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Abstract: Ionospheric forecasts are critical for space-weather anomaly detection. Forecasting iono-
spheric total electron content (TEC) from the global navigation satellite system (GNSS) is of great
significance to near-earth space environment monitoring. In this study, we propose a novel iono-
spheric TEC forecasting model based on deep learning, which consists of a convolutional neural
network (CNN), long-short term memory (LSTM) neural network, and attention mechanism. The
attention mechanism is added to the pooling layer and the fully connected layer to assign weights
to improve the model. We use observation data from 24 GNSS stations from the Crustal Movement
Observation Network of China (CMONOC) to model and forecast ionospheric TEC. We drive the
model with six parameters of the TEC time series, Bz, Kp, Dst, and F10.7 indices and hour of day
(HD). The new model is compared with the empirical model and the traditional neural network
model. Experimental results show the CNN-LSTM-Attention neural network model performs well
when compared to NeQuick, LSTM, and CNN-LSTM forecast models with a root mean square error
(RMSE) and R2 of 1.87 TECU and 0.90, respectively. The accuracy and correlation of the prediction
results remained stable in different months and under different geomagnetic conditions.

Keywords: ionospheric prediction; total electron content; deep learning; long-short term memory
neural network; attention mechanism

1. Introduction

The ionospheric total electron content (TEC), as a primary ionospheric parameter
derived from global navigation satellite system (GNSS) observations, is defined as the total
number of electrons within a 1 m2 column along a path through the ionosphere and is
measured in TEC Units (TECU), where 1 TECU = 1016 electrons/m2 [1]. The prediction of
ionospheric TEC is necessary to indicate adverse space weather conditions for initiating
necessary measures in GNSS applications. Significant research studies were carried out
to evaluate the utility of using different neural networks to investigate the ionospheric
parameters forecasting [2–13]. Francis et al. [3] performed ionospheric parameter prediction
and provided a technique to fill in missing data points, while minimizing the impact on
data dynamics. Tulunay et al. [4] presented a neural network-based mapping technique for
forecasting of ionospheric TEC over Europe. Habarulema et al. [5,6] forecasted ionospheric
TEC in southern Africa using feedforward neural networks and investigated both the
potential and the limitations of the ionospheric forecast extrapolation capabilities of artificial
neural networks (ANNs). Huang et al. [7] implemented TEC forecasting for GPS ground
stations using the radial basis function (RBF) neural network technique with the addition
of a linear output layer. Ferreira et al. [8] used a neural network model for ionospheric TEC
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estimation in the Brazilian region with good results in the presence of low solar activity.
Bai et al. [9] took advantage of the extreme learning machine (ELM) with fast learning
speed and good generalization and established the ionospheric F2 layer critical frequency
(foF2) forecast model. Lee et al. [10] achieved global ionospheric TEC forecasting using
a deep learning approach based on conditional generation adversarial networks. Wang
et al. [11] proposed a 1-h advance foF2 prediction method based on chaos theory, which
has the advantages of simple structure, easy implementation, high prediction accuracy, a
small training data set, and no solar and geomagnetic indices. Adolfs et al. [12] developed
a fully connected neural network model using global ionosphere maps (GIMs) data from
the last two solar cycles and made good predictions for the nighttime winter anomaly
(NWA) forecast. Razin et al. [13] proposed a new method for spatial and temporal modeling
forecasting of ionospheric TEC during periods of intense solar activity using a support
vector machine (SVM) and evaluated the observation data from 37 GPS stations in Iran.

To improve prediction accuracy, some ionospheric researchers performed feature ex-
traction on the input data. Gampala et al. [14] used synchrosqueezing transform (SST)
to improve the autoregressive moving average (ARMA) model for ionospheric TEC fore-
casting. Dabbakuti et al. [15] used singular spectrum analysis to preprocess the input
data, which were then fed into an ANN for ionospheric TEC prediction. Meanwhile, they
developed a prediction system based on the combination of variational mode decompo-
sition (VMD) and kernel extreme learning machine (KELM) for an ionospheric analysis
of the internet of things [16]. Recently, deep learning has inspired a surge of interest
in ionosphere research. Ruwali et al. [17] developed a hybrid deep learning forecasted
model based on GPS observations from Bengaluru, Guntur and Lucknow stations, which
is a combination of long-short term memory (LSTM) and convolutional neural network
(CNN). Xiong et al. [18] proposed an extended LSTM neural network model consisting of
an encoder–decoder structure to forecast ionospheric TEC, which was verified by using
one solar cycle of observation data from 15 GPS stations in China. Kim et al. [19] used an
LSTM neural network to design an ionospheric forecasting model suitable for geomag-
netic storm periods and forecasted foF2 and fmF2 with good results. Zewdie et al. [20]
first used a random forest approach to estimate input parameter importance and then
used an LSTM deep recurrent neural network approach to predict ionospheric TEC. Chen
et al. [21] used a multi-step auxiliary prediction model of deep learning to predict global
ionospheric TEC and found that the method could effectively alleviate increasing errors
with prediction time. Although some works have proposed hybrid deep learning methods
to capture multiple features including spatial, temporal, and seasonal features for iono-
spheric parameters prediction, they are usually processed independently. However, the
attention mechanism could learn dynamic spatio-temporal relationships in order to capture
the relative importance of adjacent monitoring sites and, thus, improve the accuracy of
the model [22].

Therefore, we develop a novel CNN-LSTM model with attention mechanism for
ionospheric TEC forecasting. The model can optimize the weight distribution of the input
information at the full connection layer to predict ionospheric TEC and reflect the spatio-
temporal relationships between GNSS stations. In this study, the 9-year (from 2010 to 2018)
observation data of 24 GNSS stations from the Crustal Movement Observation Network of
China (CMONOC) were selected to predict the value of the TEC 24 h ahead. In addition,
the prediction results of the CNN-LSTM-Attention model were compared with those of the
NeQuick model, LSTM, and CNN-LSTM neural network model.

2. Data

The experimental data were selected from 2010 to 2018, which are GNSS observations
of the CMONOC. The CMONOC is large-scale and high-precision GNSS network which
consists of about 260 permanent GNSS continuous reference stations since 2010, and it can
produce data with sampling intervals of 30 s. To comprehensively monitor changes of the
ionospheric spatial environment in China, we selected 24 GNSS stations covering China for
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experimental analysis. The distribution of these stations is shown in Figure 1. Table 1 shows
geographic coordinates of 24 GNSS stations from the CMONOC in detail. Table 2 shows the
relationship between Universal Time (UT) and Local Time (LT) of 24 GNSS stations. We use
the data of 24 GNSS stations in China to calculate the ionospheric TEC by the uncombined
precise point positioning (UPPP) method of double-frequency GNSS receivers [23]. The
interplanetary magnetic field southward component Bz, the geomagnetic index Kp, the
magnetic storm ring current index Dst, and the solar activity index F10.7 are also used
as auxiliary training data. The TEC time series is derived from GNSS observation data
by using the UPPP method and is produced with sampling intervals of one hour. Other
auxiliary training data are provided by NASA in 1 h increments.
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Figure 1. Locations of the 24 GNSS stations from the CMONOC.

Table 1. Geographic coordinates of 24 GNSS stations from the CMONOC.

Stations Latitude (◦) Longitude (◦) Stations Latitude (◦) Longitude (◦)

BJFS 39.61 115.89 SHA2 31.10 121.20
CHUN 43.79 125.44 TAIN 36.21 117.12
GDZH 22.28 113.57 TASH 37.77 75.23
GSMQ 38.63 103.09 WUHN 30.53 114.36
HISY 18.24 109.53 WUSH 41.20 79.21

HLHG 47.35 130.24 XIAA 34.18 108.99
HLMH 52.98 122.51 XIAM 24.45 118.08
KMIN 25.03 102.80 XJBE 47.69 86.86
LHAS 29.66 91.10 XJKE 41.79 86.19

NMDW 45.51 116.96 XNIN 36.60 101.77
SCTQ 30.07 102.77 XZBG 30.84 81.43
SDYT 37.48 121.44 YANC 37.78 107.44

Table 2. UT to LT conversion for 24 GNSS stations from the CMONOC.

Stations LT Stations LT

BJFS UT+8 SHA2 UT+8
CHUN UT+8 TAIN UT+8
GDZH UT+7 TASH UT+5
GSMQ UT+7 WUHN UT+8
HISY UT+7 WUSH UT+5
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Table 2. Cont.

Stations LT Stations LT

HLHG UT+9 XIAA UT+7
HLMH UT+8 XIAM UT+8
KMIN UT+7 XJBE UT+6
LHAS UT+6 XJKE UT+6

NMDW UT+8 XNIN UT+7
SCTQ UT+7 XZBG UT+5
SDYT UT+8 YANC UT+7

3. Model and Methodology
3.1. Convolutional Neural Network

The essence of convolution is a weighted sum of data. CNN is a feedforward neural
network based on convolutional convolutions, which was initially applied in the field of
image recognition and later showed great potential in time series prediction [24]. CNN is
composed of convolutional layer, pooling layer, and fully connected layer. The convolu-
tional layer consists of several convolutional units, the parameters of each convolutional
unit are optimized by a back-propagation algorithm, and the purpose of the convolutional
operation is to extract the different features of the input. The input data are passed through
the convolution layer to obtain the feature map. Feature map is the result of the convolution
of the input data by the neural network, which characterizes a feature in the neural space.
The purpose of the pooling layer is to reduce the feature map, and its main role is to reduce
the computational effort by reducing the parameters of the network and to be able to
control overfitting to some extent. The fully connected layer combines all local features into
global features, which are used to calculate the final score for each category.

In this case, the convolution operation is to multiply the local features by the corre-
sponding weights and then accumulate the sum. The pooling operation is to sample the
features extracted from the lower layers to reduce the size of the network and obtain the
invariant features of the input data. The calculation formula of feature extraction by CNN
is as follows:

y = σ(Wk ⊗ x + bk) (1)

Wk ⊗ xi,j =
α−1

∑
m=0

β−1

∑
n=0

wm,n × xi+m,j+n (2)

where x is the input data; y is the output data; σ is the activation function; Wk and bk are
the weight coefficient and bias function, respectively; k refers to number of convolution
kernels. ⊗ denotes the discrete convolution operation; α and β are the size parameters
of the convolution kernel, respectively. wm,n represents one of the weight coefficients of
convolution kernel which is a weight matrix. m and n represent row and column index of
input data, respectively.

3.2. Long-Short Term Memory Neural Network

LSTM neural network is improved on the basis of recurrent neural network (RNN).
RNN suffers from gradient disappearance and gradient explosion when processing longer
sequences. LSTM neural network provides a new solution to problem of short-term memory
and introduces a state value and “gate” control structure based on the recurrent neural
network. To selectively filter information, the transmission of data information between
different units in the hidden layer is controlled by three thresholds: input gate, forget
gate, and output gate [25]. The internal structure of LSTM and the form of data flow are
shown in Figure 2. The function of the forget gate is to decide whether to reset the previous
information and to multiply it with previous memory information to determine whether
the information is retained. The input gate controls the input of the current information.
When the information passes through the input unit, it is multiplied by the input gate to
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determine whether to write the current information. The output gate controls the output
of the current memory information, which is multiplied by current memory information
to determine whether to output the information. The LSTM information flow process is
calculated as follows:

it = σ(Wi[ht−1, xt] + bi) (3)

ft = σ(W f [ht−1, xt] + b f ) (4)

ot = σ(Wo[ht−1, xt] + bo) (5)

C̃t = tanh(WC · [ht−1, xt] + bC) (6)

Ct = ft · Ct−1 + it · C̃t (7)

ht = ot · tanh(Ct) (8)

where it, ft, ot are the input gate, forget gate, and output gate, respectively; σ is the activation
functions; W and b are the weight coefficient and bias function, respectively; C̃t and Ct
are the immediate state and long-term state, respectively; tanh is the hyperbolic tangent
activation function; x and h are the current input and output information, respectively.
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3.3. Attention Mechanism

When dealing with a large amount of data information, some of the main information
will be screened and magnified. Attention mechanism refers to selecting the most appro-
priate input from numerous alternative information according to observed environmental
information. The main purpose of attention mechanism is to process more important
information with limited resources and suppress other useless information. The essence is
to focus on input weight allocation [26].

In this study, a CNN-LSTM-Attention neural network model is established. The
structural framework is shown in Figure 3. The data are first input through the input layer,
including the TEC time series and 5 auxiliary training indices of Bz, Kp, Dst, F10.7 and hour
of day (HD). The CNN layer is composed of two 1-D convolutions and a maximum pooling
layer as encoder based on classic encoder-decoder form. The first convolution reads the
input sequence and projects the results onto the feature map. The second convolution
performs the same operation on the feature map created at the first layer, trying to magnify
its salient features.

The pooling layer is selected for maximum pooling. Maximum pooling means taking
the maximum value in the sample as the sample value after sampling. The maximum
pooling layer simplifies the feature map, and then it flattens the extracted feature map
into a long vector, which is used as the input to the decoding process. Then, the data flow
into LSTM model to obtain the TEC forecasted value through three thresholds. Finally, the
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final output value is obtained by a weighted sum of attention mechanism, and the TEC
forecasted value in the next 24 h is the output.
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connected layer. Input data, output data, and all layers of data flow in the model are marked.

3.4. Data Organization and Parameter Setting

In this study, experimental data are divided into two parts: the training set and the test
set. The data from 2010 to 2017 are used as the training set to train the model, and the data
from 2018 are used as the test set. Firstly, the outliers and missing values of the TEC data
obtained by the solution are processed. The outliers are eliminated by the triple standard
deviation method, and the missing values are filled using the bilinear interpolation method.
The variation of TEC is associated with HD and solar and geomagnetic activity. Solar and
geomagnetic activity can be characterized by the Bz, Kp, Dst, and F10.7 indices. Then, six
features are considered as the training set, which are TEC time series, Bz, Kp, Dst, F10.7
indices, and HD. A total of 192 groups of data from 8 days were used as sample sliding
segmentation. Each sample used the data of the first 7 days to forecast the TEC value for
the last 1 day, and the training set samples are input into the network training forecast
model. Figure 4 shows four input indices Bz, Kp, Dst, and F10.7 and the measured TEC
values of four stations at HLMH, BJFS, WUSH, and HISY from 2010 to 2018. The Bz index
is uniformly distributed on both sides of 0. Geomagnetic activity shows irregularities,
including 2 mega-magnetic storms in 2015. Solar activity peaked in 2014, coinciding with a
maximum TEC value.

Hyperparameters are the parameters for which machine learning sets values before
starting the learning process. The setting of hyperparameters is the key to the prediction
effect of the neural network. We used the training set root mean square error (RMSE) as the
evaluation index and chose the grid search method to find optimal hyperparameters. The
hyperparameters include batch size, epochs number, and filters number and kernel size.
We set the loss function as the mean absolute error (MAE) and used the ‘tanh’ activation
function and ‘adam’ optimization algorithm [27] to drive the model.
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4. Results and Evaluation

To verify the advantages of the CNN-LSTM-Attention model for ionospheric TEC
forecasting, we select the NeQuick model [28], the LSTM neural network [29], and the
CNN-LSTM neural network [17] for comparative analysis. The NeQuick model is based on
the NeQuick-2 version released by the Abdus Salam International Centre for Theoretical
Physics (ICTP), and we used the daily solar radio flux as the input data. The LSTM and
CNN-LSTM models have the same input data as the model in this paper. The forecast
performance of each model is evaluated according to the station location, time variation,
and geomagnetic activity from the test set forecasts. We also used the RMSE, correlation
coefficient (R2), MAE, and mean absolute percentage error (MAPE) to evaluate model
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performances. RMSE and MAE indicate the dispersion of errors between forecasted and ob-
served values. R2 indicates the correlation between forecasted and observed values. MAPE
can measure the relative error between the average forecasted value and the observed
value. The calculation formulas are as follows:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (9)

R2 =

(
cov(ŷi, yi)

σŷi · σyi

)2

(10)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (11)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (12)

where ŷi is the TEC forecasted value; yi is the observed value and n is the number of data points.

4.1. Accuracy Assessment of Different Stations

Figure 5 shows the two-dimensional scatterplot of the CNN-LSTM-Attention model
predictions and GNSS measurements for HLMH, TASH, SDYT, and HISY stations. The
horizontal axis indicates the measured values, and the vertical axis indicates the forecasted
values. The color bar indicates the density share. Y = f(X) denotes the equation of the
scatter-fitted straight line. Y is the forecasted TEC, and X is the observed TEC. It can be
observed that the TEC distributions of different stations show different patterns. The TEC
of high latitude station are basically distributed within 10 TECU. The maximum TEC of
HISY station located at low latitudes exceeds 50 TECU. The CNN-LSTM-Attention model
forecasts and GNSS measurements are highly correlated, with R2 of 0.87, 0.88, 0.90, and
0.91 for the four stations, respectively.
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Table 3 shows the overall evaluation metrics of the four models. The statistical results
are obtained from the data from 24 GNSS stations, 24 h a day and 365 days a year in the
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test set. The empirical model NeQuick model has the maximum RMSE and the minimum
correlation. The RMSEs of LSTM, CNN-LSTM, and CNN-LSTM-Attention models are 2.25,
2.07, and 1.87 TECU, respectively, and the MAEs are 1.53, 1.36, and 1.17 TECU, respectively.
This indicates the neural network model has good forecast performance. The prediction
performance of the improved model is the best.

We selected 12 stations covering the range of China in the longitudinal and latitudinal
directions for effect evaluation, with 6 stations distributed around 120◦E in the longitudinal
direction and 6 stations distributed around 30◦N in the latitudinal direction. Figure 6 shows
the performance evaluation indexes of the annual forecasted results for the four models
test set of 12 GNSS stations. The evaluation results of the other 12 stations are shown in
Figure A1. Figure 5a,c are the RMSE and R2 of the observed and forecasted values of the
6 stations distributed in longitude, respectively. Figure 5b,d are the RMSE and R2 of the
observed and forecasted values of the six stations distributed in latitude, respectively. The
four colors represent the four models used in the forecast, respectively. It can be observed
that the CNN-LSTM-Attention model has better forecasting performance compared to the
other three models. RMSE decreases with the increase in latitude near the same longitude,
which is about 1 TECU in mid-latitude region and between 1.6 and 3 TECU in six stations
around 30◦N. The GDZH and HISY stations at low latitudes are affected by ionospheric
anomalies near the equator [30]. The main driving forces are due to the interaction of an
electric field, which develops close to the magnetic equator, and the horizontal magnetic
field causing E × B drift of the plasma from low altitudes to high altitudes with the plasma
then falling under gravity to form the equatorial (or Appleton Anomaly) at approximately
plus and minus 20 degrees. The RMSEs of GDZH and HISY stations exceeded 3 TECU. In
terms of correlation, the R2 of all 24 stations of the CNN-LSTM-Attention model exceeded
0.8, and the forecasted values are highly correlated with the measured values.
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Table 3. The overall evaluation indexes of four models in 24 stations in the test set.

Modes
Evaluate Indexes

RMSE (TECU) R2 MAE (TECU)

NeQuick 3.59 0.81 2.60
LSTM 2.25 0.85 1.53

CNN-LSTM 2.07 0.87 1.36
CNN-LSTM-Attention 1.87 0.90 1.17
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Figure 7 shows the single-day RMSE box plots for the 12 GNSS stations. The RMSE box
plots for the other 12 stations are shown in Figure A2. Each box represents the 365 RMSEs
of a single model throughout the year, in which the red plus sign is an outlier. The top
and bottom black bars represent the maximum and minimum values of the 365-day data,
respectively. The upper and lower edges of the blue box represent the upper quartile and
the lower quartile, respectively. Moreover, the middle red bar represents the median. Com-
paring the four boxes, it can be observed that the model proposed in this paper performs
well in terms of prediction, and the maximum and minimum RMSEs are significantly better
than the NeQuick model, which is not significantly different from the performance of LSTM
and CNN-LSTM. In terms of median, the performance of the model in this paper is better.
GDZH, HISY, and KMIN stations are 2.91 TECU, 3.36 TECU, and 2.66 TECU, respectively.
The median of the remaining nine stations is below 2 TECU, which may be due to the active
ionosphere at low latitudes.
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4.2. Accuracy Assessment at Different Time Periods

Figure 8 shows the monthly changes of the forecast performance of the four prediction
models in different months. The RMSE of the NeQuick model was 2.73, 2.18, 2.85, and
2.94 TECU in June, July, August, and December, respectively, and it was greater than
3 TECU in all other months. The LSTM and CNN-LSTM models perform well, with
monthly average RMSE lower than 3 TECU and correlation coefficient higher than 0.8. As
observed from the figure, the LSTM neural network model is unstable in some months.
The RMSEs for June and July are 2.60 TECU and 2.41 TECU, respectively. The error for July
is even higher than the empirical model. The performance of the CNN-LSTM-Attention
model is stable, with an RMSE below 2.2 TECU and R2 above 0.84 in 12 months, which
show good stability.
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Figure 9 shows the average of the measured values of the 24 stations of the CMONOC
and the forecasts of four models for 12 months. The predicted values of the NeQuick
model in May, October, and November are quite different from the measured values, and
the predicted values of the LSTM and CNN-LSTM models are closer to the measured
values. The predicted values of the improved model in this paper are closest to the
measured values.

Figure 10 shows the forecast RMSE for each model averaged across all of the stations
for the year 2018, where the horizontal axis shows the start time for the forecast in UT. The
NeQuick model has the largest RMSE when the forecast is made at 8 UT at 5.97 TECU.
The maximum RMSE of the LSTM, CNN-LSTM, and CNN-LSTM-Attention models occurs
when the forecast is made at 7 UT with an RMSE of 3.57 TECU, 3.46 TECU, and 3.09 TECU,
respectively. The daily ranges of RMSE for these four models are 4.39 TECU, 2.60 TECU,
2.48 TECU, and 2.29 TECU, respectively. The MAPE of the CNN-LSTM-Attention model
fluctuates in the range of 12% to 21% in a day. There is no significant fluctuation in MAPE
when RMSE reaches its maximum value, which indicates that the large forecasted error
at 7 UT and 8 UT is due to the large influence of TEC values. The results indicate that the
CNN-LSTM-Attention model exhibits the best performance for all forecast periods, and
NeQuick exhibits the worst.
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4.3. Accuracy Assessment under Different Geomagnetic Conditions

Geomagnetic activity is one of the main factors affecting the development of iono-
spheric disturbances [31]. During magnetic storms, the ionospheric TEC at low and middle
latitudes shows an enhanced and positive perturbation response. This phenomenon gradu-
ally decreases in response intensity with decreasing latitude [32]. To study the prediction
ability of the model in this paper under different geomagnetic activity, we divide the data
into magnetic quiet days and magnetic storm days for comparative analysis. The magnetic
quiet and magnetic storm days are classified according to the daily average of the Kp index.
The Kp index is used as an indicator of geomagnetic activity. Kp index presents the index
of 3 h ranges in magnetic activity relative to a quiet day. Thus, a higher Kp index means
the geomagnetic is more active. Generally, Kp ≥ 3 can be considered as a magnetic storm
day. To further verify the prediction performance of the model under different geomag-
netic activities, the GDZH station is selected to analyze the accuracy and the forecasted
performance of geomagnetic storms. The GDZH station is located in low-latitude region,
and TEC is closely affected by geomagnetic activity, which can well reflect the influence of
geomagnetic activity on TEC.

4.3.1. Magnetic Quiet Period

Figure 11 shows the comparison between GNSS measured values and forecasted
values of 12 stations on 21 August 2018. The comparison of the other 12 stations is shown in
Figure A3. The Kp index on the day is 1.7, and geomagnetic activity is quiet. As observed
from the figure, the maximum TEC of the day increases with the decrease in latitude, and
there is a great difference between the predicted and measured values of the four stations
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north of 40◦N using the four models. The predictions of the NeQuick model at some station
maxima or minima are inaccurate. The performance of the CNN-LSTM-Attention model
is good at 12 stations on the day. The predictions of CNN-LSTM-Attention model for
nine stations, which are HLMH, NMDW, CHUN, BJFS, GDZH, LHAS, SCTQ, WUHN,
and KMIN, are basically agreement with the observed values. It can accurately present
the variation trend of TEC. In general, the forecasted values of the proposed model are
consistent with the measured values of GNSS.
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Figure 12 shows the distribution of the residuals between the forecasted and measured
values of the magnetic quiet period. In general, NeQuick, LSTM, CNN-LSTM, and CNN-
LSTM-Attention models forecasted residuals are distributed in the range of –12 to 12 TECU.
The prediction residual distribution of CNN-LSTM-Attention model is closer to an unbiased
Gaussian distribution. The RMSEs of the four models are 4.14 TECU, 4.29 TECU, 4.14 TECU,
and 3.99 TECU, respectively. The MAEs of the four models are 3.16 TECU, 3.00 TECU,
2.98 TECU, and 2.81 TECU, respectively. The NuQuick model has the largest MAE, and
the CNN-LSTM-Attention model has the smallest RMSE and MAE.
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4.3.2. Magnetic Storm Period

Figure 13 shows the comparison between GNSS measured values and TEC forecasted
values of 12 stations on the magnetic storm day of 26 August 2018. The comparison of
the other 12 stations is shown in Figure A4. Magnetic storms lead to drastic changes
in TEC, and the forecasts of the four forecasting models at the maximum value are all
inaccurate. This flaw is particularly evident in the NeQuick model. The LSTM, CNN-LSTM,
and CNN-LSTM-Attention models can reflect the impact of magnetic storm on TEC to a
certain extent because the geomagnetic indices are added as a training set. The CNN-LSTM-
Attention model captures the feature more obviously because of the attention mechanism.
The predicted values are the closest to the measured value of GNSS.

Figure 14 shows the distribution of forecasted residuals of the four models during
the magnetic storm period. Similarly to the magnetic quiet period, the NeQuick model
has the largest residual. The LSTM model forecasted results with RMSE and MAE, and
the results are 5.19 TECU and 3.76 TECU, respectively. The forecasted results of the CNN-
LSTM model and CNN-LSTM-Attention model include a mean distributed around 0, with
RMSEs of 4.43 TECU and 4.11 TECU, respectively, and MAEs of 3.06 TECU and 2.81 TECU,
respectively. From the error values, the performance of the model in this paper is better.

Table 4 shows the percentage of residuals between the forecasted and measured values
of the four models for the 24 stations in the test set. In the magnetic quiet period and the
magnetic storm period, the prediction ratio of residual errors of the improved model in this
paper is less than 1 TECU are 62% and 52%, respectively.
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Table 4. Residual percentage statistics of 24 stations and 4 models in the test set.

Modes ∆<1 1≤∆<2 2≤∆<3 3≤∆<4 ∆>4

Quiet

NeQuick 27% 24% 19% 11% 19%
LSTM 48% 28% 13% 5% 6%

CNN-LSTM 53% 27% 11% 4% 5%
CNN-LSTM-Attention 62% 24% 7% 3% 4%

Storm

NeQuick 25% 23% 19% 15% 18%
LSTM 38% 27% 16% 8% 11%

CNN-LSTM 45% 28% 12% 6% 9%
CNN-LSTM-Attention 52% 26% 11% 5% 6%
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Attention model.

5. Discussion

Deep learning approach has the possibility to find nonlinear functions to forecast
their manifestation in the ionosphere. In this paper, a CNN-LSTM neural network model
integrating attention mechanism was developed for ionospheric TEC prediction. The
evaluation was carried out by using the observation data of 24 GNSS stations from the
CMONOC. The observation data from 2010 to 2017 and the five parameters of Bz, Kp,
Dst, F10.7, and daily hours were used as the training set. The 2018 data were used as
the test set to verify the model’s performance. We compare the CNN-LSTM-Attention
model with NeQuick, LSTM, and CNN-LSTM models to analyze the model’s forecasting
performance under different conditions. With the decrease in latitude, the forecasted error
of the CNN-LSTM-Attention model gradually increases from 1 TECU to 4 TECU. In general,
the forecasted errors at the same latitude are the same, which are much lower than that of
the empirical model. The monthly average value of TEC increases gradually from January
to April, reaches a peak in April, and then gradually decreases. However, the prediction
error of the model in this paper does not increase with the increase in monthly average,
and it is generally stable at 1.5–2.2 TECU. This shows that the CNN-LSTM-Attention model
is stable at different times.

Under different geomagnetic activities, the NeQuick model has RMSEs of 2.88 and
4.62 TECU with correlation coefficients of 0.83 and 0.90 during the magnetic quiet and
magnetic storm periods, respectively. The predicted and measured RMSEs for the magnetic
quiet and magnetic storm periods are 1.92 and 3.97 TECU, respectively, which are 33.33%
and 14.07% lower than those of the empirical model. The correlation coefficients of magnetic
quiet and storm periods both are 0.92, which improve 10.84% and 2.22% compared with
the empirical model, and the forecasted values are highly correlated with the measured
values. The RMSE for the storm period is up to two times higher than for the quiet period.
Ensemble learning methods achieve better accuracy than a single learning method, where
combining multiple ensembles provides the most optimal results.

6. Conclusions

In this study, an ionospheric forecast model in China is established based on 24 GNSS
stations from CMONOC. Compared with empirical models, deep learning model have
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higher prediction accuracy, especially during magnetic storms. In this paper, the attention
mechanism is added to the LSTM neural network, which inherits the high precision of
the deep learning model and effectively improves stability. It shows good performance in
different time periods throughout a year in China. The RSME of the CNN-LSTM-Attention
model test set for the entire year is 1.87 TECU. As a comparison, the RMSEs of the NeQuick,
LSTM, and CNN-LSTM models are 3.59, 2.25, and 2.07 TECU, respectively. The proposed
model performs well in both in quiet periods and storm periods of geomagnetic activity.
During the quiet period and storm period, the percentages of forecasted residuals greater
than 4 TECU are only 4% and 6%, and the percentages of residuals greater than 4 TECU
for the NeQuick model are 19% and 18%. However, the time period selected (2010–2018)
is limited by the availability of data from the network. Currently, it should be noted
that our experiments only discuss a relatively quiet solar period. We acknowledge the
increasing solar activity levels and suggest that measurements in the coming years, where
activity is expected to be much stronger, will provide a good opportunity for continued
model development.
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from other 12 GNSS stations. The top and bottom black bars represent the maximum and minimum
values, respectively. The upper and lower edges of the blue box represent the upper quartile and
the lower quartile, respectively. The middle red bar represents the median, and the red plus sign
represents the outlier.
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Figure A3. (a–l) Comparison of GNSS measured values (black solid line), NeQuick (blue dotted 
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solid line) models forecasted values for other 12 GNSS stations on magnetic quiet days. The gray 
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LSTM (yellow dotted line), CNN-LSTM (green dotted line), and CNN-LSTM-Attention (red solid
line) models forecasted values for other 12 GNSS stations on magnetic quiet days. The gray dotted
line indicates midnight LT.
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