Dynamics of the Evaporation of Intercepted Precipitation during the Last Two Decades over China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Methods
3. Results
3.1. Spatial Variation of Ei across China
3.2. Temporal Variation of Ei during 2001–2020
3.3. Contribution of Influencing Factors to the Temporal Variation of Ei
3.3.1. Climatic Factors
3.3.2. Vegetation Dynamic
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, J. Research progress of plant interception of precipitation. J. Appl. Meteorol. 2020, 31, 641–652. [Google Scholar]
- Gan, R.; Zhang, Y.; Shi, H.; Yang, Y.; Eamus, D.; Cheng, L.; Chiew, F.H.S.; Yu, Q. Use of satellite leaf area index estimating evapotranspiration and gross assimilation for Australian ecosystems. Ecohydrology 2018, 11, e1974. [Google Scholar] [CrossRef]
- Zheng, C.; Jia, L. Global canopy rainfall interception loss derived from satellite earth observations. Ecohydrology 2020, 13, e2186. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Kang, Y. Canopy interception and dissipation of Winter Wheat. Agric. Res. Arid Areas 2005, 23, 6. [Google Scholar]
- Boulet, G.; Delogu, E.; Chebbi, W.; Rafi, Z.; Merlin, O. Evapotranspiration and Evaporation/Transpiration Retrieval Using Dual-Source Surface Energy Balance Models Integrating VIS/NIR/TIR Data with Satellite Surface Soil Moisture Information. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Cortés, S.S.; Juan, I.W.; Eduardo, L.P.; Diego, E.G.; Patricio, N.M. Changes in rainfall partitioning caused by the replacement of native dry forests of Lithraea molleoides by exotic plantations of Pinus elliottii in the dry Chaco mountain forests, central Argentina. J. Arid Land 2020, 12, 717–729. [Google Scholar] [CrossRef]
- Davies-Barnard, T.; Valdes, P.J.; Jones, C.D.; Singarayer, J.S. Sensitivity of a coupled climate model to canopy interception capacity. Clim. Dyn. 2014, 42, 1715–1732. [Google Scholar] [CrossRef]
- Gash, J.H.C.; Lloyd, C.R.; Lachaud, G. Estimating sparse forest rainfall interception with an analytical model. J. Hydrol. 1995, 170, 79–86. [Google Scholar] [CrossRef]
- Rutter, A.J.; Kershaw, K.A.; Robins, P.C.; Morton, A.J. A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agric. Meteorol. 1971, 9, 367–384. [Google Scholar] [CrossRef]
- Fan, Y.; Tim, J. Reconciling Canopy Interception Parameterization and Rainfall Forcing Frequency in the Community Land Model for Simulating Evapotranspiration of Rainforests and Oil Palm Plantations in Indonesia. J. Adv. Modeling Earth Syst. 2019, 11, 732–751. [Google Scholar] [CrossRef] [Green Version]
- Ghilain, D.; Arboleda, A.; Barrios, J.M.; Gellens, F. Water interception by canopies for remote sensing based evapotranspiration models. Int. J. Remote Sens. 2020, 41, 2934–2945. [Google Scholar] [CrossRef]
- Yu, L.; Xue, Y.; Diallo, I. Vegetation greening in China and its effect on summer regional climate. Sci. Bull. 2020, 66, 13–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, B.; Luo, J. Impact of vegetation change on global land surface evapotranspiration from 2003 to 2017. Acta Geogr. Sin. 2021, 76, 11. [Google Scholar]
- Shen, J.; Zhang, M.; Xiao, W.; Wen, X.; Liu, S.; Li, X. Resolution and characteristics of evapotranspiration components of Qianyanzhou plantation in China based on improved SW model. J. Ecol. 2016, 36, 11. [Google Scholar]
- Song, W.; Yang, S.; Lu, J.; Liu, C.; Wang, S. Simulation and analysis of large-scale vegetation canopy interception precipitation in the middle reaches of the Yellow River. Acta Geogr. Sin. 2014, 69, 80–89. [Google Scholar]
- Duan, H.; Kang, W. Effects of canopy interception on Evapotranspiration and energy distribution of PML model. China Rural Water Hydropower 2021, 3, 80–84. [Google Scholar]
- Neto, A.; Niu, G.; Roy, T.; Tyler, S.; Troch, P. Interactions between snow cover and evaporation lead to higher sensitivity of streamflow to temperature. Commun. Earth Environ. 2020, 1, 1234567890. [Google Scholar]
- Chao, L.; Zhang, K.; Wang, J.; Feng, J.; Zhang, M. A Comprehensive Evaluation of Five Evapotranspiration Datasets Based on Ground and GRACE Satellite Observations: Implications for Improvement of Evapotranspiration Retrieval Algorithm. Remote Sens. 2021, 13, 2414. [Google Scholar] [CrossRef]
- Hao, L.; Wang, S.; Cui, X.; Zhai, Y. Spatiotemporal Dynamics of Vegetation Net Primary Productivity and Its Response to Climate Change in Inner Mongolia from 2002 to 2019. Sustainability 2021, 13, 13310. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Tian, A.; Liu, Y.; Deng, X.; Wang, X.; Wang, Y.; Peng, Y. Spatial-temporal Variation and Scale Effect of Canopy Interception on a Larix principis-rupprechtii Plantation Slope in Liupan Mountains, Ningxia, China. J. Soil Water Conserv. 2017, 31, 9. [Google Scholar]
- Deng, H. Simulation and analysis of the impact of vegetation cover change on runoff and evaporation in Watershed. J. Geosci. 2012, 2, 16. [Google Scholar]
- Fan, C.; Li, C.; Jia, K.; Sun, B.; Gao, H. Canopy interception of grassland vegetation in Hulun Lake Basin under different grazing systems. J. Ecol. 2015, 35, 9. [Google Scholar]
- Sharma, M.; Bangotra, P.; Gautam, A.; Gautam, S. Sensitivity of normalized difference vegetation index (NDVI) to land surface temperature, soil moisture and precipitation over district Gautam Buddh Nagar, UP, India. Stoch. Environ. Res. Risk Assess. 2021, 36, 1779–1789. [Google Scholar] [CrossRef] [PubMed]
- Asdak, C.; Jarvis, P.; Gardingen, P.; Fraser, A. Rainfall interception loss in unlogged and logged forest areas of Central Kalimantan, Indonesia. J. Hydrol. 1998, 206, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Fei, M.; Sun, H.; Yang, H. Research Progress in Dry/wet Climate Zoning. Prog. Geogr. Sci. 2011, 30, 17–26. [Google Scholar]
- Sun, X.; Wang, G.; Wu, Y.; Liu, L.; Liu, G. Hydrologic regime of interception for typical forest ecosystem at subalpine of Western Sichuan, China. J. Ecol. 2013, 33, 501–508. [Google Scholar]
- Sadeghi, S.M.M.; Attarod, P.; Pypker, T.G.; Dunikerley, D. Is canopy interception increased in semiarid tree plantations? Evidence from a field investigation in Tehran, Iran. Turk. J. Agric. For. 2014, 38, 792–806. [Google Scholar] [CrossRef]
- Zhang, Y.; Peña-Arancibia, J.L.; McVicar, T.R.; Chiew, F.H.; Vaze, J.; Liu, C.; Lu, X.; Zheng, H.; Wang, Y.; Liu, Y.Y.; et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 2016, 6, 19124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Zeng, G.; Jiang, Y.; Huang, G.H.; Zhang, X. Modelling and measurement of two-layer-canopy interception losses in a subtropical evergreen forest of central-south China. Hydrol. Earth Syst. Sci. 2006, 10, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Zhi, L.I.; Wang, Y.; Wang, Z.; Li, W. Spatiotemporal Variation of Evaporation and Transpiration from 1982—2012 in the Arid Valley Region in Northwest China. J. Irrig. Drain. 2018, 36, 112–115. [Google Scholar]
- Qiong, L.; Luo, Z.; Zhong, B.; Zhou, H. An Improved Approach for Evapotranspiration Estimation Using Water Balance Equation: Case Study of Yangtze River Basin. Water 2018, 10, 812. [Google Scholar]
- Silva, N.G.D.; Alves, R.J.V. The eradication of feral goats and its impact on plant biodiversity—A milestone in the history of Trindade Island, Brazil. Rodriguésia 2019, 62, 717–719. [Google Scholar] [CrossRef] [Green Version]
- Xia, H.; Yang, Y.; Ding, F. Recursive Least-squares Estimation for Multivariable Systems Based on the Maximum Likelihood Principle. Int. J. Control Autom. Syst. 2020, 18, 503–512. [Google Scholar] [CrossRef]
- Wang, Z. Interception of Vapor Flow near Soil Surface for Water Conservation and Drought Alleviation. In Proceedings of the AGU Fall Meeting Abstracts, Cambridge, MA, USA, 14–18 December 2015. [Google Scholar]
- Fathizadeh, O.; Hosseini, S.; Alexander, Z.; Keim, R.; Boloorani, A. Estimating linkages between forest structural variables and rainfall interception parameters in semi-arid deciduous oak forest stands. Sci. Total Environ. 2017, 601–602, 1824–1837. [Google Scholar] [CrossRef] [PubMed]
- Ufoegbune, G.C.; Ogunyemi, O.; Eruola, A.O.; Awomeso, J.A. Variation of interception loss with different plant species at the University of Agriculture, Abeokuta, Nigeria. Afr. J. Environ. Sci. Technol. 2010, 4, 831–844. [Google Scholar]
- Pypker, T.G.; Barbara, J.B.; Timothy, E.L.; Danny, G.M. The importance of canopy structure in controlling the interception loss of rainfall: Examples from a young and an old-growth Douglas-fir forest. Agric. For. Meteorol. 2005, 130, 113–129. [Google Scholar] [CrossRef]
- Yu, K. Effects of species composition on rainfall interception capacity of alpine meadow vegetation canopy. J. Ecol. 2011, 31, 9. [Google Scholar]
- Herwitz, S.R.; Slye, R.E. Three-dimensional modeling of canopy tree interception of wind-driven rainfall. J. Hydrol. 1995, 168, 205–226. [Google Scholar] [CrossRef]
- Marin, C.T. Gross rainfall and its partitioning into throughfall, stemflow and evaporation of intercepted water in four forest ecosystems in western Amazonia. J. Hydrol. 2000, 237, 40–57. [Google Scholar] [CrossRef]
- Xiao, Q.; Mcpherson, E.G.; Ustin, S.L.; Grismer, M.E.; Simpson, J.R. Winter rainfall interception by two mature open-grown trees in Davis, California. Hydrol. Processes 2015, 14, 763–784. [Google Scholar] [CrossRef]
- Fleischbein, K.; Wilcke, W.; Goller, R.; Boy, J.; Valarezo, C.; Zech, W.; Knoblich, K. Rainfall interception in a lower montane forest in Ecuador: Effects of canopy properties. Hydrol. Processes 2005, 19, 1355–1371. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, T.; Ni, J. Increased extreme warming events and the differences in the observed hydrothermal responses of the active layer to these events in China’s permafrost regions. Clim. Dyn. 2022, 1–20. [Google Scholar] [CrossRef]
- Niu, X. Dynamic Changes of Leaf Area Index of Typical Vegetation in Water and Wind Erosion Ecotone and Its Influence on Canopy Interception. Master’s Thesis, University of Chinese Academy of Sciences, Beijing, China, 2019. [Google Scholar]
- Kang, W.; Deng, X.; Zhao, Z. Effects of canopy interception on energy conversion processes in a Chinese fir plantation ecosystem. Front. For. China 2008, 3, 264–270. [Google Scholar] [CrossRef]
- Leuning, R.; Cleugh, H.A.; Zegelin, S.J.; Hughes, D. Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: Measurements and comparison with MODIS remote sensing estimates. Agric. For. Meteorol. 2005, 129, 151–173. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Ward, E.J.; Ding, R.; Xin, Z.; Rui, Z. Evapotranspiration components determined by sap flow and microlysimetry techniques of a vineyard in northwest China: Dynamics and influential factors. Agric. Water Manag. 2011, 98, 1207–1214. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Roy, M.B.; Roy, P.K. Gross rainfall amount and maximum rainfall intensity in 60-minute influence on interception loss of shrubs: A 10-year observation in the Tengger Desert. Sci. Rep. 2016, 6, 26030. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kengni, L.; Tematio, P.; Manefouet, I.B.; Kenfack, J.V. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Lu, J.; Wang, G.; Gong, T.; Hagan, D.; Su, B. Changes of actual evapotranspiration and its components in the Yangtze River valley during 1980–2014 from satellite assimilation product. Theor. Appl. Climatol. 2019, 138, 1493–1510. [Google Scholar] [CrossRef]
- Xiao, Q.; Mcpherson, E. Rainfall interception of three trees in Oakland, California. Urban Ecosyst. 2011, 14, 755–769. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, J.; Zhang, F.; Zhuang, Q. Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China. Agric. Water Manag. 2021, 243, 106473. [Google Scholar] [CrossRef]
- Sun, H.; Bai, Y.; Lu, M.; Wang, J.; Ye, T.; Yan, D. Drivers of the water use efficiency changes in China during 1982–2015. Sci. Total Environ. 2021, 799, 149145. [Google Scholar] [CrossRef]
- Rowe, L.K. Rainfall interception by an evergreen beech forest, Nelson, New Zealand. J. Hydrol. 1983, 66, 143–158. [Google Scholar] [CrossRef]
- Zheng, C.; Li, J. Global rainfall interception loss derived from multi-source satellite earth observations. In Proceedings of the IGARSS 2016-2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016. [Google Scholar]
- Carlyle-Moses, D.E.; Price, A.G. Modelling canopy interception loss from a Madrean pine-oak stand, northeastern Mexico. Hydrol. Processes 2010, 21, 2572–2580. [Google Scholar] [CrossRef]
- Liu, H.; Deng, Y.; Liu, X. The contribution of forest and grassland change was greater than that of cropland in human-induced vegetation greening in China, especially in regions with high climate variability. Sci. Total Environ. 2021, 792, 148408. [Google Scholar] [CrossRef] [PubMed]
- Min, C. Study on Forest Ecosystem Evapotranspiration in North-South Transect of Eastern China Based on RS and GIS; Hubei University: Wuhan, China, 2012. [Google Scholar]
- Li, W. Rainfall Interception Characteristics of Shrub in Tianlaochi Watershed in the Upper Reaches of Heihe River in China; Lanzhou University: Lanzhou, China, 2015. [Google Scholar]
- Véliz-Chávez, C.; Mastachi-Loza, C.A.; González-Sosa, E.; Becerril-Piña., R.; Ramos-Salinas, N.M. Canopy Storage Implications on Interception Loss Modeling. Am. J. Plant Sci. 2014, 5, 3032–3048. [Google Scholar] [CrossRef] [Green Version]
- McJannet, D.; Vertessy, R. McJannet and Vertessy, Effects of thinning on wood production, leaf area index, transpiration and canopy interception of a plantation subject to drought. Tree Physiol. 2001, 21, 1001–1008. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Tian, F. Spatiotemporal variations of agricultural water use efficiency and its response to the Grain to Green Program during 1982–2015 in the Chinese Loess Plateau. Phys. Chem. Earth Parts A/B/C 2021, 121, 102975. [Google Scholar] [CrossRef]
- Azida, A.B.A.; Syahidah, A.M.N.; Lee, W.K. The effects of rainfall intensity to floor interception of Axonopus Compressus (Dwaft) under controlled condition. IOP Conf. Ser. Earth Environ. Sci. 2021, 646, 012041. [Google Scholar] [CrossRef]
- Sun, C.; Jetten, V.G. Rainfall interception simulation and temporal and spatial variation characteristics of vegetation canopy in Guangdong Province from 2004 to 2016 in China. J. Ecol. 2020, 40, 15. [Google Scholar]
- Dimitriadou, S.; Nikolakopoulos, K.G. Evapotranspiration Trends and Interactions in Light of the Anthropogenic Footprint and the Climate Crisis: A Review. Hydrology 2021, 8, 163. [Google Scholar] [CrossRef]
- Siles, P.; Vaast, P.; Dreyer, E.; Harmand, J.M. Rainfall partitioning into throughfall, stemflow and interception loss in a coffee (Coffea arabica L.) monoculture compared to an agroforestry system with Inga densiflora. J. Hydrol. 2010, 395, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Ling, B.; Liu, S.; Qu, Y.; Zhou, G.; He, X. Analysis of changes in Amazon tropical rain forest from 1982 to 2012 using glass Lai data. J. Remote Sens. 2016, 20, 8. [Google Scholar]
- Golubeva, E.I.; Zimin, M.V.; Tutubalina, O.V.; Timokhina, Y.I.; Azarova, A.S. Leaf Area Index: Methods of Field Instrumental Measurements and Using Remote Sensing Materials; Southern Scientific Center of the Russian Academy of Sciences Rostov on Don: Moscow, Russia, 2020. [Google Scholar]
- Hu, L.; Chen, Y.; Mao, J. Effects of different spatial resolutions of remote sensing images on the estimation of effective leaf area index of evergreen broad-leaved forest in mountainous areas of Southwest Sichuan in China. J. Sichuan Agric. Univ. 2016, 34, 8. [Google Scholar]
- Hu, L. Dynamic analysis of vegetation in key ecological functional areas of wind prevention and sand fixation in recent 20 years. J. Ecol. 2021, 41, 11. [Google Scholar]
- Zhang, Y.; Liu, T.; Wang, Y.; Zhang, M.; Zheng, Y. Vegetation variation trend and its influencing factors in Urad Grassland over remote sensing. MATEC Web Conf. 2021, 336, 06028. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, T.; Wang, Y.; Zhang, M.; Zheng, Y. Study on the characteristics of rainfall interception by the canopy of the seawall shelter forest in Northern Jiangsu in China. J. Nanjing For. Univ. 1996, 39, 17. [Google Scholar]
- Tan, S.; Ni, X.; Yue, K.; Liao, S.; Wu, F. Increased precipitation differentially changed soil CO2 efflux in arid and humid areas. Geoderma 2021, 388, 114946. [Google Scholar] [CrossRef]
- Ma, P.; LREIS. Validation and analysis of musyq leaf area index products—A case study of China. J. Remote Sens. 2018, 23, 131. [Google Scholar]
- Zhang, Y.; Chiew, F.; Zhang, L.; Li, H. Use of Remotely Sensed Actual Evapotranspiration to Improve Rainfall-Runoff Modeling in Southeast Australia. J. Hydrometeorol. 2009, 10, 969–980. [Google Scholar] [CrossRef]
- Cesar. Canopy Interception. In Dictionary Geotechnical Engineering/Wörterbuch Geotechnik; Springer: Berlin/Heidelberg, Germany, 2014; p. 188. [Google Scholar]
- Richter, F.; Ring, J.; Panferov, O.; Spank, U.; Bernhofer, C. How to predict hydrological effects of local land use change: How the vegetation parameterisation for short rotation coppices influences model results. Hydrol. Earth Syst. Sci. 2015, 19, 3457–3474. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Wang, X.; Hu, R.; Pan, Y.; Paradeloc, M. Rainfall partitioning into throughfall, stemflow and interception loss by two xerophytic shrubs within a rain-fed re-vegetated desert ecosystem, northwestern China. J. Hydrol. 2015, 527, 1084–1095. [Google Scholar] [CrossRef]
- Mccarthy, M.P.; Toumi, R. Observed Interannual Variability of Tropical Troposphere Relative Humidity. J. Clim. 2004, 17, 3181–3191. [Google Scholar] [CrossRef]
- Davarzani, H.; Smits, K.; Tolene, R.M.; Illangasekare, T. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface. Water Resour. Res. 2014, 50, 661–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Gao, D.; Xu, Q.; Hao, Y.; Zhang, B. Characteristics of δD and δ18O in summer precipitation in the West Ordos Desert and its water vapor sources. For. Res. 2016, 29, 911–918. [Google Scholar]
- Li, C. LUCC-Driven Changes in Gross Primary Production and Actual Evapotranspiration in Northern China. J. Geophys. Res. Atmos. 2020, 125, e2019JD031705. [Google Scholar] [CrossRef]
- Rogers, C.A.; Chen, J.M.; Gonsamo, A.; Luo, X.; Staebler, R. Daily leaf area index from photosynthetically active radiation for long term records of canopy structure and leaf phenology. Agric. For. Meteorol. 2021, 304–305, 108407. [Google Scholar] [CrossRef]
- Dayisaba, F.N.; Guo, H.; Isabwe, A.; Bao, A.; Nahayo, L.; Khan, G. Inter-Annual Vegetation Changes in Response to Climate Variability in Rwanda. J. Environ. Prot. 2017, 8, 464. [Google Scholar] [CrossRef] [Green Version]
- Jitka, K.; Václav ípek, Š.; Hnilica, J.; Vlek, L.; Tesa, M. Canopy interception estimates in a Norway spruce forest and their importance for hydrological modelling. Hydrol. Sci. J. 2021, 66, 1233–1247. [Google Scholar]
- Fischer, M.; Zenone, T.; Trnka, M.; Orság, M.; Montagnani, L.; Ward, E.J.; Tripathi, A.M.; Hlavinka, P.; Seufert, G.; Žalud, Z.; et al. Water requirements of short rotation poplar coppice: Experimental and modelling analyses across Europe. Agric. For. Meteorol. 2018, 250, 343–360. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, L.; Chen, J.; He, L.; Ji, Y.; Tang, Q.; Fan, Y.; Tan, D. Dynamics of the Evaporation of Intercepted Precipitation during the Last Two Decades over China. Remote Sens. 2022, 14, 2474. https://doi.org/10.3390/rs14102474
Yan L, Chen J, He L, Ji Y, Tang Q, Fan Y, Tan D. Dynamics of the Evaporation of Intercepted Precipitation during the Last Two Decades over China. Remote Sensing. 2022; 14(10):2474. https://doi.org/10.3390/rs14102474
Chicago/Turabian StyleYan, Lingyun, Jilong Chen, Lei He, Yongyue Ji, Qingqing Tang, Yuanchao Fan, and Daming Tan. 2022. "Dynamics of the Evaporation of Intercepted Precipitation during the Last Two Decades over China" Remote Sensing 14, no. 10: 2474. https://doi.org/10.3390/rs14102474
APA StyleYan, L., Chen, J., He, L., Ji, Y., Tang, Q., Fan, Y., & Tan, D. (2022). Dynamics of the Evaporation of Intercepted Precipitation during the Last Two Decades over China. Remote Sensing, 14(10), 2474. https://doi.org/10.3390/rs14102474