LSTM [19] predictor for training and testing. In
this paper, we model the label dependencies by GCN-based graph. After graph mining
and embedding, we deal with these label (object)-level visual representations as a sequence
generated from the graph (such as in Figure 1) by probabilistic inference. For example,
the most obvious object, also the one with the peak response value, e.g., the “airplane” in
Figure 10b, can be regarded as the starting point of the sequence. Another object with
the highest co-occurrence probability is sequentially selected as the second one. Since
P(pavement|airplane) > P(building|airplane), the label sequence in Figure 10b for LSTM
can be determined like the purple curve in Figure 10d. Similarly, the label sequences for
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Figure 10a,c are also built and shown in Figure 10d. These three paths are cut from the label
graph in Figure 1.

(a) Golf (b) Airplane (c) Harbor

(d) Label Sequences

Figure 10. Label sequences of three typical pictures for LSTM predictor.

In the training process, we feed those mapped visual feature vectors (generated from
the residual attentional CNN and aligned by cross-modal module) to the LSTM [19,44]
predictor. Compared to the classical RNN, LSTM is more applicable for a sequence process
with a higher memory ability. In LSTM, different memory units and gates are designed.
Their updating formula is written in Equations (10)–(14):

in = σ(WpiP
′
n + Whihn−1 + Wcicn−1 + bi), (10)

fn = σ(Wp f P
′
n + Wh f hn−1 + Wc f cn−1 + b f ), (11)

on = σ(WpoP
′
n + Whohn−1 + Wcocn + b f ), (12)

cn = fn • cn−1 + in • tanh(WpcP
′
n + Whchn−1 + bc), (13)

hn = on tanh(cn), (14)

where, in, fn, and on denote the outputs of “input gate”, “forgetting gate”, and “output
gate” at time t, respectively (in this paper, these outputs are calculated for the nth label; one
label corresponds to one step); cn means the state of the LSTM [19] cell; hn is the hidden
variable of the LSTM cell, the activation of cn; W denotes trainable variables in different
units, and b is the corresponding bias; P

′
n is the visual feature vector of attention part n as

Equation (15), related with label n; σ is a nonlinear activation function, “sigmod”, in LSTM;
and • denotes element-wise multiplication.

P
′
n = CMA(RMAMn(Xk)) = CMA(Pn(Xk)), (15)

where CMA denotes cross modal alignment; we let Xk be the No. k sample and Pn be the
visual features generated by RMAM associated with No. n label in sample k.
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Considering the rich information in the sequence and the differences in label directions
(For 2 labels, A and B, it is normal that P(A|B) 6= P(B|A))), we improve the LSTM to Bi-
directional LSTM as Equation (16):

↔
hn =

→
[hn;

←
hn], (16)

where
↔
hn denotes the final hidden variable, which is the concatenation of hn in two opposite

directions,
→
hn and

←
hn.

In the testing, we consider the labels with higher CNN output values (top K or
bigger than a threshold) as “credible labels”, then predict the last labels in the sequence
by LSTM [19]. With these output vectors of LSTM, label vectors can be determined by
mapping or inverse mapping, as mentioned in Section 3.2.

We adopt a pre-trained CNN classifier (e.g., ResNet [5] on MS-COCO or the large
remote sensing archive) to predict labels. If the predicted labels (not in a credible label set)
are also in the predictions of LSTM, we consider these predicted labels to also be positive.
Our experiments show that this LSTM predictor is very effective. This is understandable,
since the prediction about obvious objects is more likely to be correct in a multi-label
classification. For those inconspicuous objects, the CM-GM framework is also valid
due to its advantage in graph mining and sequence analysis.

Moreover, considering the the co-occurrence of related labels and the actual situation
that some of the objects are obvious in one picture while inconspicuous in another one, it is
reasonable to believe that we can utilize partially significant objects to illustrate a special
scene in a large image archive on the condition that the labels are jointly represented by
the graph cross-modally. In this way, the manual labeling work for training data can be
reduced significantly.

4. Experiments
4.1. Implementation Details
4.1.1. Baselines and Metrics

To evaluate the performance of the proposed CM-GM framework in this paper, we
carried out experiments compared with several popular multi-label classification algo-
rithms. They are: ResNet-RBFNN [63], CA-ResNet-LSTM [44], CNN-RNN [14], WAPR [64],
LSEP [65], and ML-GCN [15]. Among these methods, ResNet-RBFNN [63] and CA-ResNet-
LSTM [44] are proposed for aerial images; CNN-RNN [14], WAPR [64], LSEP [65], and
ML-GCN [15] are state-of-the-art in general multi-label image recognition tasks. We sub-
stitute ResNet [5] for GoogLeNet in original GoogLeNet-RBFNN [63] in order to make
a fair comparison, similar to [44].

For multi-label evaluation, we adopt six metrics: Overall Precision (OP), Overall Recall
(OR), Per-Class Precision (CP), Per-Class Recall (CR), Micro F1 (MiF1), and Macro F1 (MaF1).
They can be calculated using Equations (17)–(22):

OP =

c
∑

i=1
Na

i

c
∑

i=1
Np

i

, (17)

where Na
i is the number of samples predicted to be associated with the ith label, and the

actual number is i; Np
i denotes all the samples predicted to the ith label;and c is the number

of labels.

OR =

c
∑

i=1
Na

i

c
∑

i=1
Ng

i

, (18)
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where Ng
i is the number of samples with No.i label in the whole dataset.

CP =
1
c

c

∑
i=1

Na
i

Np
i

, (19)

CR =
1
c

c

∑
i=1

Na
i

Ng
i

, (20)

MiF1 =
2OP×OR
OP + OR

, (21)

MaF1 =
2CP× CR
CP + CR

. (22)

4.1.2. Experimental Platform and Hyper Parameters

In this article, all the experiments are carried out on a workstation with two Intel
Xeon(R) E5-2640K CPUs @2.4GHz, one 64GB RAM, and two 11GB GeForce RTX 2080 Ti
GPUs. The Integrated Development Environment (IDE) is Pycharm on Ubuntu 18.04.1.
In addition, we adopt TensorFlow1.12 as a deep learning framework. ResNet-50 and
ResNet-101 [5] are our backbones.

We train the feature extractor using a stochastic gradient descent optimizer with a batch
size of 50, momentum of 0.9, and weight decay of 0.0001. The learning rate is initialized as
0.0001 and divided by 10 every epoch until the validation performance converges. Then,
we freeze the weights of all the convolution layers in the backbone network and train the
multi-label reasoning module using an Adam optimizer. The early stopping strategy is
adapted to figure out the appropriate training epoch. The hidden size in LSTM [19] is set
to 512, and the embedding size is also 512. Moreover, batch normalization is also utilized.
In our experiments, the labels with higher CNN output values (bigger than 0.4) are set as
credible labels.

4.1.3. Training and Testing Details

For those CNN parameters in the visual feature extractor, W1 in RMAM, cross-modal
alignment mapping, and W2 in CMA, we train them alternatively as mentioned in Section 3.3.
For the graph-based label representation mapping, WG, we train them as general GCN [18].
The object-level visual feature vectors would be fed into the LSTM [19], following the se-
quences mentioned in Section 3.4, thus training the LSTM predictor by cross-entropy loss.

We use pre-trained Bert [58] with 1000-Dimensional vectors for the first-step label
representation and t-SNE [60] to reduce the dimension for visualization.

In testing, the pictures are firstly perceived by trained RMAM. With these mapped
visual signals, the pre-trained CNN is able to make initial predictions. We align the visual
signals associated with the top K labels to the GCN-based label embeddings by CMA, then
feed them to LSTM for a complete sequence. If the initially predicted labels are also in this
sequence, we consider this label to be positive.

4.2. Experiments on UC-Merced

The UC-Merced land use dataset is our first benchmark, which was initially proposed
by Yang et al. in a single-label style [16]. Chaudhuri et al. reproduced this dataset by
labeling multiple different objects in the pictures [17]. UC-Merced is a classical and popular
dataset for evaluating different models in remote sensing image processing. The number of
images associated with each class label in UC-Merced is shown in Table A1.

In the tables below, “N” denotes channel-wise normalization, and “R” denotes
residual attentional learning, respectively. As listed in Table 1, it is obvious that the per-
formance of the basic feature extractor, ResNet-50, is weaker than other models. Although
its CP is acceptable, the CR is the lowest among the models. The introduction of the RBF
network helps the model, ResNet-RBFNN [63], perform better in almost all the indicators,
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except OP and CP, than ResNet-50 [5]. CA-ResNet-LSTM [44] obtained better MiF1 and
MaF1 values. This illustrates that the sequence-based classification is superior than those
soft-max-based methods in our experiments. BiLSTM can further improve the model’s
capabilities. For our CM-GM framework, it can be seen that, along with the development
of the attention mechanism, all the indicators increase gradually. With the improvements in
RMAM, the residual mechanism, and channel-wise normalization, our CM-GM-BiLSTM
framework outperforms all the other methods. The proposed object-level attention mech-
anism and the cross modal alignment strategy are effective.

Table 1. The performance of different models on UC-Merced multi-label dataset.

Model MiF1 MaF1 OP OR CP CR

ResNet-50 [5] 79.51 80.41 80.70 81.97 88.52 78.91
ResNet-RBFNN [63] 80.58 82.47 79.92 84.59 86.21 83.72

CA-ResNet-LSTM [44] 81.36 83.66 79.90 86.14 86.99 82.24
CA-ResNet-BiLSTM [44] 81.47 85.27 77.94 89.02 86.12 84.26

CM-GM-N-LSTM 79.56 84.22 78.17 87.56 87.28 83.51
CM-GM-N-R-LSTM 81.31 85.52 81.20 89.41 88.35 85.06
CM-GM-N-BiLSTM 81.21 85.42 81.12 89.23 88.17 84.85

CM-GM-N-R-BiLSTM 81.58 86.19 81.6 89.65 88.57 85.20

Figure 11 shows the average precision–recall curves of the different models on the
UC-Merced dataset. It can be seen that the performance of ResNet-RBFNN [63] is slightly
superior to that of basic ResNet-50 [5]. Our CM-GM performs better than CA-ResNet-
BiLSTM [44] and ResNet-RBFNN [63]. The curve of CM-GM is smoother and has a bigger
area above the horizontal axis.

Figure 11. Average precision–recall curves on UC-Merced archive.

4.3. Experiments on BigEarthNet

The BigEarthNet [66] dataset originates from the Technische Universitaet Berlin, 2019.
To our knowledge, BigEarthNet is the most comprehensive and largest remote sensing
image archive at present. It contains 590,326 pictures from the Sentinel-2 satellite, asso-
ciated with 43 categories. In this article, we only adopt R/G/B, three visible light bands.
The number of images associated with each land-cover class in BigEarthNet is shown in
Table A2. ResNet-50 [5] is selected as the backbone. A total of 60% of samples are used for
training, and the rest is used for testing.
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The performance of the different models on BigEarthNet [66] is shown in Table 2. The
introduction of channel-wise normalization and residual attentional learning can improve
CM-GM effectively. As a result, GM-GM gains excellent performance on almost all the
indicators, about 1% higher than the state-of-the-art method CA-ResNet-BiLSTM [44] on
MiF1 and MaF1.

Table 2. The performance of different models on BigEarthNet.

Model MiF1 MaF1 OP OR CP CR

ResNet-50 [5] 81.56 80.53 81.22 82.32 89.12 79.23
ResNet-RBFNN [63] 82.72 83.51 80.25 84.83 86.51 83.96

CA-ResNet-LSTM [44] 83.35 84.96 80.18 86.68 87.30 82.63
CA-ResNet-BiLSTM [44] 84.50 85.61 78.37 89.41 86.69 84.67

CM-GM-N-LSTM 84.36 85.31 78.71 87.89 87.63 83.82
CM-GM-N-R-LSTM 85.32 86.26 81.53 89.92 88.72 85.66
CM-GM-N-BiLSTM 85.23 86.61 81.61 89.87 88.65 85.34

CM-GM-N-R-BiLSTM 85.52 86.82 81.76 89.96 88.80 85.91

The average precision–recall curves on BigEarthNet are shown in Figure 12. The curve
obtained by CM-GM is better than other models, with the biggest area under the curve.
The curve of CA-ResNet-BiLSTM [44] is near to and better than ResNet-RBFNN [63]. By
contrast, the baseline, ResNet-50 [5], is weaker.

Figure 12. Average precision–recall curves on BigEarthNet.

4.4. Additional Experiments on MS-COCO

We also conduct addition experiments on the popular computer vision benchmark
dataset, MS-COCO [67], only with object-level labels (without bounding boxes and pixel-
level labels). As was the case in [65], there are 82,081 training samples and 40,137 testing
samples. The number of images associated with each class label in MS-COCO is shown in
Table A3. In these experiments, ResNet-101 [5] is selected as the backbone, different from
the original backbones adopted by the methods for comparison, such as VGG16 [34] in
CNN-RNN [14] and LSEP [65]. The results are recorded in Table 3.
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Table 3. The performance of different models on MS-COCO.

Model MiF1 MaF1 OP OR CP CR

ResNet-101 [5] 76.8 72.9 83.7 71.0 80.4 66.9
WARP [64] 77.0 74.1 83.9 71.3 81.2 68.2
LSEP [65] 78.7 75.6 84.6 73.5 83.4 69.1

CNN-RNN [14] 78.1 74.3 84.2 72.9 82.7 67.5
ML-GCN [15] 81.1 78.7 86.5 76.3 85.7 72.8

CM-GM-N-LSTM 79.3 77.3 84.5 74.7 84.3 71.3
CM-GM-N-R-LSTM 79.9 77.9 85.3 75.3 85.5 71.6
CM-GM-N-BiLSTM 81.0 78.8 86.2 76.4 86.3 72.5

CM-GM-N-R-BiLSTM 81.9 79.6 87.1 77.2 87.1 73.3

As listed in Table 3, the basic feature-extraction network ResNet-101 [5] has a weaker
performance on multi-label indicators. Compared with ResNet-101 [5], the methods with
improved losses, such as WARP [64] and LSEP [65], perform better. LSEP [65] outperforms
CNN-RNN [14] on almost all the indicators. In ML-GCN [15] and CM-GM, label graphs
are used to improve the models. Along with different improvements, such as channel-wise
normalization and residual attentional learning utilized in CM-GM, our framework has the
best performance on all indicators.

It can be seen in Figure 13 that the average precision–recall curve obtained by CM-GM
has the biggest area under the curve. In the part with higher recalls, ML-GCN [15] and
LSEP [65] can also achieve higher accuracy.

Figure 13. Average precision–recall curves on MS-COCO.

4.5. Ablation Study and Qualitative Analysis

In the experiments mentioned above, the proposed CM-GM framework is fixed. In
addition, those statistical results about CM-GM can illustrate the effects of the feature
extractor RMAN, as mentioned in Section 3.1, including channel-wise normalization and
residual attentional learning. In this section, we mainly focus on the ablation studies about
different sub-modules, e.g., GCN-based label graph mining and cross-modal alignment.
MS-COCO [67] is selected as the benchmark for its representativeness.

We initially classify those object-level visual representations before and after cross-
modal alignment by a ResNet-50 [5] classifier pre-trained on ImageNet [6]. The results
(MiF1/MaF1) are listed in Table 4. It can be seen that, after cross-modal feature alignment,
the multi-label perceptual ability is enhanced. The alignment by GCN [18] can further
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embed labels according to their internal relationships, enabling the classifier to obtain
higher MiF1/MaF1 values than the alignment by Bert [58].

Table 4. MiF1/MaF1 by ResNet-50 on MS-COCO (before and after alignment).

Before Alignment 71.1/67.6

After Alignment Aligned by Bert Aligned by GCN
73.6/70.5 76.2/74.1

Similarly, the LSTM [19] classifier is also applied to recognize those object-level visual
signals obtained by RMAM and further aligned to different label embeddings. The results
are listed in Table 5. Compared with the results in Table 4, the LSTM classifier performs
better. The GCN [18] alignment is superior to Bert [58]. This is because the sequence
predictor is able to utilize more instruction information from the label graph.

Table 5. MiF1/MaF1 by LSTM on MS-COCO (before and after alignment).

Before Alignment 78.2/72.3

After Alignment Aligned by Bert Aligned by GCN
78.5/74.6 79.9/77.9

Figures 14–16 show the qualitative results about three pictures from MS-COCO. In
these examples, green labels denote true positive, red labels denote false positive, and gray
labels denote false negative.

Figure 14. Qualitative results. Example 1.

Figure 15. Qualitative results. Example 2.
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Figure 16. Qualitative results. Example 3.

In Figure 14, it can be seen that ResNet-101 [5] obtains a wrong prediction of “train”.
This model is weaker at distinguishing easily confused visual features. For those inconspic-
uous objects such as “traffic light” and “truck”, CM-GM can also recognize them accurately,
better than other methods.

In Figure 15, these models show similar performance. ResNet-101 [5] has a wrong
prediction of “bottle”. CM-GM has a stronger ability to perceive inconspicuous objects
such as “dining table” and “cup”. ML-GCN [15] also obtains better performance.

Figures 17–19 are qualitative examples of the UC-Merced multi-label dataset. From
the experimental results, we can easily find that Resnet-101 [5] tends to mis-detect some
objects, such as the long-shaded part in Figure 17, which it classified as “water”. That is
because the model only utilized pixel- or shape-based low-level features. CNN-RNN [14]
can extract visual features by CNN and deal with label dependencies based on their
frequencies of occurrence, so it obtains a lower false positive rate than ResNet-101 [5].
WARP [64] introduces a weighted approximate ranking strategy to optimize the accuracy
of top-k labels, and LSEP [65] further improves the pair-wise loss and proposes a smooth
approximation. As a result, these two methods have certain advantages in recognition
accuracy. In addition, ML-GCN [15] models label dependencies as a directed graph and
designs a novel graph convolutional network based on visual representation learning;
therefore, the performance of ML-GCN [15] is superior to those models mentioned above.
Due to the label-level channel-wise pooling and cross-modal feature alignment strategy,
CM-GM has a better performance on both UC-Merced examples than ML-GCN [15].

Figure 17. Qualitative results. Example 4.

Figure 18. Qualitative results. Example 5.
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Figure 19. Qualitative results. Example 6.

It is obvious that the sequence-prediction method and cross-modal alignment make
the proposed CM-GM more sensitive to those inconspicuous objects, such as the “car” in
Figure 19, considering the related labels in semantic scenes.

5. Discussion

The CM-GM framework is effective in multi-label tasks since it introduces an object-
level attention mechanism and a cross-modal learning strategy. The framework is different
from other state-of-the-art frameworks.

Difference with CA-ResNet-LSTM CA-ResNet-LSTM [44] adopts a classical at-
tention layer for object-level feature extraction. In the CM-GM framework, the visual
attention mechanism is more complex. Channel grouping can obtain more well-directed,
objective-level feature vectors. Moreover, cross-modal learning is introduced in the CM-GM
framework, in which the textual corpus and label graph provide valuable information
for feature representation. The cross-modal supplementary information is integrated and
enhanced by a feature-alignment module in the CM-GM framework. In addition, we utilize
probabilistic inference-based sequences for the LSTM predictor.

Difference with ML-GCN The visual representation learning in ML-GCN [15] is by
general CNN architectures. Different from ML-GCN [15], the CM-GM framework employs
an improved object-level feature extractor, RMAM, which can extract visual attention
parts then connect them to associated labels initially. Both the CM-GM framework and
ML-GCN [65] construct a label graph, then represent labels by GCN [18]. In ML-GCN [15],
GCN-based label (node) representations were considered to be learned classifiers, which
could be applied to image representations by dot product. The weights are trainable with
classical binary cross-entropy loss. In the CM-GM framework, these label representations
are used for the cross-modal alignment process. Aligned object-level visual features will be
fed into a sub-module, the LSTM predictor, which is absent in ML-GCN [15].

It should be noticed that the alternative training in the CM-GM framework has brought
more computational expense. The training time for UC-Merced is thirteen hours, and the
time for MS-COCO is about 28 hours on our workstation, which is still acceptable. In
addition, we believe that this can be solved by the development of hardware. In addition,
our model relies on large-scale datasets to recognize the semantic context of a visual scene
and the correlation of information between labels. However, acquiring massive labeled
data is costly and difficult. Therefore, semi-supervised multi-label classification based on
transfer learning is our future research topic.

6. Conclusions

Aerial scene classification is a fundamental and important problem, which can gain
semantic information from images and directly impact the performance of subsequent
computer vision tasks. In this article, we proposed a CM-GM framework for multi-label
aerial scene classification. CM-GM can effectively extract object-level visual features by
an improved residual multi-attention mechanism, which is helpful to reduce the error-
detection rate of our model. In addition, the proposed method can also make good use
of label dependencies. The label representation module in CM-GM is able not only to
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leverage textual data as valuable cross-modal information, but also to map the relevant
objects into a graph semantically, utilizing the tacit knowledge between labels. With the
improved sequence prediction sub-module, CM-GM has an advantage in the perception of
inconspicuous objects, which can improve the recall rate significantly. Experimental results
and qualitative analyses show that the proposed CM-GM achieves excellent performance
on benchmark datasets when compared with state-of-the-art methods and is very suitable
for multi-label classification in the remote sensing field.
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Appendix A

Table A1. Number of images associated with each class label in UC-Merced archive.

Class Label Number of Images

airplane 100
bare soil 633
building 696

car 884
chaparral 119

court 105
dock 100
field 106
grass 977

mobile home 102
pavement 1305

sand 389
sea 100
ship 102
tanks 100
trees 1015
water 203
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Table A2. Number of images associated with each land-cover class in BigEarthNet.

Class Label Number of Images

Mixed forest 217,119
Coniferous forest 211,703

Non-irrigated arable land 196,695
Transitional woodland/shrub 173,506

Broad-leaved forest 50,944
Land principally occupied by agriculture, with

significant areas of natural vegetation 147,095

Complex cultivation patterns 107,786
Pastures 103,554

Water bodies 83,811
Sea and ocean 81,612

Discontinuous urban fabric 69,872
Agro-forestry areas 30,674

Peatbogs 23,207
Permanently irrigated land 13,589

Industrial or commercial units 12,895
Natural grassland 12,835

Olive groves 12,538
Sclerophyllous vegetation 11,241
Continuous urban fabric 10,784

Water courses 10,572
Vineyards 9567

Annual crops associated with permanent crops 7022
Inland marshes 6236

Moors and heathland 5890
Sport and leisure facilities 5353

Fruit trees and berry plantations 4754
Mineral extraction sites 4618

Rice fields 3793
Road and rail networks and associated land 3384

Bare rock 3277
Green urban areas 1786

Beaches, dunes, sands 1578
Sparsely vegetated areas 1563

Salt marshes 1562
Coastal lagoons 1498

Construction sites 1174
Estuaries 1086

Intertidal flats 1003
Airports 979

Dump sites 959
Port areas 509

Salines 424
Burnt areas 328

Table A3. Number of images associated with each class label in MS-COCO.

Class Label Number of Images

person 64,115
bicycle 3252

car 12,251
motorcycle 3502

airplane 2986
bus 2952

train 3588
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Table A3. Cont.

Class Label Number of Images

truck 6127
boat 3025

traffic light 4139
fire hydrant 1711

stop sign 1734
parking meter 705

bench 5570
bird 3237
cat 4114
dog 4385

horse 2941
sheep 1529
cow 1968

elephant 2143
bear 960

zebra 1916
giraffe 2546

backpack 5528
umbrella 3968
handbag 6841

tie 3810
suitcase 2402
frisbee 2184

skis 3082
snowboard 1654
sports ball 4262

kite 2261
baseball bat 2506

baseball glove 2629
skateboard 3476
surfboard 3486

tennis racket 3394
bottle 8501

wine glass 2533
cup 9189
fork 3555
knife 4326
spoon 3529
bowl 7111

banana 2243
apple 1586

sandwich 2365
orange 1699
broccoli 1939
carrot 24

hot dog 11
pizza 3166
donut 1523
cake 2925
chair 12,774
couch 4423

potted plant 4452
bed 3682

dining table 11,837
toilet 3353

tv 4561
laptop 3524
mouse 1876
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Table A3. Cont.

Class Label Number of Images

remote 3076
keyboard 2115
cell phone 4803
microwave 1547

oven 2877
toaster 217

sink 4678
refrigerator 2360

book 5332
clock 4659
vase 3593

scissors 947
teddy bear 16
hair drier 189

toothbrush 1007
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