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Abstract: This study addresses one of the most commonly-asked questions in synthetic aperture
radar (SAR)-based landslide detection: How the choice of datatypes affects the detection performance.
In two examples, the 2018 Hokkaido landslides in Japan and the 2017 Putanpunas landslide in
Taiwan, we utilize the Growing Split-Based Approach to obtain Bayesian probability maps for
such a performance evaluation. Our result shows that the high-resolution, full-polarimetric data
offers superior detection capability for landslides in forest areas, followed by single-polarimetric
datasets of high spatial resolutions at various radar wavelengths. The medium-resolution single-
polarimetric data have comparable performance if the landslide occupies a large area and occurs on
bare surfaces, but the detection capability decays significantly for small landslides in forest areas.
Our result also indicates that large local incidence angles may not necessarily hinder landslide
detection, while areas of small local incidence angles may coincide with layover zones, making the
data unusable for detection. The best area under curve value among all datatypes is 0.77, suggesting
that the performance of SAR-based landslide detection is limited. The limitation may result from
radar wave’s sensitivity to multiple physical factors, including changes in land cover types, local
topography, surface roughness and soil moistures.

Keywords: SAR-based landslide detection; Growing Split-Based Approach (GSBA); Hokkaido landslide;
Putanpunas landslide; SAR polarimetry; model-free 3-component decomposition for full polarimetric
data (MF3CF)

1. Introduction

According to the Global Fatal Landslide Database, Asia suffers the greatest impact of
fatal landslides among all continents [1,2]. This fact has to do with the physiographical en-
vironment of this region, including active tectonics, frequent typhoons/tropical cyclones, as
well as socioeconomic factors, such as rapid economic growth, human population increase,
habitat expansion and even loose regulations [1,3]. Among all questions associated with
landslides, where and when they occur and how big they are remain the first information
people demand to know. From a rapid response perspective, landslide sizes and locations
are the key information needed by the ground crews to ensure the safety of human lives
and the transportation of aids and supplies. From a policy-making perspective, long-term
spatiotemporal evolution of landslide hotspots impacts the formulation of management
strategies and mitigation plans [4]. From a scientific perspective, landslide volumes and
frequencies may provide information about rock strength and denudation rates [5,6], the
influence of climate changes [2], and the interaction among the lithosphere, hydrosphere
and biosphere [7,8].

Given the large-area imaging capability from the sky, remote sensing has been the most
widely-used tool in landslide detection during the past decades. For example, based on
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Formosat-2 satellite images, Lin et al. (2017) found that about 70% of the mountainous area
in Taiwan has experienced at least 1 landslide within the decade between 2003 and 2012 [4].
In Japan, the National Research Institute for Earth Science and Disaster Prevention (NIED)
also conducts regular landslide mappings based on aerial photos (https://www.bosai.go.
jp/e/research/database/earth-and-sand.html, accessed on 10 March 2022; a study using
the national landslide database can be found in [8]). The optical image-based landslide
mapping has high quality and accuracy, although the availability usually depends on the
weather condition and the source of sun lights after a landslide occurs. In some cases,
the latency between the event and the first usable image can be weeks. This is where
the synthetic aperture radar (SAR)-based mapping may serve as an alternative solution
particularly during the early phase of the hazards. Some recent examples include the
earthquake-triggered landslides after the 1999 Chi-Chi earthquake in Taiwan [9], the 2015
Gorkha earthquake in Nepal [10,11], the 2015 Mt. Kinabalu earthquake in Malaysia [12],
the 2018 Lombok earthquakes in Indonesia [10], and the 2018 Hokkaido Eastern Iburi
earthquake in Japan [10,13–17]. Examples of rainfall-triggered landslides include the 2009
Typhoon Morakot in Taiwan [18], the 2011 Typhoon Talas in Honshu, Japan [19], the 2015
heavy rain in Chin State, Myanmar [20], and the 2017 heavy rain in Kyushu, Japan [16].

In general, SAR-based change detection can be classified into two categories–the
coherent change detection (CCD) and incoherent change detection (ICD)–depending on
whether interferometric phase is used [15]. Speaking of change detection for landslides,
CCD includes the pre-failure landslide monitoring by using interferometric phase time-
series, as well as the post-failure landslide detection by comparing the change of the
interferometric phase qualities (interferometric coherence). In the post-failure landslide
detection, a landslide patch is usually depicted by low coherence due to the changes in
surface geometry, roughness and dielectric properties. It works particularly well in regions
with intermediate-to-high pre-event coherence [10,12,15]. However, in places where phase
decorrelation occurs constantly, CCD may fail to provide accurate landslide information.
One such a place is the forest, where volumetric decorrelation and temporal decorrelation
prevail due to frequent changes in vegetation structures and dielectric properties, as well
as the disturbance by winds, rains, water vapors and other atmospheric conditions [21]. It
has been shown that coherence-based landslide detection methods may yield unreliable
results in the forest areas where the pre-event coherence is too low [10,15].

On the other hand, ICD compares SAR backscattering amplitudes or intensities before
and after the landslide event. Similar to interferometric coherence, changes in intensity are
also associated with variations in surface geometry, roughness and dielectric properties.
Backscattering intensities are, however, less sensitive to atmospheric conditions, and they
also appear in a wider range of values that allow a better separation of major changes
(such as from vegetation to bare surface) from minor variations (such as tree growth).
In addition, most ICD methods are relatively easy to implement as they only involve
image-wise calculations (except for the intensity correlation method in [15,19,20]). ICD has
therefore been adopted more widely for landslide detection than CCD, especially for forest
areas [13,15,17,19,22].

Single-polarimetric (single-pol) SAR data is by far the most commonly-used datatype
in ICD. Having said that, multi-polarimetric (multi-pol) datasets and their decomposition
parameters can also be used in ICD. SAR polarimetry, or PolSAR, takes into account of both
the intensities and phases from the same image epoch acquired at different transmitting-
receiving polarizations (HH, HV, VV and VH). Polarimetric decomposition then recombines
the complex scattering coefficients to extract parameters that can directly infer physical
properties of the scatterers. These decomposition parameters, even from a single image
epoch, have been proved to be efficient in differentiating land cover types including land-
slides [9,16,23,24]. Some studies also use PolSAR datasets and decomposition parameters
in the dual-temporal (1 pre-event and 1 post-event image) change detection to improve the
result accuracy and to gain physical insights [16,18,25]. In comparison, PolSAR’s detection
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capability in a multi-temporal context (≥2 pre-event images and 1 post-event image) has
not received much attention yet and deserves more exploration.

This study attempts to incorporate the multi-temporal PolSAR decomposition parame-
ters into SAR-based landslide detection in forest areas, and compares the performance with
those from single-pol datasets. This comparison is out of a practical consideration: Given
more and more public and private players in SAR space missions, we expect the list of
SAR sensors to increase and the overpass latency to shorten substantially in the near future.
Soon SAR-based landslide detection may be not so much limited by data availability, and
hence our knowledge about how different data properties affect the detection performance
will be pivotal. Such knowledge will help researchers and government agencies make
decisions before choosing the best dataset for landslide mapping. It will also provide
information about the uncertainties and limitations especially for a rapid-response product.

The goal of this study is therefore to evaluate the influence of different SAR data
properties on landslide detection, including radar wavelengths, spatial resolutions, polar-
izations and viewing geometry. Different datatypes, or combinations of the properties listed
above, are produced from some of the most commonly-used sensors (the L-band ALOS-2,
C-band Sentinel-1 and X-band COSMO-SkyMed) to facilitate this performance study. To
unify the comparison basis, we carry out change detection using a newly-designed algo-
rithm Growing Split-Based Approach (GSBA). GSBA takes in a SAR-derived value, either
a backscattering intensity or decomposition parameter, normalized over its time-series
variations and computes the Bayesian probability of landslides given that value. We com-
pare the detection performance in two landslide cases, the earthquake-triggered landslides
due to the 2018 Hokkaido Eastern Iburi Earthquake in Japan, and the rainfall-triggered
landslide caused by the 2017 heavy rain in the catchment of Putanpunas River, southern
Taiwan. With results from these two cases, we discuss how different data properties affect
the landslide detection, and what may limit the detection efficacy.

2. SAR Data Processing

To achieve our objectives, we need to produce multiple datatypes from the same SAR
data (see Table 1 for the list of SAR data used in this study). Next we describe the processing
flows for two major datatype categories and the generation of Z-score maps, which are the
input to the GSBA algorithm.

Table 1. List of SAR data used in this study.

Sensor & Track *1 Pre-Event
Epochs

Post-Event
Epoch

Average
Look Angle (θ)

Mode and
Resolution *2 Wavelength Polarization *3

Hokkaido Landslides (Japan), 2018-09-06, earthquake-triggered

ALOS-2 A122
2018-08-25
2017-08-26
2016-08-27

2018-09-08 30◦ High-Sensitive
6 m (HR)

L-band
22.9 cm

Full-pol
HH, HV, VV, VH

S-1 A68
2018-09-01
2018-08-20
2018-08-08

2018-09-13 39◦
Interferometric

Wide
15 m (MR)

C-band
5.6 cm

Dual-pol
VV, VH

CSK A 2018-06-04
2017-07-16 2018-09-08 37◦ StripMap

3 m (UHR)
X-band
3.1 cm

Single-pol
HH

Putanpunas Landslide (southern Taiwan), 2017-06-07, rainfall-triggered

ALOS-2 A137

2016-12-22
2016-08-18
2016-06-09
2016-04-14
2016-03-03

2017-08-03 33◦ ScanSAR
60 m (LR)

L-band
22.9 cm

Dual-pol
HH, HV

(HV-mode is
missing on the

post-event epoch)

ALOS-2 D27

2017-05-21
2017-04-23
2017-01-01
2016-12-04
2016-10-09

2017-07-02 44◦ ScanSAR
60 m (LR)

L-band
22.9 cm

Dual-pol
HH, HV
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Table 1. Cont.

Sensor & Track *1 Pre-Event
Epochs

Post-Event
Epoch

Average
Look Angle (θ)

Mode and
Resolution *2 Wavelength Polarization *3

S-1 A69

2017-05-27
2017-05-15
2017-05-03
2017-04-21
2017-04-09

2017-06-08 35◦
Interferometric

Wide
15 m (MR)

C-band
5.6 cm

Dual-pol
VV, VH

S-1 D105

2017-05-29
2017-05-17
2017-05-05
2017-04-23
2017-04-11

2017-06-10 38◦
Interferometric

Wide
15 m (MR)

C-band
5.6 cm

Dual-pol
VV,VH

CSK D

2017-06-01
2017-05-24
2017-05-08
2017-04-22
2017-04-14

2017-06-09 27◦ StripMap
3 m (UHR)

X-band
3.1 cm

Single-pol
HH

*1 S-1 = Sentinel-1; CSK = COSMO-SkyMed; A = ascending; D = descending. *2 UHR = ultra-high resolu-
tion; HR = high resolution; MR = medium resolution; LR = low resolution. *3 Full-pol = full-polarimetric;
Dual-pol = dual-polarimetric; Single-pol = single-polarimetric. H = horizontally polarized; V = vertically polar-
ized. The first letter in the combination stands for the polarization of the transmitted wave, and the second is for
the received wave.

2.1. Single-Polarization: Backscattering Coefficient (σ0)

Backscattering coefficient σ0 is the normalized measure of the radar signal’s strength
reflected by a distributed target. From the single-look complex (SLC) stack, the general
processing steps to obtain σ0 include radiometric calibration [26], speckle noise attenu-
ation [27,28], multilooking and geocoding (Figure 1). For Sentinel-1 (S-1) data, thermal
noise removal is carried out concurrently with radiometric calibration before converting
the digital numbers to σ0 [29]. We only process the co-polarized σ0 stacks (HH or VV) for
their higher sensitivity to surface-related scattering [30]. All data processing is carried out
using the graph processing tool (gpt) in SeNtinel Application Platform (SNAP) and the
InSAR Scientific Computing Environment (ISCE, for ALOS-2 ScanSAR data only) built in a
high-performance computing cluster. Two auxiliary datasets, local incidence angle (LIA)
and layover-shadow mask, are also generated during data processing [31]. LIA is the angle
between the radar incidence direction and the slope normal vector. Small LIAs indicate
slopes facing the satellite, while large LIAs indicate either slopes facing the satellite but
significantly deviating from the line-of-sight (LOS) direction, or slopes facing away from
the satellite.

Figure 1. Processing flows for different SAR datatypes used in this study.
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2.2. Multi-Polarization: Degree of Polarization (mDP) and Scattering Powers

For a dual-polarimetric SAR data, we follow the same steps as those in the σ0 process-
ing flow to generate geocoded complex scattering coefficients Sij (i, j = H or V) (Figure 1).
We then construct the 2× 2 covariance matrix C2 [32],

C2 = 〈k·k∗T〉 =
[

C11 C12
C21 C22

]
=

 〈
|Sii|2

〉 〈
SiiS∗ij

〉
〈
SijS∗ii

〉 〈∣∣Sij
∣∣2〉

 (1)

where 〈·〉 indicates spatial ensemble averaging (using a 5 × 5 window in our case) and k is
the target vector,

k =

[
Sii
Sij

]
(2)

From C2 we can derive the 2D Barakat degree of polarization mDP, which is defined
as the ratio between the intensity of the polarized portion to that of the total intensity [33],

mDP =

√
1− 4× det(C2)

(Tr(C2))
2 (3)

mDP represents the anisotropy from polarization structures, whereas the scattering ran-
domness, 1−mDPβ (β is a measure of the relative dominance of polarized scattering), is
considered as the dual-pol radar vegetation index [34].

For the full-pol SAR data (ALOS-2 A122 in Table 1), we form the 3× 3 coherency
matrix T3 [30]:

T3 = 〈k
_
·k

_
∗T〉 =

 T11 T12 T13
T21 T22 T23
T31 T32 T33


= 1

2

 〈|SHH + SVV |2〉
〈
(SHH + SVV)(SHH − SVV)

∗〉 2
〈
(SHH + SVV)S∗HV

〉〈
(SHH − SVV)(SHH + SVV)

∗〉 〈|SHH − SVV |2〉 2
〈
(SHH − SVV)S∗HV

〉
2
〈
SHV(SHH + SVV)

∗〉 2
〈
SHV(SHH − SVV)

∗〉 4〈|SHV |2〉


(4)

where the target vector k is defined as [30]

k =
1√
2

 SHH + SVV
SHH − SVV

2SHV

 (5)

From T3, we carry out a Model-Free 3-Component decomposition for Full-pol data
(MF3CF) which jointly considers the Barakat degree of polarization and the received
wave information to allow the estimation of scattering powers without any assumption of
scattering models [35]. The odd-bounce surface scattering power Ps, even-bounce scattering
power Pd and the diffused (volumetric) scattering power Pv can be estimated as [35]:

Ps =
mFPSpan

2 (1 + sin 2θFP)

Pd =
mFPSpan

2 (1− sin 2θFP)
Pv = Span(1−mFP)

(6)

where mFP is the 3D Barakat degree of polarization,

mFP =

√
1− 27× det(T3)

(Tr(T3))
3 (7)
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Span = T11 + T22 + T33 , and the scattering type parameter θFP is defined as,

tan θFP =
mFPSpan(T11 − T22 − T33)

T11(T22 + T33) + m2
FPSpan2 (8)

The calculation of 2D degree of polarization and scattering powers is carried out in
PolSAR-tools available at https://github.com/Narayana-Rao/PolSAR-tools (accessed on
10 March 2022).

2.3. Generating Z-Score Maps

To standardize the change detection flow for various data values (σ0, mFP and scatter-
ing powers), we adopt a dimensionless Z-score (Z) of the post-event value normalized by
the statistical information obtained from its pre-event time-series. It is calculated as [36],

Z =
ypost − ypre

σpre
(9)

where ypost is the data value on the post-event epoch, and [ypre, σpre] are the mean and
standard deviation calculated from the pre-event time-series. The Z-score value represents
the difference between a pixel’s change value and its background mean value in the unit
of background standard deviations. The background mean and standard deviation are
derived from multiple pre-event epochs, and therefore may avoid the issues associated
with a single biased pre-event image, a consideration commonly seen in a dual-temporal
change detection scheme [37]. It also allows a more robust detection of minor changes if
the pre-event time-series contains relatively stable values [36].

Among different datatypes, however, we caution that the Z-score map for CSK data
in the Hokkaido case (Table 1) may not be as accurate due to the insufficient number
of pre-event images–no acquisition exists before 16 July 2017. The temporal standard
deviations thus derived tend to be too large and yield Z-score values smaller than those
generated from other datasets. To work around this problem, we estimate the spatial
standard variation within a 21 × 21 window centered at each pixel, and use it as σpre in
Equation (9) when the value is smaller than the temporal standard deviation. The Z-score
values thus generated are visually more comparable to other Z-score maps. The detection
results, however, may still be less accurate because of incomplete pre-event information.

In addition to Z-score maps generated from the aforementioned datasets, we further
generate a Z-score map that combines the positive Z-score values in Ps (ZPs ) and negative
values in Pv (ZPv ),

ZPc =

{
ZPv if ZPv < 0 and |ZPv | > |ZPs |

ZPs otherwise
(10)

where ZPc stands for the combined Z-score map. The necessity and performance of such a
combined Z-score map will be further demonstrated in Section 4. Next, we describe how
these Z-score maps are used in the GSBA change-detection algorithm.

3. Change Detection Method

The method proposed in this study is a variation of the split-based approach (SBA),
which was first proposed for SAR-based flood mapping [38]. SBA is designed for the
generalization of a mapping algorithm regardless of the image’s spatial resolution, swath
size and the target’s geospatial distribution. The basic idea is to separate the image into
multiple, non-overlapping tiles (also called splits). The tiles are then checked one by one to
identify the existence of a certain proxies that signify the changes. Some suggested proxies
include standard deviation [38], coefficient of variation [39,40], and the ratio between the
tile mean and the global mean [40]. Tiles with proxies above a given threshold are selected
to jointly determine the global threshold either via a non-parametric approach such as the

https://github.com/Narayana-Rao/PolSAR-tools
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Otsu method [41] or the KI algorithm [42], or through a parameterized fitting to the data
histogram in order to determine the best cutoff point [43,44].

One variation of SBA is the hierarchical split-based approach (HSBA) [45]. Different
from the conventional SBA which adopts a uniform tile size [38,40,46,47], HSBA adaptively
and hierarchically splits the image to variable sizes until a bimodal histogram (representing
the change and non-change classes) can be identified in the tile or when a minimal tile size
is reached. This way it avoids the need of a pre-defined tile size, which in some cases may
compromise the detection if the change area within a tile is extremely large or small. The
issue with HSBA is that the splitting process is nonlinear-every split depends on the result
of the previous split, and hence the computation time can be long when the image is large.

Instead of the top-down splitting strategy of HSBA, here we propose a bottom-up
approach called Growing Split-Based Approach (GSBA) (Figure 2). We initialize the image
splitting as in the conventional SBA. Once the tiles with changes are identified, we “grow”
a patch within each tile cluster until the maximum patch area with a consistent bimodal
histogram is reached. This growing step produces patches of different areas that mimic
the variable tile size obtained by HSBA. The second variation in GSBA is that rather than
obtaining a global threshold from the patches to generate a binary map, we calculate the
Bayesian probability of changes instead [48]. Given the probability map, we can obtain a
binary change map at a given cutoff probability (by default 0.5).

Figure 2. Growing Split-Based Approach (GSBA) workflow.

The last variation in GSBA is that instead of using a single tile size, the flow described
above is repeated at different tile sizes. This practice is to acknowledge the observation
that depending on the size and spatial distribution of changes, a single arbitrary tile size
may in some cases produce results that fall into a local minimum or maximum of change
area. With multiple binary maps generated at different tile sizes, we can select the one with
intermediate spatial clustering (using Ripley’s K, see step (g) in Appendix A) as the final
output. In other cases where different tile sizes produce similar binary maps, this practice
also offers reassurance regarding the robustness of the detection output. The processing
flow in GSBA is linear and can be fully parallelized, so the increase in computation time
can be minor in a multi-processor computing system.

To avoid distraction from the main focus of this paper, details of the GSBA algorithm
are given in the Appendix A. The output Bayesian probability map is used in the following
Receiver Operating Characteristics (ROC) curve analysis. To generate the ROC curves, we
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calculate the true positive rate (TPR, or recall) and false positive rate (FPR) at different
cutoff probabilities. They are defined as follows:{

TPR = TP/(TP + FN)
FPR = FP/(FP + TN)

(11)

where [T, F] stand for true and false, [P, N] stand for positive and negative, and any two-
letter combination means the number of such pixels identified through validation. We
further analyze the area under curve (AUC) to evaluate the overall detection performance.
This continuous tracking of trade-off effects between TPR and FPR allows users to have a
complete and visual overview of the detection performance [15]. To compare with other
studies using the same landslide cases, we also report the overall accuracy (OA) by using
the final binary maps from GSBA. The overall accuracy is defined as:

OA = (TP + TN)/(TP + TN + FP + FN) (12)

Note that these metrics are calculated at each datatype’s spatial resolutions, which
means, the validation dataset is resampled to match the resolution of the SAR images.

4. Results
4.1. Case Study 1: Earthquake-Triggered Hokkaido Landslides in Japan

Widely-distributed landslides occurred due to seismic shaking during the 6 Septem-
ber 2018 Mw 6.6 Hokkaido Eastern Iburi Earthquake (Figure 3). After the earthquake,
the Geospatial Information Authority of Japan (GSI) acquired aerial photos on 6 and 11
September over the landslide areas and identified more than 3300 landslide patches manu-
ally (https://www.gsi.go.jp/BOUSAI/H30-hokkaidoiburi-east-earthquake-index.html#1,
accessed on 10 March 2022). Visual comparison between the aerial photos taken on 6 and
11 September shows that only minor changes occurred between these two dates, and hence
the majority of the landslides have existed since the earthquake.

Figure 3. Distribution of earthquake-triggered landslides in Hokkaido, after the 6 September 2018
Mw. 6.6 Hokkaido Easter Iburi Earthquake. Red star in (a) represents the epicenter; black box
represents the full extent of AOI in (b). Background images are aerial photos taken on 6 and 11
September by GSI. Orange polygons are the manually identified landslide patches based on these
aerial photos (source: https://www.gsi.go.jp/common/000204728.zip, accessed on 10 March 2022).

https://www.gsi.go.jp/BOUSAI/H30-hokkaidoiburi-east-earthquake-index.html#1
https://www.gsi.go.jp/common/000204728.zip
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We define a large area of interest (AOI) of 480 km2 that covers most of the landslide
patches (Figure 3). Within the large AOI we further define four test areas, three of which are
the same as those chosen by Jung and Yun (2020) [15]. This choice allows us to compare the
effect of different spatial resolutions-they adopt the ALOS-2 PALSAR-2 Ultra-Fine HH-pol
SAR data of 3-m resolution, while the data used in this study is the 6-m High-Sensitive
full-pol SAR. In addition, we define a fourth test area around the Atsuma Reservoir in
order to examine the effect of water bodies during landslide detection.

4.1.1. Qualitative Comparison

From the three sensors used in this case study (Table 1), we produce the following seven
SAR datatypes and one combined Z-score map to carry out the performance comparison:

(1) High-res L-band HH-pol σ0

(2) High-res L-band VV-pol σ0

(3) Medium-res C-band VV-pol σ0

(4) Ultra-high-res X-band HH-pol σ0

(5) High-res L-band dual-pol (VV + VH) mDP
(6) Medium-res C-band dual-pol (VV + VH) mDP
(7) High-res L-band full-pol Ps
(8) High-res L-band full-pol ZPc (denoted as Pc datatype hereafter)

In Figure 4 we choose Test Area 2 to demonstrate the differences among some of the
selected datatypes. Both the high-res L-band HH-pol σ0 and the ultra-high-res X-band
HH-pol σ0 provide sharp outlines for landslides compared to the multi-pol datatypes (mDP
and Ps). This difference is caused by the spatial ensemble averaging carried out on the
polarimetric datasets. The C-band VV-pol σ0, acquired at a lower spatial resolution, does
not capture the landslide boundaries as clearly. In addition, many pixels in the landslide
patches contain low Z-score values, suggesting that these pixels are indistinguishable from
non-landslides. The same phenomenon is also observed more in the X-band σ0 than in
the L-band σ0, implying that shorter radar wavelengths may not perform as efficient in
landslide detection within forest areas, possibly due to their higher sensitivity to small-scale
changes in vegetation during the pre-event periods.

Next, we examine the effect of viewing geometry on different polarimetric combi-
nations in the L-band datatypes. The Ps datatype shows strong positive Z-scores for the
landslides on the slopes with small LIAs. On the slopes with large LIAs, the landslide
patches contain low to nearly zero Ps Z-scores (pointed by yellow arrows in Figure 4). The
same is also seen on the mDP Z-score map. In comparison, the L-band σ0 may still show
clear and predominantly negative Z-score values on the slopes with large LIAs. We inves-
tigate the Z-score maps from other scattering powers and find that, instead of a positive
increase in Ps Z-score, landslide patches with larger LIAs tend to show a stronger decrease
in Pv Z-score (yellow arrows in Figure 5). This different dependency on LIA between
Ps and Pv is also observed in other landslide cases [23]. Numerical simulation in [49]
offers some possible explanation to this phenomenon, in which backscattering energy due
to direct-ground reflection and crown-ground interaction decreases with LIA, while the
energy due to direct-crown backscattering increases. In other words, landslides on the
slopes with larger LIAs are sensed as “loses in tree crowns” instead of “increases in bare
surfaces”. That means Ps or Pv each only carries half of the information about landslides. It
is therefore necessary to consider both values when carrying out landslide detection, such
as by combining them into a joint Z-score map ZPc (Equation (10) and Figure 5).
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Figure 4. A qualitative comparison among different datatypes for Hokkaido Test Area 2 (see Table 1
for data sources). The value 3 m, 6 m and 15 m are the spatial resolutions, with the asterisk (*)
indicating images processed by taking spatial ensemble averaging. DEM: digital elevation model.
LIA: local incidence angle. The LIA maps for the multi-pol datatypes are the same as those in the
single-pol. Θ: satellite look angle. Yellow arrows on Z-score maps indicate one particular landslide
that is well captured by σ0 but not by mDP and Ps.
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Figure 5. Comparison of Z-score maps generated from the odd-bounce surface scattering power
(Ps) and the diffused (volumetric) scattering power (Pv), and the combined Z-score map (Pc Z-
score). Yellow arrows indicate places with low Z-score amplitudes in Ps but high amplitude in Pv,
a phenomenon associated with the local incidence angles (LIAs). Yellow arrows indicate landslide
patches better depicted by combining the Z-score values from Ps and Pv.

The aforementioned complementary effect between Ps or Pv is not seen between the
dual-pol mDP and the dual-pol radar vegetation index [34]. In fact, when comparing the
Z-score maps generated from these dual-pol parameters, one appears as a sign-flipped
image of the other–pixels in the landslide patches display similar amplitudes but opposite
signs on the two Z-score maps. This is probably due to the incomplete information of
scattering properties in dual polarization. We therefore do not attempt to combine these
two parameters and remain with the mDP-only Z-score map. Next we will look into the
quantitative comparison of detection performance among the eight listed datatypes.

4.1.2. Quantitative Comparison

Figure 6 shows the Bayesian probability maps calculated from different datatypes.
Overall, the full-pol Pc depicts the most complete shape of the landslide bodies, followed
by the single-pol σ0 at different radar wavelengths. The dual-pol datatypes detect only
few landslides. The X-band σ0 captures an additional high-probability patch in Test Area 1
with sharp outlines. This patch is possibly related to crops, and the false detection is likely
associated with the lower number of pre-event images. In areas where water bodies exist
(Test Area 4), the single-pol σ0 may detect changes associated with both the landslides and
the water bodies, while the multi-pol datatypes are relatively free of such confusions.
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Figure 6. Bayesian probability maps obtained from different datatypes in the Hokkaido landslide
case. The asterisk (*) indicates the image is processed by taking spatial ensemble averaging using a
5 × 5 window.

The performance of each datatype is shown in the ROC curves (Figure 7). In Test
Area 1, the ROC curves for the L-band σ0 and Pc show a steep increase of TPR at low FPR,
yielding AUC values as high as 0.83 to 0.86 (Figure 7f). These values are comparable to
the detection results based on the ALOS-2 Ultra-Fine HH-pol multi-temporal intensities of
3-m spatial resolution (AUC = 0.79) [15]. The AUC for X-band σ0 and L-band Ps rank the
second and third at 0.77 and 0.73. The L-band mDP, C-band mDP and C-band σ0 perform
poorly, yielding AUC values lower than 0.7.
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Figure 7. Receiver operating characteristics (ROC) curves and area under curve (AUC) for (a–d) the
four test areas and (e) the full area of the Hokkaido AOI (Figure 3). The numbers shown in (f) the
AUC plot are the values from the full-pol Pc. Squares of different colors indicate the positions of the
GSBA binary maps generated at a cutoff probability of 0.5.

The landslide patches in Test Area 2, 3 and 4 result in slow-rising ROC curves and low
AUC values in almost all datatypes (Figure 7b–d,f). Among them, the full-pol Pc still gives
the highest and more stable AUC values, above 0.7 for all three test areas. All the other
datatypes yield AUC values lower than 0.7. The C-band σ0 yields the lowest AUC in Test
Area 2 and 3–lower than 0.6. In Test Area 4, the L-band σ0 gives the lowest AUC values as
a result of false detection over the reservoir lake (Figures 3 and 6).

For the full area, the L-band full-pol Pc has superior performance in landslide detection
with AUC = 0.77 (Figure 7f). The comparison between Pc and Ps-only AUC values again
confirms that the combination of Ps and Pv is necessary for landslide detection. The full-
area AUC value for the high-res L-band σ0 and ultra-high-res X-band σ0 ranks the second
and third, higher than the medium-res C-band σ0. We can therefore confirm that spatial
resolutions plays a role as important as radar wavelengths in SAR-based landslide detection.
The performance of the dual-pol mDP is least favored because of its lower full-area AUC
and its tendency to detect fewer landslides.

In Figure 7a–e, we also mark the positions of the binary change maps determined by
GSBA on each ROC curve. These solutions are located close to the turning points of the
curves, but slightly leaning towards the lower-FPR end. These positions suggest that the
default cutoff probability of 0.5 tends to create conservative change maps with a higher
positive likelihood ratio (TPR-to-FPR ratio).

4.2. Case Study 2: Rainfall-Triggered Putanpunas Landslide in Southern Taiwan

In the second case, we look into a different scenario–a rainfall-triggered landslide.
During the first 4 days in June 2017, a total of nearly 900 mm of precipitation occurred
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in the upstream of the Laonong River (according to the records from weather station
C0V210, available at https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp, accessed
on 10 March 2022) (Figure 8). Three days later on 7 June 2017, a landslide-associated
earthquake (landquake) was detected through the Real-time Landquake Monitoring Sys-
tem (RLAMS, http://collab.cv.nctu.edu.tw/older/catalog_20171231.html, accessed on
10 March 2022) [50]. Given the order of occurrence between the torrential rain and the
landquake, we attribute this event to a rainfall-triggered landslide.

Figure 8. Basemap of the Putanpunas River catchment and the landslide on 7 June 2017. Blue
rectangle represents the AOI. Orange polygon: the landslide patch from manual mapping. C0V210 is
the weather station. Source of image: SPOT-6/7 acquired on 5 July 2017 overlaid on Google Earth Pro
Image © 2022 CNES/Airbus.

To determine the landslide area associated with the 7 June 2017 landquake, we use
SPOT-6/7 images acquired on 18 April 2017 and 5 July 2017 to carry out manual detection.
Within a 15-km radius (approximately the estimation error of landquake relocation) of the
epicenter, we locate a new sliding patch in the existing landslide area of the Putanpunas
River catchment. Actually, there have been repeating landslides in this catchment since
typhoon Morakot in the year of 2009 [18,51], making this catchment one of the most
actively evolving landslide area in southern Taiwan. Different from the multiple small-scale
landslides triggered by the Hokkaido Eastern Iburi Earthquake, this rainfall-triggered
Putanpunas landslide contains a single patch of a relatively large area, up to 400,000 m2

(Figure 8). We caution that the actual landslide patch may differ from what we map here
due to the longer latency between the event date and the post-event optical image.

4.2.1. Qualitative Comparison

In this case study, we produce the following five datatypes for comparison (note that
different viewing geometry is involved):

(1) Low-res L-band HH-pol σ0, ascending
(2) Low-res L-band HH-pol σ0, descending
(3) Medium-res C-band VV-pol σ0, ascending
(4 Medium-res C-band VV-pol σ0, descending
(5) Ultra-high-res X-band, HH-pol σ0, descending

Some datasets allow dual-pol polarimetric combinations, such as HH-HV for ALOS-2
track D27 and VV-VH for both Sentinel-1 tracks (Table 1). However, in the Hokkaido

https://e-service.cwb.gov.tw/HistoryDataQuery/index.jsp
http://collab.cv.nctu.edu.tw/older/catalog_20171231.html
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case we have demonstrated that the use of dual-pol mDP datatype tends to capture fewer
landslides, so we decide not to adopt the dual-pol datatype in this case study. Here we wish
to focus on the detection performance among the σ0 datatypes of different wavelengths,
spatial resolutions and viewing geometry.

Figure 9 shows how different σ0 datatypes compare visually. The ascending tracks
show more prominent landslide signatures on the Z-score maps compared to those from
the descending tracks, regardless of the wavelengths and spatial resolutions. The intriguing
point is that the viewing geometry from ascending tracks yield larger LIAs compared
to those from descending tracks. In addition, we find that the viewing geometry from
descending tracks produces large layover zones that tend to overlap with the slopes of
small LIAs. Among all sensors, the X-band CSK descending track produces the largest
layover area, which also corresponds to the smallest look angle (27◦) among all three
sensors. Within the layover zones, landslide-related changes may still be recorded but are
mixed with energies from multiple ground targets of the same range distance, leading to
brighter pixels and stretched patterns after geocoding (Figure 10). We also notice that the
current layover-shadow mask does not necessarily mask out all layover areas (Figure 10),
which is possibly caused by errors in DEM or limitations in the SAR geometric distortion
simulation [52].

Figure 9. A qualitative comparison among different datatypes for the rainfall-triggered Putanpunas
landslide on 7 June 2017 in southern Taiwan. White and black pixels on the LIA maps are layover
and shadow zones, respectively. Refer to Figure 4 captions for more information.
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Figure 10. (Left) Slopes within the layover zones appear as brighter and stretched pixels in the post-
event X-band CSK σ0 image. In comparison, slopes in non-layover areas show typical speckle textures.
Yellow polygon is the 7 June 2017 landslide patch. (Right) After applying the layover-shadow mask
(white and red pixels), some severely stretched patterns remain unmasked (blue arrows) possibly
due to errors in DEM or incorrect prediction in the SAR geometric distortion simulation.

We have to emphasize that the same layover-shadow masks are also calculated and
applied on the SAR images in the previous Hokkaido landslide case. However, given the
smaller slope angles (Figure 4), the layover and shadow effects are nearly negligible. In
comparison, the Putanpunas River catchment has a large topographic relief and hence
greater slope angles (Figure 9), resulting in a larger portion of unusable data within the
layover zone.

4.2.2. Quantitative Comparison

Figure 11 shows the Bayesian probability, ROC curves and AUC values for different
datatypes. The ascending tracks show better performance than descending tracks, with
the highest AUC of 0.78 from the medium-res C-band VV σ0. The ascending L-band HH
σ0, albeit its low spatial resolution (60 m), still yields an AUC value of 0.71. On the other
hand, the descending tracks do not detect as many changes, with an AUC value of 0.65 for
the medium-res C-band VV σ0 and 0.64 for the ultra-high-res X-band HH σ0. No change is
detected from the descending L-band HH σ0. We should point out that despite the similar
AUC values from the descending C-band VV σ0 and the X-band HH σ0, their effective area
(unmasked area) is different–more than 50% of the catchment is under the layover-shadow
mask of the X-band data.
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Figure 11. (a) Bayesian probability maps obtained from different σ0 datatypes for the Putanpunas
landslide on 7 June 2017. (b) ROC curves and (c) AUC values for different datatypes. Blue numbers
in parentheses are the percentage of effective area within the AOI.

5. Discussion
5.1. How Data Properties Affect Detection Performance

In Table 2 we summarize the performance of different datatypes, including the full-
area AUC and OA. Note that AUC does not represent the performance of any particular
detection outcome but a full spectrum of outcomes, whereas OA is calculated at a specific
selection (e.g., at the cutoff probability of 0.5) to mimic the operator’s choice. The OA values
among different datatypes in the Hokkaido case, however, are all very similar and cannot
reflect their actual relative performance. This similarity results from the large number of
non-landslide pixels (TN in Equation (12)) when computing the OA values. To allow a
better judgement of the relative performance at a specific landslide mapping outcome, we
compute the full-area TPR at a fixed FPR of 0.1 (TPRFPR = 0.1). This value indicates the ratio
of detectable landslides at the cost of 10% false positive detection. In the Hokkaido case,
we further normalize the TPRFPR = 0.1 values by using the best TPRFPR = 0.1 from Pc (Table 2).
With the AUC and TPRFPR = 0.1 values, we discuss how the following data properties affect
the performance of SAR-based landslide detection.
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Table 2. Summary of full-area AUC, OA, TPR at PRF = 0.1 and the ratio of effective area (Ae) for the
two case studies.

Event and
AOI Area

Sensor-
Track Datatype *1 AUC OA TPRFPR = 0.1 *2 Ae *3 Ratio

Hokkaido
480 km2

ALOS-2
A122

Single-pol
HR L-band HH σ0 0.67 0.89 0.37 (0.66) 0.99

Single-pol
HR L-band VV σ0 0.68 0.89 0.39 (0.70) 0.99

Dual-pol
HR L-band

VV + VH
mDP

0.65 0.89 0.42 (0.75) 0.99

Full-pol
HR L-band Ps 0.66 0.90 0.40 (0.71) 0.99

Full-pol
HR L-band Pc Z-score 0.77 0.90 0.56 (1.00) 0.99

S-1
A68

Single-pol
MR C-band VV σ0 0.63 0.87 0.27 (0.48) 0.99

Dual-pol
MR C-band

VV + VH
mDP

0.62 0.87 0.27 (0.48) 0.99

CSK-A
Single-pol

UHR
X-band

HH σ0 0.67 0.88 0.34 (0.61) 0.99

Putanpunas
20 km2

ALOS-2
A137

Single-pol
LR L-band HH σ0 0.71 0.98 0.50 0.97

ALOS-2
D27

Single-pol
LR L-band HH σ0 - - - 0.97

S-1 A69 Single-pol
MR C-band VV σ0 0.78 0.92 0.61 0.87

S-1 D105 Single-pol
MR C-band VV σ0 0.65 0.90 0.41 0.81

CSK-D
Single-pol

UHR
X-band

HH σ0 0.64 0.98 0.37 0.54

*1 UHR: ultra-high resolution; HR: high resolution; MR: medium resolution; LR: low resolution. *2 The TPR value
at FPR = 0.1. Values in parentheses represent the normalized value by the best performance. *3 The ratio between
the effective area (area outside the layover-shadow mask) and the full AOI.

Radar wavelengths and spatial resolutions. In the Hokkaido case, the L-band datatypes
have better AUC and TPRFPR = 0.1 values than the other two radar wavelengths. This result
seems to suggest that longer wavelengths work better in landslide detection. However,
spatial resolutions can be an equally important factor. This inference is made from the
poor performance of the medium-res C-band single-pol datatype–its result is worse than
that from the X-band single-pol data at a higher spatial resolution. At the same time, the
medium-res C-band single-pol data seems to perform relatively well in the Putanpunas case.
This better performance is probably associated with the geometry of the landslide patches
(small and distributed landslides in Hokkaido vs. one single large patch in Putanpunas),
and the fact that the Putanpunas landslide is a repeated landslide on a bare surface instead
of on a forested land (Figure 8).

Polarizations. In the Hokkaido case, the high-res L-band full-pol data can offer the
best landslide detection capability in forest areas. It can even avoid false detection over
water bodies. Even though the landslide boundaries become slightly blurry compared to
those detected by using single-pol datatypes, the amount of information contained in a
full-pol dataset and the detection performance thereof is indeed unparalleled. The L-band
dual-pol datatype, despite a slightly better TPRFPR = 0.1, gives an AUC value lower than
those from many single-pol datatypes. It also tends to detect fewer landslide patches. As
dual polarization will be a major observation mode for some upcoming missions such as
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NISAR, more efforts are needed to explore a better utilization strategy for dual-pol data in
landslide mapping.

Viewing Geometry. In the Hokkaido case, we do not see a notable difference in LIA
between the detected and the missed pixels (Figure 12a). This similarity in LIA distributions
suggests that large LIAs do not necessarily hinder landslide detection. In the Putanpunas
case, landslides are even better detected on datatypes with larger LIAs (Figure 9). On the
other hand, slopes with small LIAs may coincide with overlay zones, which are also seen
in the Putanpunas case. The smaller (steeper) the satellite look angle (θ), the larger the
overlay zone and the smaller the effective area. The percentage of effective area drops from
97% at θ = 44◦ (ALOS-2 D27) to 54% at θ = 27◦ (CSK-D) (Figure 9 and Table 2). As the
area of layover and shadow depends on the specific topography of a region, a DEM-based
SAR geometric distortion simulation should be executed before planning for a mission or
submitting a tasking request in order to determine the best viewing geometry [52].

Figure 12. Normalized histogram for (a) the LIA and the post-to-pre-event difference in scattering
powers (∆Power) for the (b) detected and (c) missed pixels in the L-band quad-pol datatype (detected
and missed pixels are based on the GSBA binary map generated with the Pc Z-score map). The
histograms are computed over the entire Hokkaido AOI.

5.2. Limitations in SAR-Based Landslide Detection

In the Hokkaido case, the best full-area AUC is 0.77 and the best OA is 0.90 (Table 2).
These values are close to the results produced by using the ultra-high-res L-band HH-pol
multi-temporal intensity with different detection algorithms [15]. The similarity in limited
performance from different studies suggests that there may exist some factors that prevent
the SAR-based landslide mapping from achieving the high accuracy attained in optical
image-based mapping [53]. We plot the histogram of the post-to-pre-event difference in
scattering powers (∆Power) for the detected and the missed pixels, respectively, within
the Hokkaido AOI (Figure 12b,c). While the histograms for the detected pixels are clearly
skewed, the histograms for the missed pixels are centered and symmetric around zero,
indicating no significant difference in any of the scattering powers before and after the
landslide. This phenomenon is bewildering and needs some explanation.

The first possibility is the change of local topography. From a broader scale, there does
not seem to be a systematic difference in LIA between the detected and the missed pixels
(Figure 12a). However, the LIA is calculated using the pre-event global 30-m DEM [54].
The topography must have changed locally after the landslide. In fact, according to the
post-event DEM obtained by airborne laser survey, the surface morphology within the
landslide patches has changed substantially [55]. Features such as scarps and crown cracks
can reach meters tall with very steep (nearly vertical) facets [55]. Field photos also reveal
that large boulders, huge piles of dead trees and meter-scale surface undulations exist
on the ground [55,56]. The chaotic distribution of these features may result in scattering
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properties considerably deviating from what is expected from a pure land cover-type
change (forest to bare surface).

Another equally important factor to consider is the spatial variation of water contents.
Several studies show that the water contents can vary remarkably in the Hokkaido area,
from 30% to 280% among different geological materials sampled at the same site [57,58]. As
these materials are spread out during the landslide, the randomness in surface soil moisture
within the landslide patches increases. To sum up, soil moistures, local topography, surface
roughness and land cover changes together form a complicated backscattering field in the
landslide patches, leading to clear changes of scattering powers in some places and no
clear changes in other places. We may even hypothesize that it is radar wave’s sensitivity
to multiple physical properties that limits its performance in landslide detection. This
hypothesis needs further validations though, such as through numerical simulation of 3D
backscattering fields.

The increased randomness in backscattering fields within a landslide patch may
explain why intensity correlation method can yield better detection results than those
from pixel-by-pixel detection methods [15,19]. Intensity correlation is calculated based
on a number of pixels within a moving window, which offers contextual information
about the objects and their changes. Most important of all, it can potentially average out
the randomness in the complicated scattering field within a landslide patch, leading to a
smoother and less noisy detection result.

6. Conclusions

By applying a newly-designed change detection algorithm Growing Split-Based Ap-
proach (GSBA) on two different landslide cases, this study examines how different SAR
data properties affect the performance of landslide detection. Our result shows that the
high-resolution, full-polarimetric SAR datatype has unparalleled performance in landslide
detection over forest areas. Single polarimetric datasets of high or ultra-high spatial reso-
lution rank the next, regardless of their radar wavelengths. This result suggests that high
spatial resolution is critical especially for detecting small and distributed landslides in
forest areas. Datatypes of medium or low spatial resolution work better in detecting large
landslide patches over bare surfaces; their detection performance decays significantly over
small landslides in forest areas. Dual polarimetric datatypes have the worst performance
among all; a better utilization strategy may be needed for their use in landslide detection.
Different viewing geometry mainly impacts the effective detection area by creating layover
and shadow zones. This problem is more severe in areas of large slopes (≥40–50◦), in which
a steep viewing angle (<30◦) may render half of the image unusable for landslide detection.
SAR geometric distortion simulation is recommended before planning for a mission or sub-
mitting a tasking request for landslide mapping purposes. Given the limited performance
of SAR-based landslide detection (both in this study and in previous studies) as compared
to that from optical image-based landslide detection, we propose that other confounding
factors, including but not limited to local topography, surface roughness and soil moistures,
are all contributing to the randomness in the backscattering field and hinder the detection
of land cover changes. Such limitations need to be properly acknowledged when adopting
SAR-based landslide mapping for emergency responses or post-hazard assessments.
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Appendix A. GSBA Algorithm

The following description corresponds to the steps illustrated in Figure 2.

(a) Initialize splitting and histogram fitting

We first split the image into multiple tiles. After splitting, we fit the data histogram h(z)
within each tile with a model histogram g(z) of tri-modal Gaussian distribution (modified
after the bimodal Gaussian distribution in [48]):

g(z) =
3

∑
i=1

Gi =
3

∑
i=1

Ai exp

[
−1

2
(z−mi)

2

s2
i

]
(A1)

where g(z) is the modeled histogram discretized at z bin centers, [Ai, mi, si] is the ampli-
tude, mean and standard deviation for each of the i-th Gaussian modes. Mode 1 (G1) and
mode 3 (G3) imply negative and positive changes in Z-score values, respectively. Mode
2 (G2) has a mean value close to zero for the unchanged class (Figure A1). In the rest
of this paper, we use Gaussian parameters to refer to [Ai, mi, si] for the three modes.
The curve-fitting optimization is carried out by using the fast nonlinear solver of the
Levenberg-Marquardt algorithm [59].

Figure A1. Tri-model Gaussian distribution. Mode 1 (G1) and Mode 3 (G3) are for the changes with
decreased and increased Z-score values, whereas Mode 2 (G2) is for the unchanged class. SA is
surface area under the colored curve. NA is the non-overlapping area, marked by slash stripes.

(b) Select tiles using thresholds

The tiles are selected based on the following proxies:

i. Ashman D coefficient (AD). It represents the separation between two modes. The
value is defined as [60]:

ADi =
√

2
|mi −m2|√(

s2
i + s2

2
) (A2)
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ii. Bhattacharyya coefficient (BC). It represents the goodness of fit in terms of probability.
It is defined as [61]:

BC = ∑
k

√
h(zk)

∑k h(z)

√
g(zk)

∑k g(zk)
(A3)

where k stands for the k-th histogram bin.
iii. Surface ratio (SR). It represents the significance of the changes in terms of probability

compared to the unchanged class. It is defined as [45]:

SRi =
min(SAi, SA2)

max(SAi, SA2)
(A4)

where SA stands for the surface area for each mode (Figure A1).
iv. Non-overlapping Ratio (NR). It represents the significance of the changes in terms of

the cumulative probability that is not overlapped with the unchanged class (G2). It is
defined as:

NRi =
NAi
SAi

(A5)

The first three proxies are also used by HSBA [45], while the last one (NR) is an
additional proxy implemented in GSBA. The main purpose of NR is to weed out the tiles
where the G2 mode has a wide distribution that overlap significantly with the other two
modes. Except for BC, the other three proxies are calculated for G1 (i = 1) and G3 (i = 3)
mode separately. Table A1 shows the empirical tile selection thresholds used for landslide
selection in this study.

Table A1. Tile selection thresholds for landslide detection.

Ashman D Coeff. (AD) >1.9
Bhattacharyya Coeff. (BC) >0.98

Surface Ratio (SR) >0.05
Non-overlapping Ratio (NR) >0.4

(c) Grow patches for consistent statistical distribution

Next we try to merge the tiles in order to obtain more robust Gaussian parameters from
clustered changes. Within each tile cluster, GSBA first chooses a random seed tile and iden-
tifies the neighboring tiles around it. The first round of histogram fitting (Equation (A1)) is
carried out on the joint histogram between the seed and each of the neighboring tiles. The
neighboring tiles with proxies above the thresholds shown in Table A1 are selected as the
next round of seeds, and new neighboring tiles are identified around them. This process
is repeated until all the tiles in the cluster are touched, or until the growing can no longer
propagates onwards.

To avoid the situation where the first seed tile is significantly different from the rest
of the tiles in the cluster, this growing process will be repeated a few times from a few
randomly-selected seed tiles. The resultant patch with the largest number of merged tiles
will be adopted. Through this growing process, the merged tiles (or a patch) contain
consistent statistical distribution.

(d) Fill Gaussian parameters

After tile growing, we could have moved on to estimate the Bayesian probabilities
by using the Gaussian parameters averaged over all patches. However, we found that in
the case of landslide detection, where changes can be affected by spatially-varying factors
such as local incidence angles [23], a global set of Gaussian parameters may not be the best
solution. So instead, we keep the Gaussian parameters unchanged in the patches, and fill
only the area outside the patches with the global average.

(e) Calculate Bayesian probability
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The Bayesian probability is defined as [48]:

p(X|Z) = p(Z|X)p(X)

p(Z
∣∣X)p(X) + p(Z

∣∣X)p
(
X
) (A6)

where X, X stands for changes and non-changes, and p(X|Z) is the Bayesian probability
of changes given the Z-score value of the pixel. The prior probabilities p(X) and p

(
X
)

are
both set to 0.5 following the suggestions in [48]. We assume that the conditional probability
for the changes p(Z|X) has a Gaussian probability density function (PDF) with parameters
of [Ã1, m1, s1] for negative Z-scores or [Ã3, m3, s3] for positive Z-scores:

p(Z|X) =


Ã1√
2π s1

exp
[
− 1

2
(Z−m1)

2

(s1)
2

]
, Ã1 = A1

A1+A2
i f Z < 0

Ã3√
2π s3

exp
[
− 1

2
(Z−m3)

2

(s3)
2

]
, Ã3 = A3

A3+A2
i f Z > 0

(A7)

and the conditional probability for the non-changes p(Z
∣∣X) also has a Gaussian PDF with

parameters of
[

Ã2, m2, s2

]
:

p
(
Z
∣∣X) = Ã2√

2π s2
exp

[
−1

2
(Z−m2)

2

(s2)
2

]
, Ã2 =

{
A2

A1+A2
i f Z < 0

A2
A3+A2

i f Z > 0
(A8)

(f) Derive binary change maps

This step is relatively straightforward. By default, we adopt a cutoff probability of 0.5
on the Bayesian probability map in order to obtain the binary map.

(g) Choose the final change map

Step (a) to (f) will be repeated at multiple tile sizes. The list of tile sizes are determined
based on the image dimensions and the preferred number of test sets. Currently we limit
the tile size to be between 10 and 500 pixels, and the default number of test sets is between
4 and 8. After step (f), a binary change map will be generated at each tile size. To determine
which one is the final output, GSBA calculates Ripley’s K (Kr) for each map to estimate the
spatial randomness of the change points [62,63]:

Kr =
A
n2 ∑n

i ∑n
j 6=i Ir

( ∣∣xi − xj
∣∣ ≤ r

)
Ir =

{
1 i f

∣∣xi − xj
∣∣ ≤ r

0 i f
∣∣xi − xj

∣∣ > r
(A9)

where r is a pre-defined distance of interest, xi and xj are the positions of any two change
pixels, n is the total number of change pixels, and A is the image area. Ripley’s K is a
geospatial index to tell if points are dispersive or clustered in space. When the point
distribution is close to complete spatial randomness, Kr will be close to πr2. The higher the
value, the more clustered the points. For a more efficient calculation of Kr, we down-sample
the change map to 100 m × 100 m resolution, and set r = 100 m. After computing the
Kr value for all binary maps, we choose the one with intermediate Kr value as our final
change map.
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